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Abstract

What is a good exploration strategy for an agent that interacts
with an environment in the absence of external rewards? Ide-
ally, we would like to get a policy driving towards a uniform
state-action visitation (highly exploring) in a minimum num-
ber of steps (fast mixing), in order to ease efficient learning
of any goal-conditioned policy later on. Unfortunately, it is
remarkably arduous to directly learn an optimal policy of this
nature. In this paper, we propose a novel surrogate objective
for learning highly exploring and fast mixing policies, which
focuses on maximizing a lower bound to the entropy of the
steady-state distribution induced by the policy. In particular,
we introduce three novel lower bounds, that lead to as many
optimization problems, that tradeoff the theoretical guarantees
with computational complexity. Then, we present a model-
based reinforcement learning algorithm, IDE3AL, to learn an
optimal policy according to the introduced objective. Finally,
we provide an empirical evaluation of this algorithm on a set
of hard-exploration tasks.

1 Introduction

In general, the Reinforcement Learning (RL) framework (Sut-
ton and Barto 2018) assumes the presence of a reward
signal coming from a, potentially unknown, environment
to a learning agent. When this signal is sufficiently in-
formative about the utility of the agent’s decisions, RL
has proved to be rather successful in solving challeng-
ing tasks, even at a super-human level (Mnih et al. 2015;
Silver et al. 2017). However, in most real-world scenarios,
we cannot rely on a well-shaped, complete reward signal.
This may prevent the agent from learning anything until,
while performing random actions, it eventually stumbles into
some sort of external reward. Thus, what is a good objective
for a learning agent to pursue, in the absence of an external
reward signal, to prepare itself to learn efficiently, eventually,
a goal-conditioned policy?

Intrinsic motivation (Chentanez, Barto, and Singh 2005;
Oudeyer and Kaplan 2009) traditionally tries to answer this
pressing question by designing self-motivated goals that fa-
vor exploration. In a curiosity-driven approach, first proposed
in (Schmidhuber 1991), the intrinsic objective encourages
the agent to explore novel states by rewarding prediction
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errors (Stadie, Levine, and Abbeel 2015; Pathak et al. 2017;
Burda et al. 2019a; 2019b). On a similar flavor, other works
propose to relate an intrinsic reward to some sort of learn-
ing progress (Lopes et al. 2012) or information gain (Mo-
hamed and Rezende 2015; Houthooft et al. 2016), stimulat-
ing the agent’s empowerment over the environment. Count-
based approaches (Bellemare et al. 2016; Tang et al. 2017;
Ostrovski et al. 2017) consider exploration bonuses propor-
tional to the state visitation frequencies, assigning high re-
wards to rarely visited states. Athough the mentioned ap-
proaches have been relatively effective in solving sparse-
rewards, hard-exploration tasks (Pathak et al. 2017; Burda
et al. 2019b), they have some common limitations that may
affect their ability to methodically explore an environment
in the absence of external rewards, as pointed out in (Ecof-
fet et al. 2019). Especially, due to the consumable nature of
their intrinsic bonuses, the learning agent could prematurely
lose interest in a frontier of high rewards (detachment). Fur-
thermore, the agent may suffer from derailment by trying
to return to a promising state, previously discovered, if a
naı̈ve exploratory mechanism, such as ε-greedy, is combined
to the intrinsic motivation mechanism (which is often the
case). To overcome these limitations, recent works suggest
alternative approaches to motivate the agent towards a more
systematic exploration of the environment (Hazan et al. 2019;
Ecoffet et al. 2019). Especially, in (Hazan et al. 2019) the
authors consider an intrinsic objective which is directed to
the maximization of an entropic measure over the state dis-
tribution induced by a policy. Then, they provide a provably
efficient algorithm to learn a mixture of deterministic poli-
cies that is overall optimal w.r.t. the maximum-entropy explo-
ration objective. To the best of our knowledge, none of the
mentioned approaches explicitly address the related aspect
of the mixing time of an exploratory policy, which represents
the time it takes for the policy to reach its full capacity in
terms of exploration. Nonetheless, in many cases we would
like to maximize the probability of reaching any potential
target state having a fairly limited number of interactions at
hand for exploring the environment. Notably, this context
presents some analogies to the problem of maximizing the
efficiency of a random walk (Hassibi et al. 2014).

In this paper, we present a novel approach to learn ex-
ploratory policies that are, at the same time, highly exploring
and fast mixing. In Section 3, we propose a surrogate objec-
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tive to address the problem of maximum-entropy exploration
over both the state space (Section 3.1) and the action space
(Section 3.2). The idea is to search for a policy that maxi-
mizes a lower bound to the entropy of the induced steady-
state distribution. We introduce three new lower bounds and
the corresponding optimization problems, discussing their
pros and cons. Furthermore, we discuss how to complement
the introduced objective to account for the mixing time of
the learned policy (Section 3.3). In Section 4, we present the
Intrinsically-Driven Effective and Efficient Exploration ALgo-
rithm (IDE3AL), a novel, model-based, reinforcement learn-
ing method to learn highly exploring and fast mixing policies
through iterative optimizations of the introduced objective. In
Section 5, we provide an empirical evaluation to illustrate the
merits of our approach on hard-exploration, finite domains,
and to show how it fares in comparison to count-based and
maximum-entropy approaches. Finally, in Section 6, we dis-
cuss the proposed approach and related works. The proofs of
the Theorems are reported in Appendix A1.

2 Preliminaries

A discrete-time Markov Decision Process (MDP) (Puterman
2014) is defined as a tuple M = (S,A, P,R, d0), where
S is the state space, A is the action space, P (s′|s, a) is a
Markovian transition model defining the distribution of the
next state s′ given the current state s and action a, R is the
reward function, such that R(s, a) is the expected immediate
reward when taking action a from state s, and d0 is the initial
state distribution. A policy π(a|s) defines the probability of
taking an action a in state s.

In the following we will indifferently turn to scalar or ma-
trix notation, where v denotes a vector, M denotes a matrix,
and vT , MT denote their transpose. A matrix is row (col-
umn) stochastic if it has non-negative entries and all of its
rows (columns) sum to one. A matrix is doubly stochastic if
it is both row and column stochastic. We denote with P the
space of doubly stochastic matrices. The L∞-norm ‖M‖∞
of a matrix is its maximum absolute row sum, while ‖M‖2 =(
max eig MTM

) 1
2 and ‖M‖F =

(∑
i

∑
j(M(i, j))2

) 1
2

are its L2 and Frobenius norms respectively. We denote with
1n a column vector of n ones and with 1n×m a matrix of
ones with n rows and m columns. Using matrix notation,
d0 is a column vector of size |S| having elements d0(s),
P is a row stochastic matrix of size (|S||A| × |S|) that de-
scribes the transition model P ((s, a), s′) = P (s′|s, a), Π is
a row stochastic matrix of size (|S| × |S||A|) that contains
the policy Π(s, (s, a)) = π(a|s), and P π = ΠP is a row
stochastic matrix of size (|S| × |S|) that represents the state
transition matrix under policy π. We denote with Π the space
of all the stationary Markovian policies.

In the absence of any reward, i.e., when R(s, a) = 0
for every (s, a), a policy π induces, over the MDP M, a
Markov Chain (MC) (Levin and Peres 2017) defined by
C = (S, Pπ, d0) where Pπ(s′|s) = P π(s, s′) is the state
transition model. Having defined the t-step transition matrix

1A complete version of the paper, which includes the Appendix,
is available at https://arxiv.org/abs/1907.04662

as P π
t = (P π)t, the state distribution of the MC at time step

t is dπ
t = (P π

t )
Td0, while dπ = limt→∞ dπ

t is the steady
state distribution. If the MC is ergodic, i.e., aperiodic and re-
current, it admits a unique steady-state distribution, such that
dπ = (P π)Tdπ. The mixing time tmix of the MC describes
how fast the state distribution converges to the steady state:

tmix = min
{
t ∈ N : supd0

‖dπ
t − dπ‖∞ ≤ ε

}
, (1)

where ε is the mixing threshold. An MC is reversible if the
condition P πdπ = (P π)Tdπ holds. Let λπ be the eigenval-
ues of P π . For ergodic reversible MCs the largest eigenvalue
is 1 with multiplicity 1. Then, we can define the second
largest eigenvalue modulus λπ(2) and the spectral gap γπ as:

λπ(2) = max
λπ(i) �=1

|λπ(i)|, γπ = 1− λπ(2). (2)

3 Optimization Problems for Highly

Exploring and Fast Mixing Policies

In this section, we define a set of optimization problems
whose goal is to identify a stationary Markovian policy that
effectively explores the state-action space. The optimization
problem is introduced in three steps: first we ask for a policy
that maximizes some lower bound to the steady-state distribu-
tion entropy, then we foster exploration over the action space
by adding a constraint on the minimum action probability,
and finally we add another constraint to reduce the mixing
time of the Markov chain induced by the policy.

3.1 Highly Exploring Policies over the State Space

Intuitively, a good exploration policy should guarantee to
visit the state space as uniformly as possible. In this view, a
potential objective function is the entropy of the steady-state
distribution induced by a policy over the MDP (Hazan et al.
2019). The resulting optimal policy is:

π∗ ∈ argmax
π∈Π

H(dπ), (3)

where H(dπ) = −Es∼dπ

[
log dπ(s)

]
is the state distribution

entropy. Unfortunately, a direct optimization of this objec-
tive is particularly arduous since the steady-state distribution
entropy is not a concave function of the policy (Hazan et al.
2019). To overcome this issue, a possible solution (Hazan et
al. 2019) is to use the conditional gradient method, such that
the gradients of the steady-state distribution entropy become
the intrinsic reward in a sequence of approximate dynamic
programming problems (Bertsekas 1995).

In this paper, we follow an alternative route that consists in
maximizing a lower bound to the policy entropy. In particular,
in the following we will consider three lower bounds that lead
to as many optimization problems (named Infinity, Frobenius,
Column Sum) that show different trade-offs between theoret-
ical guarantees and computational complexity.

Infinity From the theory of Markov chains (Levin and
Peres 2017), we know a necessary and sufficient condition
for a policy to induce a uniform steady-state distribution (i.e.,
to achieve the maximum possible entropy). We report this
result in the following theorem.
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Theorem 3.1. Let P be the transition matrix of a given
MDP. The steady-state distribution dπ induced by a policy
π is uniform over S iff the matrix P π = ΠP is doubly
stochastic.

Unfortunately, given the constraints specified by the transi-
tion matrix P , a stationary Markovian policy that induces a
doubly stochastic P π may not exist. On the other hand, it is
possible to lower bound the entropy of the steady-state dis-
tribution induced by policy π as a function of the minimum
L∞-norm between P π and any doubly stochastic matrix.
Theorem 3.2. Let P be the transition matrix of a given MDP
and P the space of doubly stochastic matrices. The entropy
of the steady-state distribution dπ induced by a policy π is
lower bounded by:

H(dπ) ≥ log |S| − |S| inf
Pu∈P

‖P u −ΠP ‖2∞ .

The maximization of this lower bound leads to the follow-
ing constrained optimization problem:

minimize
Pu∈P,Π∈Π

‖P u −ΠP ‖∞ (4)

It is worth noting that this optimization problem can be re-
formulated as a linear program with |S|2 + |S||A| + |S|
optimization variables and 2|S||S|+ |S|2+ |S||A| inequality
constraints and 3|S| equality constraints (the linear program
formulation can be found in Appendix B.1. In order to avoid
the exponential growth of the number of constraints as a
function of the number of states, we are going to introduce
alternative optimization problems.

Frobenius It is worth noting that different transition ma-
trices P π having equal ‖P u − P π‖∞ might lead to signif-
icantly different state distribution entropies H(dπ), as the
L∞-norm only accounts for the state corresponding to the
maximum absolute row sum. The Frobenius norm can better
captures the distance between P u and P π over all the states,
as discussed in Appendix C. For this reason, we have derived
a lower bound to the policy entropy that replace the L∞-norm
with the Frobenius one.
Theorem 3.3. Let P be the transition matrix of a given MDP
and P the space of doubly stochastic matrices. The entropy
of the steady-state distribution dπ induced by a policy π is
lower bounded by:

H(dπ) ≥ log |S| − |S|2 inf
Pu∈P

‖P u −ΠP ‖2F .

It can be shown (see Corollary A.1 in Appendix A that the
lower bound based on the Frobenius norm cannot be better
(i.e., larger) than the one with the Infinite norm. However, we
have the advantage that the resulting optimization problem
has significantly less constraints than Problem (4):

minimize
Pu∈P,Π∈Π

‖P u −ΠP ‖F . (5)

This problem is a (linearly constrained) quadratic problem
with |S|2 + |S||A| optimization variables and |S|2 + |S||A|
inequality constraints and 3|S| equality constraints.

Column Sum Problems (4) and (5) are aiming at find-
ing a policy associated with a state transition matrix that is

doubly stochastic. To achieve this result it is enough to guar-
antee that the column sums of the matrix P π are all equal to
one (Kirkland 2010). A measure that can be used to evaluate
the distance to a doubly stochastic matrix can be the absolute
sum of the difference between one and the column sums:∑

s∈S |1 −
∑

s′∈S Pπ(s|s′)| =
∥∥∥(I − (ΠP )T

) · 1|S|
∥∥∥
1
.

The following theorem provides a lower bound to the policy
entropy as a function of this measure.

Theorem 3.4. Let P be the transition matrix of a given MDP.
The entropy of the steady-state distribution dπ induced by a
policy π is lower bounded by:

H(dπ) ≥ log |S| − |S|
∥∥∥∥(I − (ΠP )T

)
· 1|S|

∥∥∥∥
2

1

.

The optimization of this lower bound leads to the following
linear program:

minimize
Π∈Π

∥∥∥∥(I − (ΠP )T
)
· 1|S|

∥∥∥∥
1

. (6)

Besides being a linear program, unlike the other optimiza-
tion problems presented, Problem (6) does not require to
optimize over the space of all the doubly stochastic matri-
ces, thus significantly reducing the number of optimization
variables (|S| + |S||A|) and constraints (2|S| + |S||A| in-
equalities and |S| equalities). The linear program formulation
of Problem (6) can be found in Appendix B.2.

3.2 Highly Exploring Policies over the State and
Action Space

Although the policy resulting from the optimization of one of
the above problems may lead to the most uniform exploration
of the state space, the actual goal of the exploration phase is
to collect enough information on the environment to optimize,
at some point, a goal-conditioned policy (Pong et al. 2019).
To this end, it is essential to have an exploratory policy that
adequately covers the action space A in any visited state.
Unfortunately, the optimization of Problems (4), (5), (6) does
not guarantee even that the obtained policy is stochastic. Thus,
we need to embed in the problem a secondary objective that
takes into account the exploration over A. This can be done
by enforcing a minimal entropy over actions in the policy to
be learned, adding to (4), (5), (6) the following constraints:

π(a|s) ≥ ξ, ∀s ∈ S, ∀a ∈ A, (7)

where ξ ∈ [0, 1
|A| ]. This secondary objective is actually in

competition with the objective of uniform exploration over
states. Indeed, an overblown incentive in the exploration over
actions may limit the state distribution entropy of the optimal
policy. Having a low probability of visiting a state decreases
the likelihood of sampling an action from that state, hence,
also reducing the exploration over actions. To illustrate that,
Figure 1a shows state distribution entropies (H(dπ)) and
state-action distribution entropies, i.e., H(dπΠ), achieved
by the optimal policy w.r.t. Problem (5) on the Single Chain
domain (Furmston and Barber 2010) for different values of ξ.
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Figure 1: (a) State distribution entropy (H(dπ)), state-action distribution entropy (H(dπΠ)) for different values of ξ on the
Single Chain domain. (b) State distribution entropy (H(dπ)), spectral gap (γπ) for different values of ζ on the Single Chain
domain (left), color-coded state distribution overlaid on a 4-rooms gridworld for different values of ζ (right).

3.3 An Objective to Make Highly Exploring
Policies Mix Faster

In many cases, such as in episodic tasks where the horizon
for exploration is capped, we may have interest in trading
inferior state entropy for faster convergence of the learned
policy. Although the doubly stochastic matrices are equally
valid in terms of steady-state distribution, the choice of the
target P u strongly affects the mixing properties of the P π

induced by the policy. Indeed, while an MC with a uniform
transition matrix, i.e., transition probabilities P u(s, s′) = 1

|S|
for any s, s′, mixes in no time, an MC with probability one
on the self-loops never converges to a steady state. This is
evident considering that the mixing time tmix of an MC is
trapped as follows (Levin and Peres 2017, Theorems 12.3
and 12.4):

1− γπ
γπ

log
1

2ε
≤ tmix ≤ 1

γπ
log

1

dπminε
, (8)

where ε is the mixing threshold, dπmin is a minorization of dπ ,
and γπ is the spectral gap of P π (2). From the literature of
MCs, we know that a variant of the Problems (4), (5) hav-
ing the uniform transition matrix as target P u and the L2

as matrix norm, is equivalent to the problem of finding the
fastest mixing transition matrix P π (Boyd, Diaconis, and
Xiao 2004). However, the choice of this target may overly
limit the entropy over the state distribution induced by the op-
timal policy. Instead, we look for a generalization that allows
us to prioritize fast exploration at will. Thus, we consider a
continuum of relaxations in the fastest mixing objective by
embedding in Problems (4) and (5) (but not in Problem (6))
the following constraints:

P u(s, s′) ≤ ζ, ∀s, s′ ∈ S, (9)

where ζ ∈ [ 1
|S| , 1]. By setting ζ = 1

|S| , we force the opti-
mization problem to consider the uniform transition matrix
as a target, thus aiming to reduce the mixing time, while
larger values of ζ relax this objective, allowing us to get
a higher steady-state distribution entropy. In Figure 1b we
show how the parameter ζ affects the trade-off between high
steady-state entropy and low mixing times (i.e., high spectral
gaps), reporting the values obtained by optimal policies w.r.t.
Problem (5) for different ζ.

4 A Model-Based Algorithm for Highly

Exploring and Fast Mixing Policies

In this section, we present an approach to incrementally learn
a highly exploring and fast mixing policy through interactions
with an unknown environment, developing a novel model-
based exploration algorithm called Intrinsically-Driven Effec-
tive and Efficient Exploration ALgorithm (IDE3AL). Since
Problems (4), (5), (6) requires an explicit representation of
the matrix P , we need to estimate the transition model from
samples before performing an objective optimization (model-
based approach). In tabular settings, this can be easily done
by adopting the transition frequency as a proxy for the (un-
known) transition probabilities, obtaining an estimated tran-
sition model P̂ (s′|s, a). However, in hard-exploration tasks,
it can be arbitrarily arduous to sample transitions from the
most difficult-to-reach states by relying on naı̈ve exploration
mechanisms, such as a random policy. To address the issue,
we lean on an iterative approach in which we alternate model
estimation phases with optimization sweeps of the objec-
tives (4), (5) or (6). In this way, we combine the benefit of
collecting samples with highly exploring policies to better
estimate the transition model and the benefit of having a
better-estimated model to learn superior exploratory policies.
In order to foster the policy towards (s, a) pairs that have
never been sampled, we keep their corresponding distribution
P̂ (·|s, a) to be uniform over all possible states, thus making
the pair (s, a) particularly valuable in the perspective of the
optimization problem. The algorithm converges whenever
the exploratory policy remains unchanged during consecutive
optimization sweeps and, if we know the size of the MDP,
when all state-action pairs have been sufficiently explored. In
Algorithm 1 we report the pseudo-code of IDE3AL. Finally,
in Figure 2 we compare the iterative formulation against a
not-iterative one, i.e., an approach that collects samples with
a random policy and then optimizes the exploration objec-
tive off-line. Considering an exploration task on the Double
Chain domain (Furmston and Barber 2010), we show that
the iterative form has a clear edge in reducing the model
estimation error ‖P − P̂ ‖F . Both the approaches employ a
Frobenius formulation.
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Algorithm 1 IDE3AL

Input: ξ, ζ, batch size N

Initialize π0 and transition counts C ∈ N
|S|2×|A|

for i = 0, 1, 2, . . . , until convergence do
Collect N steps with πi and update C
Estimate the transition model as:

P̂i(s
′|s, a) =

{
C(s′|s,a)∑
s′ C(s′|s,a) , if C(·|s, a) > 0

1/|S|, otherwise
πi+1 ← optimal policy for (4) (or (5) or (6)),
given the parameters ξ, ζ, and P̂i

end for
Output: exploratory policy πi

5 Experimental Evaluation

In this section, we provide the experimental evaluation of
IDE3AL. First, we show a set of experiments on the illustra-
tive Single Chain and Double Chain domains (Furmston and
Barber 2010; Peters, Mulling, and Altun 2010). The Single
Chain consists of 10 states having 2 possible actions, one to
climb up the chain from state 0 to 9, and the other to directly
fall to the initial state 0. The two actions are flipped with a
probability pslip = 0.1, making the environment stochastic
and reducing the probability of visiting the higher states. The
Double Chain concatenates two Single Chain into a bigger
one sharing the central state 9, which is the initial state. Thus,
the chain can be climbed in two directions. These two do-
mains, albeit rather simple from a dimensionality standpoint,
are actually hard to explore uniformly, due to the high shares
of actions returning to the initial state and preventing the
agent to consistently reach the higher states. Then, we present
an experiment on the much more complex Knight Quest en-
vironment (Fruit et al. 2018, Appendix), having |S| = 360
and |A| = 8. This domain takes inspiration from classical
arcade games, in which a knight has to rescue a princess in
the shortest possible time without being killed by the dragon.
To accomplish this feat, the knight has to perform an intricate
sequence of actions. In the absence of any reward, it is a fairly
challenging environment for exploration. On these domains,
we address the task of learning the best exploratory policy in
a limited number of samples. Especially, we evaluate these
policies in terms of the induced state entropy H(dπ) and
state-action entropy H(dπΠ).

We compare our approach with MaxEnt (Hazan et al.
2019), the model-based algorithm to learn maximum en-
tropy exploration that we have previously discussed in the
paper, and a count-based approach inspired by the exploration
bonuses of MBIE-EB (Strehl and Littman 2008), which we re-
fer as CountBased in the following. The latter shares the same
structure of our algorithm, but replace the policy optimization
sweeps with approximate value iterations (Bertsekas 1995),
where the reward for a given state is inversely proportional to
the visit count of that state. It is worth noting that the results
reported for the MaxEnt algorithm are related to the mixture
policy πmix = (D, α), where D = (π0, . . . , πk−1) is a set of
k ε-deterministic policies, and α ∈ Δk is a probability distri-
bution over D. For the sake of simplicity, we have equipped
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at

io
n

iterative not-iterative

Figure 2: Model estimation error on the Double Chain with
ξ = 0.1, ζ = 0.7, N = 10 (100 runs, 95% c.i.).

all the approaches with a little domain knowledge, i.e., the
cardinality of S andA. However, this can be avoided without
a significant impact on the presented results. For every exper-
iment, we will report the batch-size N , and the parameters
ξ, ζ of IDE3AL. CountBased and MaxEnt employ ε-greedy
policies having ε = ξ in all the experiments. In any plot, we
will additionally provide the performance of a baseline policy,
denoted as Random, that randomly selects an action in every
state. Detailed information about the presented results, along
with an additional experiment, can be found in Appendix D.

First, in Figure 3, we compare the Problems (4), (5), (6)
on the Single Chain environment. On one hand, we show the
performance achieved by the exact solutions, i.e., computed
with a full knowledge of P . While the plain formulations
(ξ = 0, ζ = 1) are remarkably similar, adding a constraint
over the action entropy (ξ = 0.1) has a significantly different
impact. On the other hand, we illustrate the performance of
IDE3AL, equipped with the alternative optimization objec-
tives, in learning a good exploratory policy from samples. In
this case, the Frobenius clearly achieves a better performance.
In the following, we will report the results of IDE3AL con-
sidering only the best-performing formulation, which, for all
the presented experiments, corresponds to the Frobenius.

In Figure 4a, we show that IDE3AL compares well against
the other approaches in exploring the Double Chain domain.
It achieves superior state entropy and state-action entropy,
and it converges faster to the optimum. It displays also a
higher probability of visiting the least favorable state, and
it behaves positively in the estimation of P̂ . Notably, the
CountBased algorithm fails to reach high exploration due to
a detachment problem (Ecoffet et al. 2019), since it fluctuates
between two exploratory policies that are greedy towards the
two directions of the chain. By contrast, in a domain having
a clear direction for exploration, such as the simpler Single
Chain domain, CountBased ties the explorative performances
of IDE3AL (Figure 4b). On the other hand, MaxEnt is effec-
tive in the exploration performance, but much more slower
to converge, both in the Double Chain and the Single Chain.
Note that in Figure 4a, the model estimation error of Max-
Ent starts higher than the other, since it employs a different
strategy to fill the transition probabilities of never reached
states, inspired by (Brafman and Tennenholtz 2002). In Fig-
ure 4c, we present an experiment on the higher-dimensional
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H(dπ) mindπ

Frobenius (ξ = 0) 0.98 6.4 · 10−2

Infinity (ξ = 0) 0.98 6.4 · 10−2

Column Sum (ξ = 0) 0.98 6 · 10−2

Frobenius (ξ = 0.1) 0.94 4.1 · 10−2

Infinity (ξ = 0.1) 0.89 2.6 · 10−2

Column Sum (ξ = 0.1) 0.95 3.8 · 10−2
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Figure 3: State distribution entropy (H(dπ)) and probability of the least favorable state (mindπ) for different objective
formulations on the Single Chain domain. We report exact solutions with ζ = 0 (left), and approximate optimizations with
ξ = 0.1, ζ = 0.7, N = 10 (100 runs, 95% c.i.) (right).

Knight Quest environment. IDE3AL achieves a remarkable
state entropy, while MaxEnt struggles to converge towards
a satisfying exploratory policy. CountBased (not reported in
Figure 4c, see Appendix D), fails to explore the environment
altogether, oscillating between policies with low entropy.

In Figure 4d, we illustrate how the exploratory policies
learned in the Double Chain environment are effective to ease
learning of any possible goal-conditioned policy afterwards.
To this end, the exploratory policies, learned by the three
approaches through 3000 samples (Figure 4a), are employed
to collect samples in a fixed horizon (within a range from
10 to 100 steps). Then, a goal-conditioned policy is learned
off-line through approximate value iteration (Bertsekas 1995)
on this small amount of samples. The goal is to optimize a
reward function that is 1 for the hardest state to reach (i.e.,
the state that is less frequently visited with a random policy),
0 in all the other states. In this setting, all the methods prove
to be rather successful w.r.t. the baseline, though IDE3AL
compares positively against the other strategies.

6 Discussion

In this section, we first discuss how the proposed approach
might be extended beyond tabular settings and an alternative
formulation for the policy entropy optimization. Then, we
consider some relevant work related to this paper.

6.1 Potential Extension to Continuous

We believe that the proposed approach has potential to be
extended to more general, continuous, settings, by exploiting
the core idea of avoiding a probability concentration on a sub-
set of outgoing transitions from a state. Indeed, a compelling
feature of the presented lower bounds is that they character-
ize an infinite-step property, the entropy of the steady-state
distribution, relying only on one-step quantities, i.e., without
requiring to unroll several times the state transition matrix
P π . In addition to this, the lower bounds provide an evalua-
tion for the current policy, and they can be computed for any
policy. Thus, we could potentially operate a direct search in
the policy space through the gradient of an approximation of
these lower bounds. To perform the approximation we could
use a kernel for a soft aggregation over regions of the, now
continuous, state space.

6.2 A Dual Formulation

A potential alternative to deal with the optimization of the
objective (3) is to consider its dual formulation. This is rather
similar to the approach proposed in (Tarbouriech and Lazaric
2019) to address the different problem of active exploration
in an MDP. The basic idea is to directly maximize the en-
tropy over the state-action stationary distribution and then
to recover the policy afterwards. In this setting, we define
the state-action stationary distribution induced by a policy
π as ωπ = dπΠ, where ωπ is a vector of size |S||A| hav-
ing elements ωπ(s, a). Since not all the distribution over the
state-action space can be actually induced by a policy over
the MDP, we characterize the set of feasible distributions:

Ω =
{
ω ∈ Δ(S ×A) : ∀s ∈ S,∑

a∈A
ω(s, a) =

∑
s′∈S,a′∈A

P (s|s′, a′)ω(s′, a′)}.
Then, we can formulate the Dual Problem as:

maximize
ω∈Ω

H(ω) (10)

Finally, let ω∗ denotes the solution of Problem (10), we can
recover the policy inducing the optimal state-action entropy
as πω∗(a|s) = ω∗(s, a)/

∑
a′∈A ω∗(s, a′), ∀s ∈ S, ∀a ∈ A.

The Dual Problem displays some appealing features. Espe-
cially, the objective in (10) is already convex, so that it can
be optimized right away, and it allows to explicitly maximize
the entropy over the state-action space. Nonetheless, we think
that this alternative formulation has three major shortcom-
ings. First, the optimization of the convex program (10) could
be way slower than the optimization of the linear programs
Column Sum and Infinity (Grötschel, Lovász, and Schrijver
1993). Secondly, it does not allow to control the mixing time
of the learned policy, which can be extremely relevant. Lastly,
the applicability of the Dual Problem to continuous envi-
ronments seems far-fetched. It is worth noting that, from an
empirical evaluation, the dual formulation does not provide
any significant benefit in the entropy of the learned policy
w.r.t. the lower bounds formulations (see Appendix D). Fig-
ure 4e shows how the solve time of the Column Sum scales
better with the number of variables (|S||A|) in incrementally
large Knight Quest domains.
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Figure 4: Comparison of the algorithms on exploration tasks (a, b, c) and goal-conditioned learning (d), with parameters ξ = 0.1,
ζ = 0.7, N = 10 (a, b, d) and ξ = 0.01, ζ = 1, N = 2500 (c). (95% c.i. over 100 runs (a, b), 40 runs (c), 500 runs (d)).
Comparison of the solve time (e) achieved by Column Sum and Dual formulations as a function of the number of variables.

6.3 Related Work

As discussed in the previous sections, Hazan et al. (2019)
consider an objective not that dissimilar to the one presented
in this paper, even if they propose a fairly different solution
to the problem. Their method learns a mixture of determinis-
tic policies instead of a single stochastic policy. In a similar
flavor, Tarbouriech and Lazaric (2019) develop an approach,
based on a dual formulation of the objective, to learn a mix-
ture of stochastic policies for active exploration.

Other propose to intrinsically motivate the agent towards
learning to reach all possible states in the environment (Lim
and Auer 2012). To extend this same idea from the tabular
setting to the context of a continuous, high-dimensional state
space, Pong et al. (2019) employ a generative model to seek
for a maximum-entropy goal distribution. Ecoffet et al. (2019)
propose a method, called Go-Explore, to methodically reach
any state by keeping an archive of any visited state and the
best trajectory that brought the agent there. At each iteration,
the agent draws a promising state from the archive, returns
there replicating the stored trajectory (Go), then explores
from this state trying to discover new states (Explore).

Another promising intrinsic objective is to make value
out of the exploration phase by acquiring a set of reusable
skills, typically formulated by means of the option frame-
work (Sutton, Precup, and Singh 1999). In (Barto, Singh, and
Chentanez 2004), a set of options is learned by maximiz-
ing an intrinsic reward that is generated at the occurrence
of some, user-defined, salient event. The approach proposed
by Bonarini, Lazaric, and Restelli (2006), which presents
some similarities with the work in (Ecoffet et al. 2019), is
based on learning a set of options to return with high proba-

bility to promising states. In their context, a promising state
presents high unbalance between the probabilities of the in-
put and output transitions (Bonarini et al. 2006), so that it is
both a hard state to reach, and a doorway to reach many other
states. In this way, the learned options heuristically favor an
even exploration of the state space.

7 Conclusions

In this paper, we proposed a new model-based algorithm,
IDE3AL, to learn highly exploring and fast mixing policies.
The algorithm outputs a policy that maximizes a lower bound
to the entropy of the steady-state distribution. We presented
three formulations of the lower bound that differently tradeoff
tightness with computational complexity of the optimization.
The experimental evaluation showed that IDE3AL is able to
achieve superior performance than other approaches striving
for uniform exploration of the environment, while it avoids
the risk of detachment and derailment (Ecoffet et al. 2019).
Future works could focus on extending the applicability of
the presented approach to non-tabular environments, follow-
ing the blueprint in Section 6.1. We believe that this work
provides a valuable contribution in view of solving the conun-
drum on what should a reinforcement learning agent learn in
the absence of any reward coming from the environment.
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