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Abstract

We study how to adapt to smoothly-varying (‘easy’) environ-
ments in well-known online learning problems where acquir-
ing information is expensive. For the problem of label efficient
prediction, which is a budgeted version of prediction with
expert advice, we present an online algorithm whose regret
depends optimally on the number of labels allowed and Q∗

(the quadratic variation of the losses of the best action in hind-
sight), along with a parameter-free counterpart whose regret
depends optimally on Q (the quadratic variation of the losses
of all the actions). These quantities can be significantly smaller
than T (the total time horizon), yielding an improvement over
existing, variation-independent results for the problem. We
then extend our analysis to handle label efficient prediction
with bandit (partial) feedback, i.e., label efficient bandits. Our
work builds upon the framework of optimistic online mirror
descent, and leverages second order corrections along with
a carefully designed hybrid regularizer that encodes the con-
strained information structure of the problem. We then con-
sider revealing action-partial monitoring games – a version
of label efficient prediction with additive information costs –
which in general are known to lie in the hard class of games
having minimax regret of order T 2/3. We provide a strategy
with an O((Q∗T )1/3) bound for revealing action games, along
with one with a O((QT )

1/3) bound for the full class of hard
partial monitoring games, both being strict improvements over
current bounds.

1 Introduction

Online learning is a branch of machine learning that is con-
cerned with the problem of dynamically optimizing utility (or
loss) over time in the face of uncertainty, and gives valuable
principles to reason about acting under uncertainty. The study
of online learning has developed along two concrete lines
insofar as modeling the uncertain environment is concerned.
On one hand, there is a rich body of work on learning in
stochastic environments from an average-case point of view,
such as i.i.d. multi-armed bandits (see, e.g., the survey of
(Bubeck, Cesa-Bianchi, and others 2012)), online learning in
Markov decision processes (Jaksch, Ortner, and Auer 2010;

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Azar, Osband, and Munos 2017), stochastic partial moni-
toring (Bartók, Pál, and Szepesvári 2011), etc., which of-
ten yields performance guarantees that are strong but can
closely depend on the stochastic models at hand. On the other
hand, much work has been devoted to studying non-stochastic
(or arbitrary or adversarial) models of environments from a
worst-case point of view – prediction with experts, bandits
and partial monitoring problems to name a few (Cesa-Bianchi
and Lugosi 2006) – which naturally yields rather pessimistic
guarantees.

Recent efforts have focused on bridging this spectrum
of modeling structure in online learning problems as aris-
ing from non-stochastic environments with loss function
sequences exhibiting adequate temporal regularity. These
include the derivation of first-order regret bounds or adapt-
ing to loss sequences with low loss of the best action (Al-
lenberg et al. 2006), second-order bounds or adapting to
loss sequences with low variation in prediction with experts
(Rakhlin and Sridharan 2012; Steinhardt and Liang 2014)
and ‘benign’ multi-armed bandits (Hazan and Kale 2011;
Bubeck et al. 2019; Bubeck, Cohen, and Li 2017; Wei and
Luo 2018).

In this regard, this paper is an attempt to extend our un-
derstanding of adaptivity to low variation in several stan-
dard online learning problems where information comes at
a cost, namely label efficient prediction (Cesa-Bianchi, Lu-
gosi, and Stoltz 2005), label efficient bandits (Cesa-Bianchi
and Lugosi 2006) and classes of partial monitoring problems
(Bartók et al. 2014). In the process, we uncover new ways of
using existing online learning techniques within the Online
Mirror Descent (OMD) family, and partially make progress
towards a program of studying the impact of ‘easy’ (i.e.,
slowly-varying) environments in information-constrained on-
line learning and partial monitoring problems. Our specific
contributions are:

1. For the label efficient prediction game with expert ad-
vice, we give a learning algorithm with a regret bound of
O(√(Q∗T logK)/n

)
where Q∗ is the quadratic variation of

the best expert, T is the time horizon of the game, K is the
number of experts and n is the bound on label queries; the
bound holds for all regimes except when nQ∗

/T = Õ(K2).
We follow this up with an algorithm with an unconditional
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regret guarantee of O(√(QT logK)/n) that holds for any
label query budget n and total quadratic variation Q. Our
algorithms are based on the optimistic OMD framework,
but with new combinations of the negative entropy and
log-barrier regularization that are best suited to the label
efficient game’s information structure.

2. We generalize the results to label efficient bandits where
one receives bandit (i.e., for only the chosen expert)
feedback at only up to n chosen time instants, and ob-
tain O(√(Q∗TK)/n

)
regret. We also show that our upper

bounds on regret for label efficient prediction and label
efficient bandits are tight in their dependence on Q and n
by demonstrating variation-dependent fundamental lower
bounds on regret.

3. We show that adapting to low variation is also possi-
ble in the class of hard partial monitoring games as per
the taxonomy of partial monitoring problems by (Bartók
et al. 2014), where we show an algorithm that achieves
O((QTK)

1/3
) regret. To the best of our knowledge, this is

the first algorithm exhibiting instance-dependent bounds
for partial monitoring.

Problem Setup and Notation A label efficient prediction
game proceeds for T rounds with K ≤ T arms or ‘experts’.
In each round (time instant) t, the learner selects an arm it ∈
[K] := 1, 2, . . . ,K. Simultaneously, the adversary chooses
a loss vector �t ∈ [0, 1]K where �t,i is the loss of arm i at
time t. At each round, the learner can additionally choose
to observe the full loss vector �t, provided the number of
times it has done so in the past has not exceeded a given
positive integer n ≤ T that represents an information budget
or constraint. We work in the oblivious adversarial setting
where �t does not depend on the previous actions of the
learner i1, i2, . . . , it−1; this is akin to the adversary fixing
the (worst-possible) sequence of loss vectors in advance. The
learner’s goal is to minimize its expected regret defined as

max
i∗∈[K]

E

[
T∑

t=1

�t,it −
T∑

t=1

�t,i∗

]
,

where the expectation is taken with respect to the learner’s
randomness. Given a convex functionR over Ω, we denote
by DR the Bregman divergence with respect toR defined as
DR(x, y) � R(x) − R(y) − 〈∇R(y), x− y〉 ∀x, y ∈ Ω.
For any point u ∈ R

K , we define the local norm at x

with respect to R as ‖u‖x =
√
u�∇2R(x)u and the cor-

responding dual norm as ‖u‖x,∗ =
√

u�∇−2R(x)u. We
denote by ε, the fraction of time we are allowed the full loss
vector i.e. ε = n/T . The ε can be seen as a way to model
the constraint on information defined by the problem. The
quadratic variation for a loss vector sequence �1, . . . , �T is
defined by Q =

∑T
t=1 ‖�t − μT ‖22 with μs = 1

s

∑s
t=1 �t.

Additionally, the quadratic variation of the best arm(s) is
Q∗ =

∑T
t=1(�t,i∗ − μT,i∗)

2 where μs,i = 1
s

∑s
t=1 �t,i and

i∗ = argmini∈[K]

∑T
t=1 �t,i .

2 Key Ideas and Algorithms

Optimistic OMD The underlying framework be-
hind our algorithms is that of Online Mirror De-
scent (OMD) (Hazan 2016, e.g.). The vanilla update
rule of (active) mirror descent can be written as
xt = argminx∈Ω{〈x, �̃t−1〉+DR(x, xt−1)}. On the
other hand, our updates are:

xt = argmin
x∈Ω

{〈x, εmt〉+DR(x, x′
t)} (1)

x′
t+1 = argmin

x∈Ω
{〈x, ε�̃t + at〉+DR(x, x′

t)} (2)

where ε = n/T , mt corresponds to optimistic1 estimates of
the loss vectors (which we will also refer to as messages), and
at denotes a second order correction that we explicitly define
later. Throughout the paper, �̃t is used to denote an (unbiased)
estimate of �t that the learner constructs at time t. Optimistic
OMD with second order corrections was first studied in (Wei
and Luo 2018), whereas its Follow-the-Regularized-Leader
(FTRL) counterpart was introduced earlier by (Steinhardt
and Liang 2014). Both of these approaches build upon the
general optimistic OMD framework of (Rakhlin and Sridha-
ran 2012) and (Chiang et al. 2012). We define our updates
with scaled losses and messages, where we reiterate that the
scaling factor ε reflects the limitation on information. This
scaling also impacts our second order corrections which are
≈ ηε2(�̃t −mt)

2. It is worthwhile to note that this is explic-
itly different from the ηε(�̃t −mt)

2 that one may expect in
light of the analysis done in (Wei and Luo 2018), or the
η(�̃t −mt)

2 one would anticipate when following (Stein-
hardt and Liang 2014). One may argue that our update rules
are equivalent to dividing throughout by ε, or put differently,
by merging an ε into the step size, and this indeed true. How-
ever, the point we would like to emphasize is that no matter
how one defines the updates, the second order correction at
can be seen to incorporate the problem dependent parameter
ε. This tuning of the second order correction based on ε is
different from what one observes for the full information
problem (Steinhardt and Liang 2014) or for bandits (Wei and
Luo 2018). The second order corrections represent a further
penalty on arms which are deviating from their respective
messages, and these corrections are what enable us to furnish
best arm dependent bounds. As usual, the arm we play is still
sampled from the distribution xt given by equation (1).

Challenges & Our Choice of Regularization We briefly
discuss the challenges posed by label efficient prediction and
how our choice of regularizer addresses these. When shift-
ing away from the classical prediction with expert advice
problem to any limited feedback (i.e., over experts or arms)
information structure, one usually works with importance-
weighted estimates of the loss vectors constructed using
the observed (limited) feedback (called inverse propensity
weighting estimation). This is indeed the case with label

1‘Optimistic’ is used to denote the fact that we would be best
off if these estimates were exactly the upcoming loss. Indeed, if mt

were �t, it would be equivalent to 1-step lookahead, known to yield
low regret.
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REFERENCE FEEDBACK
NEGENTROPY:LOG-BARRIER

REGULARIZER RATIO USED

(Bubeck, Cohen, and Li 2017) Bandit 1 : 2η
(Wei and Luo 2018) Bandit 0 : 1
(Bubeck et al. 2019) Bandit K/η : 1/η = K : 1

(Steinhardt and Liang 2014) Full Information 1 : 0
This work Label Efficient – Full Information 1/η : 1/Kη = K : 1
This work Label Efficient – Bandit Feedback 0 : 1

Table 1: Choice of regularization (negative entropy vs. logarithmic barrier) in OMD for exploiting regularity

efficient prediction, however, the probabilities in the denomi-
nator remain fixed at ε, unlike in bandits where the xt,i in the
denominator can be arbitrarily small.

Consequently, one may be led to believe that the standard
negative entropic regularizer, as is typically used for full in-
formation (Steinhardt and Liang 2014), will suffice for the
more general but related label efficient prediction. However,
maintaining the |η�̃t| ≤ 1 inequality which is standard in
analyses similar to Exp3 imposes a strict bound of η ≤ ε.
Since the low quadratic variation, on the other hand, would
encourage one to set an aggressive learning rate η, this makes
the applicability of the algorithm rather limited, and even
then, with marginal gain. Put crisply, it is desirable that low
quadratic variation should lead an algorithm to choose an
aggressive learning rate, and negative entropy fails to main-
tain a ‘stability’ property2 , key in obtaining OMD regret
bounds, in such situations. The log-barrier regularizer, used
by (Wei and Luo 2018) for bandit feedback certainly guar-
antees this, however using log-barrier blindly translates to a√
K dependence on the number of arms K.
These challenges place label efficient prediction with

slowly varying losses in a unique position, as one requires
enough curvature to ensure stability, yet not let this added
curvature significantly hinder exploration. Our solution is
to use a hybrid regularizer, that is, a weighted sum of the
negative entropic regularizer and the log-barrier regularizer:

R = 1/η

K∑
i=1

xi log xi − 1/(Kη)

K∑
i=1

log xi

This regularizer has been of recent interest due to the work of
(Bubeck et al. 2019), and (Bubeck, Cohen, and Li 2017), but
the weights chosen for both components is highly application-
specific and tends to reflect the nature of the problem. As
reported above, we only require the log-barrier to guaran-
tee stability, and therefore associate a small (roughly 1/Kη)
weight to it and a dominant mass of 1/η to negative entropy.
The additional 1/K factor part of the log-barrier weight is care-
fully chosen to exactly cancel the K in the leading K log T
term generated by the log-barrier component, and conse-
quently, not have a

√
K dependence on the number of arms

in the final regret bound.

2In the sense of successive points being sufficiently close to each
other. Please refer to Lemma 14 in https://arxiv.org/abs/1910.08805.

Reservoir Sampling When considering quadratic vari-
ation as a measure of adaptivity, a natural message to
pass is the mean of the previous loss history, that is
mt = μt−1 = 1/t−1

∑t−1
s=1 �s. However, the constraint on in-

formation prohibits us from having the full history, and we
therefore have to settle for some estimate of the mean. Reser-
voir sampling, first used in (Hazan and Kale 2011), solves this
very problem. Specifically, by allocating roughly k(1+log T )
rounds for reservoir sampling (where we choose k to be
log T ), reservoir sampling gives us estimates μ̃t such that
E[μ̃t] = μt, and Var[μ̃t] = Q/kt. It does so by maintaining
a carefully constructed reservoir S of size k, the elements
from which are then averaged to output the estimate of the
mean. Our message mt at any time t is the average of the
vectors contained in the reservoir S. We specify the reservoir
sampling algorithm in Algorithm 1.

Algorithm 1 RESERVOIR SAMPLING

1: Input: Reservoir S, Reservoir size k, Stream �1, �2, . . .
2: for t = 1, 2, . . . , k do
3: Include �t in S
4: end for
5: for t = k + 1, . . . do
6: bt ∼ Bern (k/t)
7: if bt = 1 then
8: Include �t in S by replacing it with a uniformly

at random chosen element of S
9: end if

10: end for

2.1 Main Algorithm

Algorithm 2 builds upon the preceding ideas and as stated,
is specifically for the label efficient prediction problem dis-
cussed thus far. The algorithms required for the extensions
we provide in section 4 are based upon Algorithm 2 with a
few minor differences. Also, in the interest of brevity, we
have excluded the explicit mentioning of the reservoir sam-
pling steps in Algorithm 2. Before we proceed, we would
like to cleanly state our choice of messages, loss estimates,
and second order corrections used and this is done in Table
2. Our messages, for all the sections will be mt,i = μ̃t−1,i.
Note that throughout the paper, the random variable dt = 1
signifies that we ask for feedback at time t, and is 0 otherwise.
Additionally, note that we consider not exceeding the budget
of n in expectation, however, there is a standard reduction
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PROBLEM SECTION �̃t,i −mt,i at REGRET BOUND

Label Efficient
Prediction 2.1, 3 (�t,i−mt,i)

ε �{dt=1} 6ηε2(�̃t −mt)
2 Õ

(√
Q∗T/n

)
Label Efficient

Bandits 4.1 (�t,i−mt,i)
εxt,i

�{dt=1,it=i} 6ηε2xt,i(�̃t −mt)
2 Õ

(√
Q∗TK/n

)
Revealing Action

Games 4.2 (�t,i−mt,i)�{dt=1}
α �{dt=1} 6ηα2(�̃t −mt)

2 Õ((Q∗T )1/3
)

Hard
Partial Monitoring 4.2 (�t,i−mt,i)

xt,j
�{it=j} 0 O((QTK)1/3

)
Table 2: Overview of loss estimates, second order corrections, and the corresponding upper bounds on regret

to get a high probability guarantee which can be found in
(Cesa-Bianchi and Lugosi 2006).

Algorithm 2 ADAPTIVE LABEL EFFICIENT PREDICTION

1: Input:R = 1/η
∑K

i=1 xi log xi − 1/Kη
∑K

i=1 log xi ,
2: η , ε
3: Initialize: x′

1 = argminx∈ΩR(x)
4: for t = 1, 2, . . . , T do
5: dt ∼ Bern(ε)
6: xt = argminx∈Ω {〈x, εmt〉+DR(x, x′

t)}
7: Play it ∼ xt, and if dt = 1, observe �t
8: Construct �̃t =

(�t−mt)
ε �{dt=1} +mt

9: Let at = 6ηε2(�̃t −mt)
2

10: Update:
11: x′

t+1 = argminx∈Ω

{〈
x, ε�̃t + at

〉
+DR(x, x′

t)
}

12: end for

3 Results and Analysis

We now give a general regret result for the OMD updates
(1) and (2). It spells out the condition we must maintain
to ultimately enable best arm dependent bounds while also
demonstrating the price of limited information on regret,
which is the additional 1/ε factor. The proofs for all results in
this section and subsequent sections are available in the full
version of this paper3.

Lemma 1. For the update rules (1) and (2), if:

〈xt − x′
t+1, ε(�̃t −mt) + at〉 − 〈xt, at〉 ≤ 0 (3)

then, for all u ∈ Ω, we have:

〈xt − u, �̃t〉 ≤ 1

ε

(
DR(u, x′

t)−DR(u, x′
t+1) + 〈u, at〉 − Pt

)
,

(4)

where Pt � DR(x′
t+1, xt) +DR(xt, x

′
t) ≥ 0

Note that when at = 0 is employed in the updates (1)-(2),
i.e., no second order corrections, the first term in (3) can
directly be handled using Hölder’s inequality (in some norm

3The full version is available at https://arxiv.org/abs/1910.08805

whereR is strongly convex). Doing so allows us to cancel the
unwanted ‖xt − x′

t+1‖2 term using the DR(x′
t+1, xt) term

in Pt (which follows by strong convexity) while retaining the
crucial ‖(�̃t −mt)‖2 variance term. However, with general
second order corrections (at ≥ 0), the key variance term is
〈u, at〉 as it corresponds to the best arm’s second moment
under a suitably chosen u and the responsibility of cancelling
the entire first term of (3) now falls upon 〈xt, at〉. Under lim-
ited information, negative entropy is unable to maintain this
and we therefore have to incorporate the log barrier function
(see also (Wei and Luo 2018)). We now state our main result
for adaptive label efficient prediction which bounds the regret
of Algorithm 2.

Theorem 2. For at = 6ηε2(�̃t − mt)
2, �̃t =

(�t−mt)
ε �{dt=1} + mt, ε = n/T and η ≤ 1/162K where the

sequence of messages mt are generated using the reservoir
sampling scheme, the expected regret of Algorithm 2 satisfies
the following:

E [RT ] ≤ logK + log T

εη
+ 18ηQ∗ .

Furthermore, if εQ∗ ≥ 1458K2 logKT , then E [RT ] =

O
(√

Q∗T logK
n

)
with an optimal choice of η.

Consider a concrete example of a game played for time T ,
where we anticipate Q∗ ≈ √T and n ≈ √T . In this scenario,
if we were to run the standard label efficient prediction algo-
rithm as given in (Cesa-Bianchi, Lugosi, and Stoltz 2005),
we would get a regret bound of O(T 3/4

)
; following an FTRL

with negative entropy4-based strategy would be inapplicable
in this setting due to the constraint we highlight in section
2, however, Algorithm 2 would incur

√
T regret – a marked

improvement. Also, note that because of the full vector feed-
back, it is not required to allocate any rounds exclusively
for reservoir sampling. This fact is reflected in not having to
incur any additive penalty for reservoir sampling.

Proof sketch of Theorem 2 The result of Theorem 2 follows
rather straightforwardly from (4). The key part of the proof
lies in showing that the choice of messages, second-order

4As done in (Steinhardt and Liang 2014) for prediction with
experts
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corrections, and loss estimators satisfy (3). To show that (3)
i.e. 〈xt − x′

t+1, ε(�̃t −mt) + at〉 ≤ 〈xt, at〉 is satisfied, we
upper bound the left hand side by ‖xt − x′

t+1‖xt
‖ε(�̃t −

mt)+at‖xt,∗, and show that this is indeed upper bounded by
〈xt, at〉. We then relate both ‖xt−x′

t+1‖xt and ‖ε(�̃t−mt)+
at‖xt,∗ and show that our choice of estimator, messages, and
second-order corrections guarantee that ‖ε(�̃t−mt)+at‖xt,∗
is ‘small’.

Theorem (2) is slightly restricted in scope, due to the
lower bound required on εQ∗, in its ability to attain the op-
timal regret scaling with quadratic variation. We now pro-
ceed to discuss what can be said without any constraint on
εQ∗. Specifically, we will provide an algorithm obtaining
O(√(QT logK)/n) regret under all scenarios, the trade-off
however being that we will be penalized by Q instead of Q∗.
In settings where the εQ∗ condition does not hold and incur-
ring regret in terms of Q is not unfavourable (as an extreme
example, consider constant variation on all arms, with very
limited feedback) the strategy below will certainly be of use.
The algorithm, again based on OMD, foregoes second order
corrections and has updates defined by:

xt = argmin
x∈Ω

{〈x, εmt〉+DR(x, x′
t)} (5)

x′
t+1 = argmin

x∈Ω
{〈x, ε�̃t〉+DR(x, x′

t)} (6)

Without second order corrections, the ε term can be folded
into the regularizer and the updates reduce to the ones studied
in (Rakhlin and Sridharan 2012). For updates (5) and (6), we
have the following analogue of Lemma 1, and then conse-
quently, the analogue of Theorem 2. We include these here
in the interest of completeness, but equivalent statements can
be found in (Rakhlin and Sridharan 2012).

Lemma 3. For any u ∈ Ω, updates (5) and (6) guarantee
that:

〈xt − u, �̃t〉 ≤ 1

ε

(
DR(u, x′

t)−DR(u, x′
t+1)

+ 〈xt − x′
t+1, ε�̃t − εmt〉 −DR(x′

t+1, xt)−DR(xt, x
′
t)

)
.

Theorem 4. For R = 1
η

∑K
i=1 xi log xi, �̃t =

(�t−mt)
ε �{dt=1} + mt, ε = n/T and η > 0, where the se-

quence of messages are generated using the reservoir sam-
pling scheme, Algorithm 2 with at = 0 yields:

E[RT ] ≤ logK

ηε
+

ηQ

2
.

Optimally tuning η yields a O
(√

(QT logK)/n
)

bound.

Trying to deeper understand how the constraint of Theorem
2 can be sidestepped to yield a universal algorithm dependent
on Q∗ remains a direction of future interest.

Parameter-Free Algorithms Note that we have assumed
knowledge of T , Q and Q∗ when optimising for the fixed

step size η in the above discussion. This is often not possi-
ble and we now briefly discuss the extent to which we can
obtain parameter-free algorithms. In Theorem 5 we claim
that we can choose η adaptively for the Q dependent bound
we present in Theorem 45. It remains open whether a Q∗ de-
pendent bound (or in general, any non-monotone dependent
bound) can be made parameter free for even the standard
prediction with expert advice problem. The challenge is es-
sentially that our primary tool to sidestep prior knowledge
of a parameter – the doubling trick is inapplicable for non-
monotone quantities.

Even freeing algorithms from prior knowledge of non-
decreasing arm dependent quantities, such as maxi Qi re-
mains open for limited information setups (i.e. anything out-
side prediction with expert advice) due to the lack of a clear
auxiliary term one can observe.

In Algorithm 3, we proceed in epochs (or rounds) such
that η remains fixed per epoch. Denote by ηα the value of
η in epoch α. We will write Tα for the first time instance in
epoch α.

Algorithm 3 PARAMETER FREE ADAPTIVE LABEL EFFI-
CIENT PREDICTION

1: Initialize: η =
√
2 logK

ε , T1 = 1, t = 1.
2: for α = 1, 2, . . . do
3: x′

t = argminx∈ΩR(x)
4: while t ≤ T do
5: Draw dt ∼ Bern(ε), update xt according to (5)
6: Play it ∼ xt and if dt = 1, observe �t
7: Update x′

t+1 according to (6)
8: if

∑t
s=Tα

∑K
i=1(�̃s,i −ms,i)

2 ≥ 2 logK
ε2η2

α−1
then

9: η ← η/2, Tα+1 ← t, t← t+ 1
10: break
11: end if
12: t← t+ 1
13: end while
14: end for

Theorem 5. For the conditions mentioned in Theorem 4,
Algorithm 3 (a parameter free algorithm) achieves:

E[RT ] ≤ O
(√

(QT logK)/n +
√

logK
)
.

4 Adapting to Slowly Varying Losses in

Other Information-constrained Games

We will now investigate exploiting the regularity of losses in
a variety of other settings with implicit/explicit information
constraints. We will first focus on bandit feedback, following
which we will briefly discuss partial monitoring.

4.1 Label Efficient Bandits

The change here is in the feedback information the learner
receives when asking for information. Instead of receiving

5Note that similarly to (Hazan and Kale 2011) we still assume
knowledge of T , but this can be circumvented using standard tricks.
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the full loss vector, the learner now only receives the loss
of the played arm it, i.e. the itth coordinate of �t. We will
continue to use the same update rules (1) and (2) here. What
will change most importantly is the regularizer which will
now solely be the log barrier regularizerR = 1

η

∑K
i=1 log

1
xi

.
Note that the coefficient of log barrier is also 1/η instead of the
earlier 1/Kη. The loss estimates and second order corrections
will also change and these are all mentioned in Table 2. We
will now state the main theorem for label efficient bandits.

Theorem 6. For at,i = 6ηε2xt,i(�̃t − mt)
2, �̃t =

�t−mt

εxt,i
�{dt=1,it=i} + mt,i, ε = n/T and η ≤ 1/162K where

the sequence of messages mt are given by reservoir sampling,
the regret of Algorithm 2 modified for label efficient bandits
satisfies:

E [RT ] ≤ K log T

εη
+ 18ηQ∗ +K(log T )2 .

Note that since we are in the bandit feedback setting, we
now reserve certain rounds solely for reservoir sampling.
This is reflected in the additive K(log T )2 term in regret.
There are now (log T )2 rounds allotted to each of the K
arms, hence the term. There will also be a few minor changes
in the algorithm primarily corresponding to the appropriate
execution of reservoir sampling for bandit feedback.

4.2 Partial Monitoring

We will now discuss adaptivity in partial monitoring games.
A partial monitoring game G = (L,H) is defined by a pair
L and H of K ×N matrices. Both matrices are visible to the
learner and the adversary. At each time t, the learner selects
a row (or arm, action) it ∈ [K] and the opponent chooses a
column yt ∈ [N ]. The learner then incurs a loss of �(it, yt)
and observes feedback h(it, yt)

6. When clear from context,
we will denote by �(i, t) the loss of arm i at time t and by
h(i, t) the feedback of arm i at time t. The expected regret
here is:

max
i∗∈[K]

E

[
T∑

t=1

�(it, yt)−
T∑

t=1

�(i∗, yt)

]
Revealing Action Partial Monitoring First consider the
class of partial monitoring games with a revealing action –
that is, suppose H has a row with N distinct elements. It
is clear that if the learner plays this row, they can receive
full information regarding which column the adversary has
chosen. The cost of playing this row very well defines which
class this game falls into (see for example the spam game
discussed in (Lattimore and Szepesvári 2019)), but in general,
the minimax regret of these games scales as T 2/3 and these
games therefore fall in the hard class of games. Revealing
action games and label efficient prediction differ in the way
they charge the learner for information. For label efficient
prediction, we have seen that there is a fixed number of times

6We are considering oblivious adversarial opponents as before
and further take entries of H to be in [0, 1]. The assumption on
the entries is not major since the learner can always appropriately
encode the original entries by numbers.

(budget) one can obtain information, but there is no additional
cost of doing so. In revealing action games however, there is
a loss associated to each time the learner asks for information.
We will now show a reduction from this class of games to the
standard label efficient prediction we discussed in sections 2
and 3.

Let the cost of playing the revealing action be c =
maxb∈[N ] L(a, b) where a ∈ [K] is the revealing action row
of L. Suppose α is the probability with which we play the
revealing action at each round. α here corresponds to the ε
from earlier sections, however α is now a free parameter7. We
will still run reservoir sampling in the background as before
to obtain the optimistic messages mt. Now, in this light, the
following theorem can be seen to follow from Theorem 2.

Theorem 7. For at = 6ηα2(�̃t − mt)
2, �̃t =

(�t−mt)
α �{dt=1} + mt, α ≤ 1 and η ≤ 1/162K where the

sequence of messages mt are generated using reservoir sam-
pling, the expected regret of Algorithm 2 modified for reveal-
ing action partial monitoring games with loss entries in [0, 1]
satisfies the following:

E [RT ] ≤ logK + log T

αη
+ 18ηQ∗ + αTc+ (log T )2 .

Optimising the parameters η and γ yields a bound of
O
(
(Q∗T logK)

1/3
)

.

Note that now, we will again have to allocate rounds specif-
ically for reservoir sampling as was the case with bandits,
hence the additive (log T )2 term. The added αTc corre-
sponds to the cost paid for playing the revealing action.

Hard Partial Monitoring Games We now turn to the hard
class of partial monitoring games. As mentioned in (Piccol-
boni and Schindelhauer 2008) and (Cesa-Bianchi and Lugosi
2006), we will assume that there exists a matrix W such that
L = WH . This is not an unreasonable assumption, as if
this does not hold for the given L and H , one can suitably
modify (see (Piccolboni and Schindelhauer 2008)) L and H
to ensure L′ = W ′H ′, and if this condition continues to fail
after appropriate modifications, (Piccolboni and Schindel-
hauer 2008) show that sublinear regret is not possible for the
original G = (L,H). Observe that L = WH will allow us
to write �(i, t) =

∑
j∈[K] w(i, j)h(j, t). Therefore:

�̃(i, t) =

(∑
j∈[K] w(i, j)h(j, t)−mt,i

)
�{it=j}

xt,j
+mt,i

is now an unbiased estimate of �(i, t). mt is still the opti-
mistic messages where mt,i corresponds to an estimate of
the average loss incurred by arm i till time t. These will still
be obtained using reservoir sampling and we will maintain
a separate reservoir for each arm i ∈ [K]. Note that since
�(i, t) =

∑
j∈[K] w(i, j)h(j, t) and the matrices L,W , and

H are all visible to the learner, playing action r at time t for
example will allow the learner to observe the rth component
w(i, r)h(r, t) of the loss for each action i ∈ [K]. Therefore,

7Note that the update rules (1) and (2) will now also have α in
place of ε
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by maintaining an estimate (reservoir) for each component,
we will be able to maintain an estimate for each arm.

Now, for these games we will use optimistic OMD with-
out second order corrections (Rakhlin and Sridharan 2012;
Chiang et al. 2012). The update rules are the same as equa-
tions (5) and (6) without the ε term. Additionally, the arm we
play will be sampled from wt where wt = (1− γ)xt + γ1.
The forced exploration is necessary to allow a minimum
mass on all arms. Note that the structure defined by �(i, t) =∑

j∈[K] w(i, j)h(j, t) says that we potentially have to play
all arms to maintain unbiased estimates of any arm. This
forced exploration is unavoidable (see (Cesa-Bianchi and
Lugosi 2006)).

Theorem 8. Given G = (L,H) with loss entries in [0, 1],
a matrix W such that L = WH , η > 0 and R =
1/η

∑K
i=1 xi log xi, the update rules (5) and (6) (omitting

the ε) mixed with γ forced exploration satisfies: E[RT ] ≤
logK

η + KQη
2γ + γT . Optimising for η and γ gives us a regret

of O((QTK)
1/3

) .

Note here the strong dependence on K which is an out-
come of each �(i, t) being dependent on potentially all (K)
other actions.

5 Lower Bounds

We now prove explicit quadratic variation-based lower
bounds for (standard) label efficient prediction and label effi-
cient bandits. By capturing both the constraint on information
as well as the quadratic variation of the loss sequence, our
lower bounds generalize and improve upon existing lower
bounds. We extend the lower bounds for label efficient pre-
diction to further incorporate the quadratic variation of the
loss sequence and enhance the quadratic variation dependent
lower bounds for multi-armed bandits to also include the
constraint on information by bringing in the number of labels
the learner can observe (n).

Our bounds will be proven in a 2-step manner similar to
that in (Gerchinovitz and Lattimore 2016). The main feature
of step 1 (the lemma step) is that of centering the Bernoulli
random variables around a parameter α instead of 1/2, which
leads the regret bound to involve the α(1 − α) term corre-
sponding to the variance of the Bernoulli distribution. Step
2 (the theorem step) builds upon step 1 and shows the exis-
tence of a loss sequence belonging to an α-variation ball
(defined below) which also incurs regret of the same or-
der. Recall the quadratic variation for a given loss sequence:
Q =

∑T
t=1 ‖�t − μT ‖22 ≤ TK/4. Now, for α ∈ [0, 1/4] define

an α-variation ball as: Vα � {{�t}Tt=1 : Q/TK ≤ α}.
Theorems 10 and 12, after incorporating Q ≤ αTK

give us lower bounds of Ω(
√

(QT log(K−1))/Kn) and
Ω(

√
QT/n) respectively. Our corresponding upper bounds

are O(√(QT logK)/n) and O(√QTK/n) .8 Comparing the
two tells us that our strategies are optimal in their depen-
dence on Q and on the constraint in information indicated by

8We upper bound all of our Q∗ dependent upper bounds by Q so
as to consistently compare with the lower bounds. Note that Q∗ and
Q are in general incomparable and all that be said is that Q∗ ≤ Q.

n. There is however a gap of
√
K . This gap was mentioned

in (Gerchinovitz and Lattimore 2016) for the specific case
of the multi-armed bandit problem, and was closed recently
in (Bubeck, Cohen, and Li 2017). Barring the easy to see√

(Q logK)/K lower bound for prediction with expert advice
(which is also what Theorem 10 translates to for n = T ), we
are unaware of other fundamental Q based lower bounds
for prediction with expert advice. The upper bounds for
prediction with expert advice however are of O(√Q logK)
((Hazan and Kale 2010), (Steinhardt and Liang 2014) etc.),
and this again suggests the

√
K gap. Closing this for pre-

diction with expert advice, label efficient prediction and for
label efficient bandits remains open, as does the question of
finding Q∗ dependent lower bounds.

Label Efficient Prediction (Full Information) As men-
tioned previously, the main difference here from the standard
label efficient prediction lower bound proof (Cesa-Bianchi,
Lugosi, and Stoltz 2005) is that of centering the Bernoulli
random variables around a parameter α which is responsible
for ultimately bringing out the quadratic variation of the se-
quence. Our main statements for label efficient prediction are
as follows.

Lemma 9. Let α ∈ (0, 1), K ≥ 2, T ≥ n ≥ c2 log(K−1)
1−α .

Then, for any randomized strategy for the label efficient pre-
diction problem, there exists a loss sequence under which

E[RT ] ≥ cT
√

α(1−α) log(K−1)
n for c =

√
e/
√

5(1+e) .

Theorem 10. Let K ≥ 2, T ≥ n ≥ max{32 log(K −
1), 256 log T} and α ∈

[
max

{
32 log T

n , 8 log(K−1)
n

}
, 1
4

]
.

Then, for any randomized strategy for the label efficient pre-

diction problem, max{�t}∈vα
E[RT ] ≥ 0.36T

√
α log(K−1)

n .

Label Efficient Bandits The main difference here from
standard bandit proofs is that now, the total number of re-
vealed labels (each label is now a single loss vector entry)
cannot exceed n. Hence, the

∑
i∈[K] Ni(t−1) term which ap-

pears in the analysis is upper bounded by n (where Ni(t− 1)
denotes the pulls of arm i up till time t− 1).

Lemma 11. Let α ∈ (0, 1), K ≥ 2, T ≥ n ≥ K/(4(1 −
α)). Then, for any randomized strategy for the label efficient
bandit problem, there exists a loss sequence under which
E[RT ] ≥ T

8

√
α(1− α)K/n .

Theorem 12. Let K ≥ 2, T ≥ n ≥ max{32K, 384 log T}
and α ∈

[
max

{
2c log T

n , 8K
n

}
, 1
4

]
with c = (4/9)2(3

√
5 +

1)2 ≤ 12. Then, for any randomized strategy for the label ef-

ficient bandit problem, max{�t}∈vα E[RT ] ≥ 0.04T
√

αK
n .

6 Conclusion

We consider problems lying at the intersection of 2 relevant
questions in online learning – how does one adapt to slowly
varying data, and what best can be done with a constraint
on information. As far as we know, the proposed algorithms

5205



are the first to jointly address both of these questions. There
remain plenty of open problems in the area. Seeing to what
extent universal Q∗ dependent algorithms can be obtained in
starved information settings is a direction of future interest,
as is closing the gap in K highlighted in Section 5. More-
over, extending the notion of adaptivity to partial monitoring
games to consider locally observable games and even more in-
terestingly, locally observable sub-games within hard games
also remain open. Higher order lower bounds for partial mon-
itoring games have also not been studied and one wonders to
what extent adaptivity can help in partial monitoring.
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