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Abstract

Complex data types like images can be clustered in multi-
ple valid ways. Non-redundant clustering aims at extracting
those meaningful groupings by discouraging redundancy be-
tween clusterings. Unfortunately, clustering images in pixel
space directly has been shown to work unsatisfactory. This
has increased interest in combining the high representational
power of deep learning with clustering, termed deep cluster-
ing. Algorithms of this type combine the non-linear embed-
ding of an autoencoder with a clustering objective and op-
timize both simultaneously. None of these algorithms try to
find multiple non-redundant clusterings. In this paper, we pro-
pose the novel Embedded Non-Redundant Clustering algo-
rithm (ENRC). It is the first algorithm that combines neural-
network-based representation learning with non-redundant
clustering. ENRC can find multiple highly non-redundant
clusterings of different dimensionalities within a data set.
This is achieved by (softly) assigning each dimension of the
embedded space to the different clusterings. For instance, in
image data sets it can group the objects by color, material and
shape, without the need for explicit feature engineering. We
show the viability of ENRC in extensive experiments and em-
pirically demonstrate the advantage of combining non-linear
representation learning with non-redundant clustering.

1 Introduction

Every day massive amounts of complex data like images,
texts, videos and audios are generated and most of them
have no labels. This makes it nearly impossible to apply su-
pervised methods, because it may be too expensive to la-
bel the data or there might not even be a labeling consen-
sus. This calls for unsupervised classification techniques like
clustering, which are unsupervised learning algorithms for
partitioning data into similar groups. Unfortunately, these
kinds of complex domains have been notoriously difficult
to handle for classical clustering algorithms (Xie, Girshick,
and Farhadi 2016). The deep learning ’revolution’ of the
last few years targets these data sets explicitly, which sug-
gests that a combination of both approaches is promising.
Several techniques have been proposed in this area under
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Figure 1: This data set can be meaningfully grouped ei-
ther by shapes (cube, cylinder, sphere), by colors (red, blue,
green, yellow, purple, gray), or by materials (rubber, metal).
All of these clusterings are non-redundant.

the terms ’deep clustering’ or ’embedded clustering’. They
combine a flat clustering objective—considering only one
valid clustering— with unsupervised representation learn-
ing through neural networks (Bengio, Courville, and Vin-
cent 2013; Aljalbout et al. 2018). These approaches make
it possible to achieve a high-quality clustering even in the
above described domains. The advantage of an integrated
approach that performs clustering and representation learn-
ing simultaneously is that they benefit from each other. The
clustering provides feedback to the transformation, and in
return the non-linear transformation can alter the embedded
space to improve the clustering. All these methods assume
that the data can be partitioned into only a single valid clus-
tering. Yet, we argue that most modern complex data sets
can be partitioned in multiple valid ways. Techniques from
subspace clustering address these issues, but they deliver
a multitude of redundant clustering solutions, which might
be valid, but are hard to interpret even for domain experts.
Deep subspace clustering algorithms like (Ji et al. 2017;
Zhang et al. 2018) can only find a single valid clustering,
where a cluster can belong to a different subspace. We think
it is necessary to constrain the solution space by only consid-
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ering clusterings, which are highly non-redundant, meaning
that the found clusterings should be as different as possi-
ble. Techniques tackling these challenges are not new. In-
deed, outside of deep clustering there is a whole range of
algorithms for non-redundant clustering (Niu, Dy, and Jor-
dan 2010; Ye et al. 2016; Mautz et al. 2018; Cui, Fern, and
Dy 2007).

In Figure 1 we can see examples of rendered objects
from a data set, which exhibit different aspects of non-
redundancy, such as color, shape or material1. A non-
redundant clustering objective targets the extraction of these
multiple groupings. Applying a deep embedded flat cluster-
ing algorithm on the example in Figure 1 would result in
only a single clustering that would be even—in a best case
scenario—a mixture of shape, color and material. To ad-
dress the challenge of finding non-redundant clusterings in
complex high dimensional data, we propose our novel Em-
bedded Non-Redundant Clustering algorithm (ENRC) that
combines the benefits of a non-linear feature transforma-
tion with a non-redundant clustering objective. To the best
of our knowledge ENRC is the first algorithm that combines
these two aspects. The main contributions of the paper can
be summarized as follows:
• Non-redundant clustering layer: We propose a novel

clustering layer, that axis-aligns the different non-
redundant structures, captured in the embedded space.
Each clustering can have different dimensionalities that
are automatically detected.

• Feature importance: Existing deep clustering methods
have to resort to additional dimensionality reduction tech-
niques like t-sne (Maaten and Hinton 2008) to visualize
their results, which might not show a low dimensional
representation faithful to the found clustering. In contrast
for ENRC each axis-aligned embedded feature has a soft-
assignment weight, where a high feature weight indicates
that this feature is important for the clustering. This leads
to a cluster aware dimensionality reduction for visualiza-
tion.

• Joint feature optimization: Existing non-redundant
clustering methods rely on hand engineered features.
These features might already predetermine what struc-
tures one expects to find, e.g. engineering color features
for detecting clusters based on color. We show that the
joint optimization of ENRC and an autoencoder is able to
to learn the relevant features directly from the data.

• Preservation of non-redundancy: To our knowledge we
are the first to show empirically that non-redundant struc-
ture is preserved in autoencoders and can be recovered by
non-redundant clustering algorithms.

2 Embedded Non-Redundant Clustering

2.1 Overview

An autoencoder is an unsupervised (self-supervised) neu-
ral network which learns to reconstruct its input. It con-
sists of an encoder enc(·) network, which embeds the in-
put data in some latent space and a decoder dec(·) network,

1All figures are best viewed in color.

Figure 2: The architecture of ENRC. The linear layer V T

aligns the essential structures of the different clusterings
along the axes. The clusterings can be of different dimen-
sionality. V maps the clusterings back to the embedded
space.

which tries to reconstruct the original input from the embed-
ding. To avoid a trivial identity mapping, i.e. simple copy-
ing, the latent space dimensionality is often chosen smaller
than the input’s dimensionality or some other regularization
might be used. To explain our ENRC algorithm, we assume
some generic pretrained encoder and decoder, which have
the non-redundant clustering layer in the middle, as depicted
in Figure 2. The novel algorithm finds multiple valid non-
redundant clusterings in the embedded space of the autoen-
coder. To achieve this we introduce two new learnable pa-
rameters. A linear transformation matrix V that aligns the
structures within each clustering with the axis, acting as an
approximation of a rotation. The linearity is sufficient for
this task, as the non-linear relationships are already learned
by the autoencoder. Additionally, we use feature weights βs

that weigh the importance of each feature for each of the
S clusterings acting as a soft separation mechanism of the
space. Due to this the standard autoencoder reconstruction
loss is adapted to:

Lrec = ||x− dec(V V T enc(x))||22, (1)

where the reconstruction acts as a ”non-degeneracy control”
(Le et al. 2011) to prevent the matrix V from degeneration.

In the following, we denote with x[i] the i’th entry of vec-
tor x and X[i, j] is the value of the i’th row and j’th column
of matrix X . Further, we use the weighted squared euclidean
distance, defined as

||a− b||2τ :=

D∑

i=1

τ [i](a[i]− b[i])2, (2)

where a, b ∈ R
D are arbitrary vectors—for which we want

to measure the distance—and τ ∈ R
D is a weight vec-

tor containing weights for each dimension. An overview of
other used notations can be found in the Supplementary at
https://gitlab.cs.univie.ac.at/lukas/enrcpublic.

2.2 Feature Weighting

In classical non-redundant subspace clustering each clus-
tering gets its own subspace orthogonal to the other sub-
spaces. We relax this discrete assignment to a continuous
weight βs[d] such that each dimension d belongs partially to
a clustering s. This relaxation makes the loss function differ-
entiable w.r.t. β. We require that these weights are positive
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and for a single dimension the fractions over all clusterings
should sum to one:

∀d ∈ {1, 2, .., D} :

S∑

s=1

βs[d] = 1, (3)

where ∀d ∈ {1, 2, .., D}, ∀s ∈ S : βs[d] ≥ 0. We can
implement these constraints using a soft-max function on a
trainable S ×D parameter matrix B, s.t.:

βs[d] :=
exp(B[s, d])

∑S
i=1 exp(B[i, d])

.

We can then optimize B without any further constraints. To
express the feature importance during clustering, we utilize
the βs for the weighted squared euclidean distance.

2.3 Compression Loss

The compression loss ’moves’ embedded points z :=
enc(x) closer to their centers μs,k, enhancing the separation
between clusters. As we consider multiple non-redundant
clusterings, we only want to move points, which are close
to their respective centers in each weighted feature space.
This is achieved by the following loss function:

Lcomp =
1

S

S∑

s=1

Ks∑

k=1

1

|Cs,k|
∑

z∈Cs,k

||V Tz − μs,k||2βs
. (4)

Note that μs,k is the k’th cluster center of clustering s in
the already V T-transformed space. Here μs,k is considered
a constant (details on its update below) and only V T, β and
z are updated.

2.4 Updating Data Assignment

For given cluster centers, we assign for each clustering s
each embedded data point z to the closest center for the βs

weighted euclidean distance in the transformed embedded
space:

∀s ∈ S : arg min
k∈[1;Ks]

||V Tz − μs,k||2βs
(5)

2.5 Updating Cluster Centers

Similar to (Yang et al. 2017) we use an adapted version of
mini-batch k-means (Sculley 2010) for updating the cluster
centers and assignments. For each incoming data batch, we
iterate over the weighted feature spaces and update the clus-
terings in each space separately. First we update the cluster
assignments with the previous cluster centers μt−1

s,k with Eq.
5. From this new assignments we calculate a per center up-
date for the current mini-batch in the following way:

μt
s,k = μt−1

s,k (1− ηs,k) + μ̂t
s,kηs,k. (6)

where μ̂t
s,k is the mean of the assigned points from the cur-

rent mini-batch and ηs,k is a per cluster learning rate. It is
defined as one over the exponential weighted average of past
assignments to the center, ηs,k = 1/At

s,k. The denominator is
given by:

At
s,k = (1− α)At−1

s,k + αÂt
s,k (7)

with 0 < α < 1 as a discounting parameter and Ât
s,k as

the number of assigned points from the current mini-batch.
If a mini-batch does not contain any points for a cluster, the
center will not be updated.

2.6 Initialization

At the beginning, we aim to find the initial clustering struc-
tures captured in the embedding. Therefore, we only opti-
mize the linear transformation V , the cluster centers μ, and
the βs (respectively B), but keep the autoencoder parameters
fixed (i.e. enc(·) and dec(·)). First, we initialize V as a ran-
dom orthogonal matrix. Next, we soft-assign the first �D/S�
dimensions of the V -rotated space ’strongly’ to the first clus-
tering by setting the beta weights of these dimensions and
the first clustering to 0.9: ∀d ∈ [1 : �D/S�] : β1[d] := 0.9.
The remaining weight of 0.1 for each of these dimensions is
evenly distributed among the other clusterings—reflecting
only a ’weak’ soft-assignment. Then we assign the next
�D/S� dimensions strongly to the second clustering in the
same manner—and so forth. Next, we initialize the cluster
centers μ of each clustering with the initialization procedure
of k-means++ (Arthur and Vassilvitskii 2007) using the dis-
tance metric in Eq. 2. Finally, we optimize w.r.t. Lcomp and
update the cluster centers as described above. To ensure that
V does not degenerate, but instead aligns the structural in-
formation of each clustering with the axis, we force V to
be approximately orthogonal by adding to Lcomp an adapted
version of the reconstruction loss:

Lorth = || sg[z]− V V T sg[z]||22, (8)

where sg[·] is the gradient stop iterator such that z is re-
garded as a constant in this loss term.2 This differentiable
loss avoids degeneration of V by creating an incentive for it
to be approximately orthogonal (allowing only rotation and
reflection). We only keep this loss term during the initial-
ization phase and drop it in the refinement phase. The latter
decision was made based on the results of (Le et al. 2011),
which indicate that the reconstruction loss (Eq. (1)) is suffi-
cient for non-degeneracy control. For smaller data sets, one
could use alternatively the methods proposed in (Mautz et
al. 2018; Cui, Fern, and Dy 2007). This selection of the ini-
tial μ’s, β’s and V is based on the minimal loss and can be
performed several times.

2.7 Clustering Phase

As noted in previous work (Yang et al. 2017) the joint op-
timization of clusterings and embeddings can lead to im-
proved results. The loss function of ENRC combines the re-
construction and compression loss

L = Lcomp + λLrec (9)

This is motivated by the results of (Guo et al. 2017) that
without the space preserving effect of the reconstruction
loss, the found clusterings could become meaningless, be-
cause Lcomp would be trivially fulfilled if it maps all points
into one cluster. The hyperparameter λ > 0 defines this

2Note, that this is equivalent to ||V V T − I||2F , if z is whitened,
see e.g. Lemma 3.1 in (Le et al. 2011).
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trade-off, which we set for all experiments to one. During
training ENRC updates all parameters of the clustering layer
β, V,μs,i and all weight parameters of encoder and decoder
jointly together.

2.8 Cluster Center Reinitialization

Most other recently proposed deep clustering methods do
not provide a mechanism for the case when a cluster does
not get assigned any points after several mini-batch updates.
This can lead to a degradation of performance, as the re-
maining clusters are merged. This scenario is comparable to
the case where a k-means center does not get assigned any
data points during the update step. A common strategy—e.g.
in the scikit-learn package—is to reinitialize the lost center
with a point that is badly represented by its assigned cen-
ter in terms of euclidean distance. We adapt this strategy by
first sampling ns points from the whole data set and em-
bed them in the rotated feature space. We select the clus-
ter with the highest compression loss and choose the point
which is farthest away from this cluster’s centroid. After se-
lecting the new centroid, we conduct l k-means update steps
in the affected feature space. To avoid unnecessary reinitial-
izations due to unbalanced clusters or small batch sizes we
count how often a centroid lost all its points and compare
it to a threshold value v, which increases during training
by �√itert�, where itert is the current mini-batch iteration
count. The latter is a simple heuristic, which accounts for
the observation that in the beginning of training, cluster as-
signments may change more rapidly and become more sta-
ble towards the end. After reinitialization, the count for the
reinitialized center is set to zero again. The parameters l and
ns should be chosen to fit the computational constraints.

3 Experiments
We evaluated ENRC with four different data sets. As we
are the first to address the topic of non-redundant clustering
with neural networks, we needed for our benchmark high-
dimensional data sets, which are labeled and have enough
data points. Note that in real world settings one would use
ENRC for exploratory data analysis, without ground truth
labels, as we show in Section 3.5. To quantify the ability
of finding non-redundant structure in high dimensional data
sets, we adapted three commonly used deep learning data
sets. Additionally, we use the stickfigures data set, which is
often used in the non-redundant clustering literature. Other
commonly used data sets from the non-redundant cluster-
ing literature contain often less than 500 data points, here
stickfigures is already one of the largest, see e.g. (Ye et
al. 2016). A summary of the considered data sets is shown
in Table 2. We implemented ENRC in Python and trained
our networks on a single NVIDIA RTX 2080 Ti. We ran
the comparison method on a machine with four Intel(R)
Xeon(R) CPU E5-2650 Cores and 32 GB RAM. An im-
plementation of ENRC and all experiments is available at
https://gitlab.cs.univie.ac.at/lukas/enrcpublic.

3.1 Data Sets

Concatenated-MNIST We extend the well known MNIST
(LeCun et al. 1998) data set by concatenating two digits side

by side, resulting in 100 possible combinations, named C-
MNIST. With this extension, we show the ability of ENRC
to capture positional non-redundancy. This data set can be
seen as containing two-digit numbers, from 00 to 99, where
each digit (left and right) is independent from the other. To
make it easier to use existing convolutional architectures, we
added black row wise pixels, so the new format is 56 × 56
instead of 28× 56.

NR-Objects We used a publicly available rendering soft-
ware3, which was used in (Johnson et al. 2017), to generate
objects with three non-redundant clusterings, called (Non-
Redundant) NR-Objects. Each object can be clustered by
three shapes, two materials and six colors. Otherwise the de-
fault settings, which contained lighting jitter, were kept.

GTSRB The German Traffic Sign Benchmark (GTSRB)
data set (Houben et al. 2013) contains real world images of
traffic signs, it has been used in object detection literature for
self-driving vehicles. We use a subset of 4 different traffic
signs ’Speed limit (70km/h)’, ’No passing’, ’Ahead only’,
’Keep right’, which can be clustered w.r.t. to the four types
of traffic sign and their two colors.

Stickfigures The stickfigures data set contains nine basic
objects of dancing figures. It contains three clusterings for
the upper and three for the lower body pose, a more detailed
explanation can be found in (Ye et al. 2016).

We preprocessed all data sets by a channel-wise z-
transformation, to get a zero mean and variance of one. For
the GTSRB data set we used additionally histogram equal-
ization, to improve the low contrast in some of the real world
images. Examples of each data set can be found in the Sup-
plementary.

3.2 Experimental Setup

For our experiments we use a convolutional autoencoder
that utilizes several well-established architectural patterns.
By exploiting skip (or identity) connections within convolu-
tional resnet blocks as described in (He et al. 2015), we are
able to train deeper networks which adapt their depth based
on the data set. We applied some additional techniques from
(He et al. 2018) to improve our autoencoder performance,
e.g. we set the first convolutional layer’s kernel size from
7× 7 down to 3× 3 and compensate the effective receptive
field size with additional 3 × 3 convolutions. Additionally,
we start with stride-one convolution instead of stride-two to
avoid discarding 3

4 of the input-image’s pixels just within
the first layers. We set the architecture parameters, such as
the number of feature filters in a convolutional layer, based
on the dimensionality and color channels of the data set and
set the dropout rate based on the achieved reconstruction er-
ror. For all data sets we used the same embedding size of 16,
which resulted in good reconstructions. We used this single
architecture for all data sets.

For each data set we pretrain ten autoencoders and use
them for ENRC and all baseline methods. With this setting
we make sure that all methods have the same starting condi-
tions. Similar to (Xie, Girshick, and Farhadi 2016) we pre-
train the autoencoder first for 10,000 mini-batch iterations

3https://github.com/facebookresearch/clevr-dataset-gen
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Table 1: The NMI averages and standard deviations for the ten pretrained autoencoders. Results marked with * had to be run
on a subset of 10,000 data points due to memory constraints (>32 GB). Best value in bold.

Data Sets Clustering ENRC Orth1 Orth2 mSC Nr-Kmeans ISAAC

NR-Objects
color 1.00 ±0.00 0.70 ±0.09 0.73 ±0.06 0.35 ±0.05 0.92 ±0.09 0.15 ±0.06
material 1.00 ±0.00 0.46 ±0.16 0.11 ±0.12 0.03 ±0.07 0.95 ±0.14 0.53 ±0.08
shape 1.00 ±0.00 0.39 ±0.20 0.20 ±0.08 0.03 ±0.03 0.92 ±0.16 0.60 ±0.07

GTSRB type 0.74 ±0.01 0.57 ±0.07 0.73 ±0.15 0.04 ±0.04 0.72 ±0.01 0.60 ±0.07
color 0.67 ±0.00 0.59 ±0.02 0.63 ±0.03 0.04 ±0.06 0.65 ±0.01 0.59 ±0.04

Stickfigures upper 1.00 ±0.00 0.79 ±0.21 0.00 ±0.00 0.33 ±0.20 1.00 ±0.00 0.37 ±0.05
lower 1.00 ±0.00 0.77 ±0.24 0.00 ±0.00 0.30 ±0.17 1.00 ±0.00 0.39 ±0.08

C-MNIST left 0.83 ±0.04 0.33 ±0.02 0.35 ±0.03 0.07 ±0.02* 0.69 ±0.03 0.29 ±0.13*
right 0.82 ±0.01 0.40 ±0.03 0.41 ±0.04 0.06 ±0.02* 0.70 ±0.03 0.19 ±0.13*

Table 2: Summary of used data sets. The last column shows
the number of ground truth clusterings and the correspond-
ing number of clusters.

Name # Points # Dimensions # Clusters

C-MNIST 60,000 3,136 10; 10
NR-Objects 10,000 16,384 6; 3; 2
GTSRB 6,720 1,024 4; 2
Stickfigures 900 400 3; 3

Table 3: The VI averages and standard deviations for the ten
pretrained autoencoders. Most methods, were able to find
non-redundant clusterings. Results marked with * had to be
run on a subset of 10,000 data points due to memory con-
straints (>32 GB).

Method NR-Objects GTSRB Stickfigures C-MNIST

ENRC 2.39 ±0.00 1.96 ±0.01 2.20 ±0.00 4.56 ±0.01
Orth1 2.31 ±0.03 1.98 ±0.03 2.06 ±0.17 4.41 ±0.06
Orth2 1.20 ±0.07 1.11 ±0.24 0.90 ±0.56 3.13 ±0.20
mSC 2.32 ±0.05 1.99 ±0.09 2.01 ±0.10 4.48 ±0.05*
NR-Kmeans 2.35 ±0.05 1.94 ±0.00 2.19 ±0.00 4.57 ±0.02
ISAAC 1.25 ±1.04 n.a. 1.14 ±0.25 n.a.*

with dropout and then fine tune it for another 5,000 mini-
batch iterations with deactivated dropout. For pretraining the
autoencoder we use image augmentation (rotation, lighting,
zooming), Adam (max-lr = 0.01, β1 = 0.9, β2 = 0.99)
(Kingma and Ba 2014) with weight decay of 0.001. We
boost the training speed of our network with the super-
convergence learning rate schedule outlined in (Smith and
Topin 2017). The intuition behind this idea is that we start
with a low learning rate to warm-up and to slowly find
the correct direction on the loss landscape. During the sec-
ond halve of the training cycle, and close to the end of
training process, we decrease the learning rate as we come
closer to the optimum. Reaching the maximum learning rate
max-lr separates the two training halves and a cosine an-
nealing schedule provides a smooth transition between the
two halves of the training cycle. For fine tuning we halve the
max-lr to ensure smooth convergence and train for the re-

maining mini-batch iterations. Further information about the
experimental setup and architectural details are presented
in the Supplementary and our Python implementation. Af-
ter pretraining we initialize μ, β and rotation matrix V . For
the joint clustering optimization we train for another 20,000
mini-batch iterations, except for the simple stickfigures data
set which converged already at 2,000 mini-batch iterations.
Similar to (Xie, Girshick, and Farhadi 2016) we decrease the
learning rate again and keep decreasing it every 2,000 itera-
tions to ensure a smooth convergence for the joint optimiza-
tion. We set the initial learning rate for β to max-lr = 0.01.
This is motivated by the thought that the feature space soft-
assignments should be updated faster; before the embedding
is linearly transformed by V and clusters are compressed by
Eq. 4. The discounting parameter α in Eq. 7, was set to 0.5
giving equal weight to new and old centers. The cluster reini-
tialization parameters were set to l = 10 and ns = 1, 000,
which ensured a fast re-clustering procedure in case a center
got lost. This setting worked well for all considered data sets
and shifts most hyperparameter setting decisions of the neu-
ral network to the pretraining phase, which is self-supervised
(reconstructing the input) for an autoencoder.

3.3 Evaluation Metrics

To evaluate the quality of the found non-redundant clus-
terings we use the normalized mutual information (NMI)
(Vinh, Epps, and Bailey 2010) for each best matching clus-
tering in the found feature spaces, where 1 is a perfect clus-
tering and 0 indicates that no structure was captured. Ad-
ditionally, we use the average variation of information (VI)
(Meilă 2007) for measuring the redundancy of the found fea-
ture spaces. The VI calculates the similarity between two
different clusterings, where higher values are better. Note
that the VI cannot be computed for a single clustering and
can only be used to compare different clusterings on the
same data set, as the magnitude is data dependent.

3.4 General Results

We compare our ENRC with several state of the art non-
redundant clustering algorithms. For each data set we pre-
trained ten autoencoders and use them for all methods. The
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(a) Color (b) Material (c) Shape

Figure 3: The scatter plots show the dimensions zs with the two highest feature weights βs for each of the three clusterings.
The images below are the reconstructed centers dec(V μs,i) of each cluster. Best viewed in color.

Figure 4: Sorted feature weights βs for each clustering. Up-
per plot shows initial βs. Bottom plot same feature weights
after clustering.

considered comparison methods are Orth1 and 2 (Cui, Fern,
and Dy 2007), Nr-Kmeans (Mautz et al. 2018), ISAAC (Ye
et al. 2016) and mSC (Niu, Dy, and Jordan 2010). We use
these algorithms, because in contrast to subspace clustering
algorithms, they have an additional constraint that tries to
reduce the redundancy between clusterings. A more detailed
discussion can be found in Section 4. Additionally, all of
these algorithms are able to find several clusterings in ar-
bitrarily oriented subspaces. This is important, because we
assume that the non-redundant clustering structure is pre-
served in the autoencoder, but the cluster structure does not
have to be axis-aligned. For all considered data sets we know
the exact number of clusterings and set the methods param-
eters accordingly. We ran Nr-Kmeans, Orth1 and 2 ten times
for each of the ten autoencoders and averaged the best run
in terms of their respective loss function. ISAAC and mSC
were run once for each autoencoder, due to run time con-
straints (more than one day). Our experimental results in
Table (3) show that, except for ISAAC, each method was
able to achieve a quite similar VI. This indicates, that they
were indeed able to find several non-redundant clusterings

from the learned embeddings of the pretrained autoencoders.
Algorithms that found only a single clustering are marked
with ’n.a.’. The clustering performance in accordance to the
ground truth labels is shown in Table 1. Again we see that
all methods are able to recover the non-redundant cluster-
ings from the embedded space of the autoencoder, but only
ENRC is able to jointly transform the space, which results
in even higher NMI values. For the quite simple stickfigures
data set, Nr-Kmeans and ENRC are both able to find the two
clusterings perfectly.

3.5 Case Study

In this section we highlight some of ENRC’s key strengths
by discussing the NR-Objects data set in more detail. In Fig-
ure 4 the feature weights βs before and after training are
shown, where higher values indicate stronger memberships.
We can see that after training of the 16 dimensional feature
space only two are needed for clustering the six colors, an-
other two dimensions for the three shapes and only one for
the two materials. The feature weights of the other eleven
dimensions are evenly distributed between the three non-
redundant clusterings, which indicates that these dimensions
are not important for the specific clustering, but encode some
shared information. The separation of features, into impor-
tant and unimportant for the clusterings, allows ENRC to
visualize the found embeddings without the need of an addi-
tional dimensionality reduction technique like t-sne (Maaten
and Hinton 2008). In Figure 3 we can see scatter plots of the
two highest β-weighted dimensions for each clustering, in-
dicated by the matching subscripts of the βs from the bottom
plot in Figure 4. On the diagonal axis of the scatter plot are
the histograms of each feature. As the material clustering has
only one high feature weight β7 we see that only z7 contains
clustering structure. Since all other feature weights for the
material feature space are indifferent between dimensions,
we can see here for the second dimension z9 a unimodal dis-
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tribution without clustering structure. For color and shape
the feature weights βs indicate that they need two features
for their clustering, which can be seen in the multiple modes
of the histograms. Another key benefit of using an autoen-
coder is that we can use the expressive power of a neural net-
work to find non-redundant clusterings in the feature space,
but still keep interpretability by utilizing the decoder. Below
each scatter plot in Figure 3 we can see the decoded centers
for each clustering as reconstructed images in the original
pixel space. Each center of the color feature space is exhibit-
ing only the color feature, but is an average of all other clus-
terings like shapes and materials, resulting in splodges of
color. The same can be seen for material, but here the center
for metallic objects is reflective and the one for rubber is not.
The two centers appear to be grey because it is an average
of all six colors. The latter is true for the three shape clusters
as well. While the shape structure is crisp and detailed, the
surfaces appear to be greyish and slightly reflective, because
the information of the other—non-redundant—clusterings is
averaged.

4 Discussion and Related Work
A centroid-based approach like we used in ENRC is quite
common in embedded clustering. To the best of our knowl-
edge, none of the proposed embedded clustering methods
aim to find multiple non-redundant clusterings within a data
set. Algorithms such as DEC (Xie, Girshick, and Farhadi
2016), IDEC (Guo et al. 2017), DMC (Chen, Lv, and Yi
2017) or DEPICT (Ghasedi Dizaji et al. 2017) utilize a pre-
trained autoencoder to embed the data and a Gaussian or
Student-t kernel to softly assign the data points to clus-
ters. DMC directly penalizes the distance of data points
embedded to each center weighted by the assignment. The
other methods utilize a KL divergence loss between the soft-
assignments and an auxiliary probability density function to
harden the clusters. All five methods utilize a mini-batch
gradient descent optimization scheme as ENRC does. DCN
(Yang et al. 2017) is a k-means based method. In contrast to
the above described methods, it performs a hard assignment
like ENRC, however, it alternates between updating the em-
bedding, the cluster assignments and the cluster centers iter-
ating over the full data set in each step. Recent work in deep
subspace clustering, e.g. (Ji et al. 2017; Zhang et al. 2018)
find a single clustering, where each cluster can belong to
a different subspace. With the work of (Zhang et al. 2018;
Fard, Thonet, and Gaussier 2018) we share the idea that
hard assignments in different situations can be relaxed with a
softmax function. In contrast to these ENRC finds common
non-redundant feature spaces for related clusterings. Other
recently proposed methods like GMVAE (Dilokthanakul et
al. 2016) and VaDE (Jiang et al. 2017) utilize variational
approaches or generative adversarial networks, like Clus-
terGAN (Mukherjee et al. 2019). From all above described
method, these last three approaches are the least similar to
ENRC. Further algorithms are discussed in two recent sur-
vey papers (Aljalbout et al. 2018; Min et al. 2018) that pro-
vide a broader overview over proposed embedded clustering
techniques. Multiple and non-redundant clustering methods
are an active research field and in the classical clustering lit-

erature several different methods have been proposed. An
overview and different variations can be found in (Müller et
al. 2012). Methods like (Chang et al. 2017) assume that the
subspaces or views are axis-parallel, however, we assume
that the subspaces in the embedded space are arbitrarily-
oriented. In the following, we only discuss algorithms that
can find non-redundant clusterings in arbitrarily-oriented
subspaces. Orth1 and Orth2 (Cui, Fern, and Dy 2007) are
two clustering algorithms that extract multiple k-means clus-
tering structures sequentially from spaces orthogonal to the
space spanned by the previous cluster centers. The differ-
ence between the two versions is that the orthogonal pro-
jection can be w.r.t. all clusters or just a single cluster to
which a data point is assigned. The main idea of Nr-Kmeans
(Mautz et al. 2018) is that the data space can be split into
several arbitrarily-oriented orthogonal subspaces and within
each subspace the data follows a k-means like clustering. It
also allows for an optional noise space without any cluster-
ing structure. Like in ENRC the method optimizes all sub-
spaces and the clusterings within simultaneously. Further,
it is shown that a parallel clustering extraction can be ad-
vantageous compared to a sequential approach used in Orth.
ISAAC (Ye et al. 2016) utilizes a two step procedure. First,
it uses Independent Subspace Analysis (ISA) to determine
the subspaces. Then, it fits a Gaussian mixture model with
hard assignments within each subspace. Thereby, all param-
eters are estimated based on the MDL principle. All four
of the above described non-redundant clustering methods
have in common that, for each clustering, they find a lin-
ear transformation for the respective subspace. In contrast,
ENRC utilizes the autoencoder to perform a nonlinear trans-
formation and jointly optimizes the clustering. mSC (Niu,
Dy, and Jordan 2010) utilizes the Hilbert-Schmidt indepen-
dence criterion to find multiple non-redundant views for the
relaxed spectral clustering objective. Similar to the autoen-
coder based embedding, the spectral embedding of mSC can
be seen as non-linear, however, its approach is quite different
from the one of ENRC.

5 Conclusion
In this paper we proposed the Embedded Non-Redundant
Clustering algorithm ENRC, to the best of our knowledge it
is the first algorithm that combines an embedded and a non-
redundant clustering objective. Its unique characteristics are
the joint optimization of multiple non-redundant clusterings
together with the non-linear embedding, the intrinsic clus-
ter aware dimensionality reduction and automated feature
extraction. Our experiments show that ENRC and its joint
training procedure has an advantage over a two step process
where the non-linear embedding and non-redundant cluster-
ing are separately optimized. This is in accordance with the
results shown for flat embedded clustering algorithms. We
highlighted some of the benefits of our algorithm ENRC
in a case study showing its interpretable results. In future
work we want to explore the possibility to incorporate dif-
ferent k-means extensions, such as estimating the number of
cluster centers in each clustering. Another interesting direc-
tion would be to leverage the concept of non-redundancy for
semi-supervised learning.
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