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Abstract

We present pairwise fairness metrics for ranking models and
regression models that form analogues of statistical fairness
notions such as equal opportunity, equal accuracy, and sta-
tistical parity. Our pairwise formulation supports both dis-
crete protected groups, and continuous protected attributes.
We show that the resulting training problems can be efficiently
and effectively solved using existing constrained optimization
and robust optimization techniques developed for fair clas-
sification. Experiments illustrate the broad applicability and
trade-offs of these methods.

Introduction

As ranking models and regression models become more
prevalent and have a greater impact on people’s day-to-day
lives, it is important that we develop better tools to quantify,
measure, track, and improve fairness metrics for such models.
A key question for ranking and regression is how to define
fairness metrics. As in the binary classification setting, we
believe there is not one “right” fairness definition: instead,
we provide a paradigm that makes it easy to define and train
for different fairness definitions, analogous to those that are
popular for binary classification problems.

One key distinction is between unsupervised and super-
vised fairness metrics: for example, consider the task of rank-
ing restaurants for college students who prefer cheaper restau-
rants, and suppose we wish to be fair to French vs Mexican
restaurants. Our proposed unsupervised statistical parity con-
straint would require that the model be equally likely to (i)
rank a French restaurant above a Mexican restaurant, and
(ii) rank a Mexican restaurant above a French restaurant.
In contrast, our proposed supervised equal opportunity con-
straint would require that the model be equally likely to (i)
rank a cheap French restaurant above an expensive Mexican
restaurant, and (ii) rank a cheap Mexican restaurant above an
expensive French restaurant.

Like some recent work on fair ranking (Beutel et al. 2019;
Kallus and Zhou 2019), we draw inspiration from the stan-
dard learning-to-rank strategy (Liu 2011): we reduce the
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ranking problem to that of learning a binary classifier to pre-
dict the relative ordering of pairs of examples. This reduction
of ranking to binary classification enables us to formulate a
broad set of statistical fairness metrics, inspired by analogues
in the binary classification setting, in terms of pairwise com-
parisons. The same general idea can actually be applied more
broadly: in addition to group-based fairness in the ranking
setting, we show that the same overall approach can also be
applied to (i) the regression setting, or (ii) the use of con-
tinuous protected attributes instead of discrete groups. In all
three of these cases, we show how to effectively train ranking
models or regression models to satisfy the proposed fairness
metrics, by applying state-of-the-art constrained optimization
algorithms.

Ranking Pairwise Fairness Metrics

We begin by considering a standard ranking set-up (Liu 2011):
we’re given a sample S of queries drawn i.i.d. from an under-
lying distribution D, where each query is a set of candidates
to be ranked, and each candidate is represented by an associ-
ated feature vector x ∈ X and label y ∈ Y . The label space
can be, for example, Y = {0, 1} (e.g. for click data: y = 1
if a result was clicked by a user, y = 0 otherwise), Y = R
(each result has an associated quality rating), or Y = N (the
labels are a ground truth ranking). We adopt the convention
that higher labels should be ranked closer to the top. Any
of these choices of label space Y induce a partial ordering
on examples, for which all candidates belonging to the same
query are totally ordered, and any two candidates (x, y) and
(x′, y′) belonging to different queries are incomparable.

Suppose that we have a set of K protected groups
G1, . . . , GK partitioning the space of examples X × Y such
that every example belongs to exactly one group. We define
the group-dependent pairwise accuracy AGi>Gj

as the ac-
curacy of a ranking function f : X → R on those pairs for
which the labeled “better” example belongs to group Gi, and
the labeled “worse” example belongs to group Gj . That is:

AGi>Gj
:= (1)

P (f(x) > f(x′) | y > y′, (x, y) ∈ Gi, (x
′, y′) ∈ Gj),

where (x, y) and (x′, y′) are drawn i.i.d. from the distri-
bution of examples, restricted to the appropriate protected
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groups. Notice that this definition implicitly forces us to con-
struct pairs only from examples belonging to the same query,
since y and y′ are not comparable if they belong to different
queries—however, the probability is taken over all such pairs,
across all queries. Given K groups, one can compute the
K ×K matrix of all possible K2 group-dependent pairwise
accuracies. One can also measure how each group performs
on average:

AGi>: :=P (f(x) > f(x′) | y > y′, (x, y) ∈ Gi) (2)

A:>Gi
:=P (f(x) > f(x′) | y > y′, (x′, y′) ∈ Gi). (3)

The accuracy in (2) is averaged over all pairs for which the Gi

example was labeled as “better,” and the “worse” example is
from any group, including Gi. Similarly, (3) is the accuracy
averaged over all pairs where the Gi example should not
have been preferred. Lastly, the overall pairwise accuracy
P (f(x) > f(x′) | y > y′) is simply the standard AUC.
Next, we use the pairwise accuracies to define supervised
pairwise fairness goals and unsupervised fairness notions.

Pairwise Equal Opportunity

We construct a pairwise equal opportunity analogue of the
equal opportunity metric (Hardt, Price, and Srebro 2016):

AGi>Gj
= κ, for some κ ∈ [0, 1], for all i, j (4)

Equal opportunity for binary classifiers (Hardt, Price, and Sre-
bro 2016) requires positively-labeled examples to be equally
likely to be predicted positively regardless of protected group
membership. Similarly, this pairwise equal opportunity for
ranking problems requires pairs to be equally-likely to be
ranked correctly regardless of the protected group member-
ship of both members of the pair. By symmetry, we could
equally well consider AGi>Gj to be a true positive rate or a
true negative rate, so there is no distinction between “equal
opportunity” and “equal odds” in the ranking setting, when
all of the pairwise accuracies are constrained equivalently.

Pairwise equal opportunity can be relaxed either by
requiring all pairwise accuracies (i) to only be within
some quantity of each other (e.g. maxi �=j AGi>Gj

−
mini �=j AGi>Gj

≤ 0.1), or (ii) only requiring the mini-
mum pairwise accuracy AGi>Gj

to be as big as possible
(i.e. maximize mini �=j AGi>Gj

), in the style of robust op-
timization [e.g. Chen et al. 2017]. We will later show how
models can be efficiently trained subject to both these types
of pairwise fairness constraints using existing algorithms.

Within-Group vs. Cross-Group Comparison

We have observed that labels for within-group comparisons
(i = j) are sometimes more accurate and consistent across
raters than labels for cross-group comparisons (i �= j) can be
noisier and less consistent. This especially arises when the la-
bels are coming from experts that are more comfortable with
rating candidates from certain groups. For example, consider
a video ranking system where group i is sports videos and
group j is cooking shows. If our experts can choose which
videos they rate (as in most consumer recommendation sys-
tems with feedback), sports experts are likely to rate sports
videos and do so accurately, cooking experts are likely to rate

cooking shows and do so accurately, but on average we may
not get as accurate ratings on pairs with a sports and cooking
video.

Thus one may wish to separately constrain cross-group
pairwise equal opportunity:

AGi>Gj
=κ, for some κ ∈ [0, 1] for all i �= j. (5)

and within-group pairwise equal accuracy:

AGi>Gi
=κ′, for some κ′ ∈ [0, 1], for all i. (6)

In certain applications, particularly those in which cross-
group comparisons are rare or do not occur, we might want
to constrain only pairwise equal accuracy (6). For example,
we might want a music ranking system to be equally accurate
at ranking jazz as it is at ranking country music, but avoid
trying to constrain cross-group ranking accuracy because we
may not have confidence in cross-group ratings.

Marginal Equal Opportunity

The previous pairwise equal opportunity proposals are de-
fined in terms of the K2 group-dependent pairwise accu-
racies. This may be too fine-grained, either for statistical
significance reasons, or because the fine-grained constraints
might be infeasible. To address this, we propose a looser
marginal pairwise equal opportunity criterion that asks for
parity for each group averaged over the other groups:

AGi>: = κ for some κ ∈ [0, 1], for i = 1, . . . ,K. (7)

Statistical Parity

Our pairwise setup can also be used to define unsupervised
fairness metrics. For any i �= j, we define pairwise statistical
parity as:

P (f(x) > f(x′) | (x, y) ∈ Gi, (x
′, y′) ∈ Gj) = κ. (8)

A pairwise statistical parity constraint requires that if two
candidates are compared from different groups, then on aver-
age each group has an equal chance of being top-ranked. This
constraint completely ignores the training labels, but that may
be useful when groups are so different that any comparison
is too apples-to-oranges to be legitimate, or if raters are not
expert enough to make useful cross-group comparisons.

Regression Pairwise Fairness Metrics

Consider the standard regression setting in which f : X → Y
attempts to predict a regression label for each example. For
most of the following proposed regression fairness metrics,
we treat higher scores as more (or less) desirable, and we
seek to control how often each group gets higher scores. This
asymmetric perspective is applicable if the scores confer a
benefit, such as regression models that estimate credit scores
or admission to college, or if the model scores dictate a
penalty to be avoided, such as getting stopped by police.
This asymmetry assumption that getting higher scores is
either preferred (or not-preferred) is analogous to the binary
classification case where a positive label is assumed to confer
some benefit.
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We again propose defining metrics on pairs of examples.
This is not a ranking problem, so there are no queries—
instead, given a training set of N examples, we compute
pairwise metrics over all N2 pairs. One can sample a random
subset of pairs if N2 is too large.

Regression Equal Opportunity

One can compute and constrain the pairwise equal opportu-
nity metrics as in (4), (5), (6) and (7) for regression models.
For example, restricting (5) constrains the model to be equally
likely for all groups Gi and Gj to assign a higher score to
group i examples over group j examples, if the group i ex-
ample’s label is higher.

Regression Equal Accuracy

Promoting pairwise equal accuracy as in (6) for regression
requires that, for every group, the model should be equally
faithful to the pairwise ranking of any two within-group
examples. This is especially useful if the regression labels of
different groups originate from different communities, and
have different labeling distributions. For example, suppose
that all jazz music examples are rated by jazz lovers who
only give 4-5 star ratings, but all classical music examples
are rated by critics who give a range of 1-5 star ratings, with
5 being rare. Simply minimizing MSE alone might cause
the model training to over-focus on the classical music score
examples, since the classical errors are likely to be larger and
hence affect the MSE more.

Regression Statistical Parity

For regression, the pairwise statistical parity condition de-
scribed in (8) requires, “Given two randomly drawn examples
from two different groups, they are equally likely to have the
higher score.” One sufficient condition to guarantee pairwise
statistical parity is to require the distribution of outputs f(X)
for a random input X to be the same for each of the pro-
tected groups. This condition can be enforced approximately
by histogram matching the output distributions for different
protected groups [e.g. Agarwal, Dudik, and Wu 2019].

Regression Symmetric Equal Accuracy

For regression problems where each group’s goal is to be
accurate (rather than to score high or low), one can define
symmetric pairwise fairness metrics as well, for example, the
symmetric pair accuracy for group as Gi is AGi>: +A:>Gi

,
and one might constrain these accuracies to be the same
across groups.

Continuous Protected Features
Suppose we have a continuous or ordered protected feature
Z; e.g. we may wish to constrain for fairness with respect to
age, income, seniority, etc. The proposed pairwise fairness
notions extend nicely to this setting by constructing the pairs
based on the ordering of the protected feature, rather on
protected group membership. Specifically, we change (1) to
the following continuous attribute pairwise accuracies:

A> := P (f(x) > f(x′) | y > y′, z > z′), (9)

A< := P (f(x) > f(x′) | y > y′, z < z′), (10)

where z is the protected feature value for (x, y) and z′ is
the protected feature value for (x′, y′). For example, if the
protected feature Z measures height, then A> measures the
accuracy of the model when comparing pairs where the can-
didate who is taller should receive a higher score.

The previously proposed pairwise fairness constraints for
discrete groups have analogous definitions in this setting by
replacing (1) with (9). Pairwise equal opportunity becomes

A> = A<. (11)

This requires, for example, that the model be equally accurate
when the taller or shorter candidate should be higher ranked.1

Training for Pairwise Fairness

We show how one can use the pairwise fairness definitions
to specify a training objective, and how to optimize these
objectives. We formulate the training problem for ranking
and cross-group equal opportunity, but the formulation and
algorithms can be applied to any of the pairwise metrics.

Proposed Formulations Let AGi>Gj (f) be defined by (1)
for a ranking model f : X → R. Let AUC(f) be the over-
all pairwise accuracy. Let F be the class of models we are
interested in. We formulate training with fairness goals as a
constrained optimization with an allowed slack ε:

max
f∈F

AUC(f)

s.t. AGi>Gj (f)−AGk>Gl
(f) ≤ ε ∀i �= j, k �= l. (12)

Or one can pose the robust optimization problem:

max
f∈F, ξ

ξ

s.t. ξ ≤ AUC(f), ξ ≤ AGi>Gj
(f) ∀i �= j. (13)

For regression problems, we replace AUC with MSE.

Optimization Algorithms Both the constrained and robust
optimization formulations can be written in terms of rate con-
straints (Goh et al. 2016) on score differences. For example,
we can re-write each pairwise accuracy term as a positive
prediction rate on a subset of pairs:

AGi>Gj
(f) = E

[
If(x)−f(x′)>0

∣
∣ ((x, y), (x′, y′)) ∈ Sij

]
,

where I is the usual indicator function and Sij =
{((x, y), (x′, y′)) | y > y′, (x, y) ∈ Gi, (x

′, y′) ∈ Gj}. This
enables us to adopt algorithms for binary fairness constraints
to solve the optimization problems in (12) and (13).

In fact, all of the objective and constraint functions that we
have considered can be handled out-of-the-box by the proxy-
Lagrangian framework of Cotter, Jiang, and Sridharan; Cot-
ter et al. (2019; 2019). Like other constrained optimization

1Similar to the pairwise ranking metrics, A< is the true negative
rate for pairs (x, y), (x′, y′) where z > z′, and by symmetry, A<

is also equal to the true positive rate for pairs where z < z′:

A< = P (f(x) < f(x′) | y < y′, z > z′)

= P (f(x) > f(x′) | y > y′, z < z′) = TPRz<z′ .

Therefore, (11) equates both the TPR and the TNR for both sets of
pairs, and specifies both equalized odds and equal opportunity.
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approaches (Agarwal et al. 2018; Kearns et al. 2018), this
framework learns a stochastic model that is supported on
a finite set of functions in F . The high-level idea is to set
up a min-max game, where one player minimizes over the
model parameters, and the other player maximizes over a
weighting λ on the constraint functions. Cotter, Jiang, and
Sridharan (2019) use a no-regret optimization strategy for
minimization over the model parameters, and a swap-regret
optimization strategy for maximization over λ, with the in-
dicators I replaced with hinge-based surrogates for the first
player only. They prove that, under certain assumptions, their
optimizers converge to a stochastic model that satisfies the
specified constraints in expectation. In the Appendix, we
present more details about the optimization approach and
re-state their theoretical result for our setting.2

Related Work

We review related work that we build upon in fair classi-
fication, and then related work on the problems addressed
here: fair ranking, fair regression, and handling continuous
protected attributes.

Fair Classification Many statistical fairness metrics for
binary classification can be written in terms of rate con-
straints, that is, constraints on the classifier’s positive (or
negative) prediction rate for different groups (Goh et al. 2016;
Narasimhan 2018; Cotter, Jiang, and Sridharan 2019; Cot-
ter et al. 2019). For example, the goal of demographic par-
ity (Dwork et al. 2012) is to ensure that the classifier’s positive
prediction rate is the same across all protected groups. Simi-
larly, the equal opportunity metric (Hardt, Price, and Srebro
2016) requires that true positive rates should be equal across
all protected groups. Many other statistical fairness metrics
can be expressed in terms of rates, e.g. equal accuracy, no
worse off and no lost benefits (Cotter et al. 2019). Constraints
on these fairness metrics can be added to the training objec-
tive for a binary classifier, then solved using constrained opti-
mization algorithms or relaxations thereof (Zafar et al. 2015;
Goh et al. 2016; Zafar et al. 2017; Donini et al. 2018;
Agarwal et al. 2018; Cotter, Jiang, and Sridharan 2019;
Cotter et al. 2019). Here, we extend this work to train rank-
ing models and regression models with pairwise fairness
constraints.

Fair Ranking A majority of the previous work on fair rank-
ing has focused on list-wise definitions for fairness that de-
pend on the entire list of results for a given query [e.g. Zehlike
et al.; Celis, Straszak, and Vishnoi; Biega, Gummadi, and
Weikum; Singh and Joachims; Zehlike and Castillo; Singh
and Joachims 2017; 2018; 2018; 2018; 2018; 2019]. These
include both unsupervised criteria that require the average
exposure near the top of the ranked list to be equal for dif-
ferent groups [e.g. Singh and Joachims; Celis, Straszak, and
Vishnoi; Zehlike and Castillo 2018; 2018; 2018], and super-
vised criteria that require the average exposure for a group
to be proportional to the average relevance of that group’s
results to the query (Biega, Gummadi, and Weikum 2018;

2The appendix can be found in the full version of the paper:
https://arxiv.org/pdf/1906.05330.pdf

Singh and Joachims 2018; 2019). Of these, some provide
post-processing algorithms for re-ranking a given ranking
(Biega, Gummadi, and Weikum 2018; Celis, Straszak, and
Vishnoi 2018; Singh and Joachims 2018; 2019), while oth-
ers, like us, learn a ranking model from scratch (Zehlike and
Castillo 2018; Singh and Joachims 2019).

Pairwise Fairness Beutel et al. (2019) propose ranking
pairwise fairness definitions equivalent to those we give in
(1), (2) and (3). Their work focuses on ranking and on cate-
gorical protected groups, whereas we generalize these ideas
to capture a wider variety of different statistical fairness no-
tions, and generalize to regression and continuous protected
features.

The training methodology is also very different. Beutel et
al. (2019) propose adding a fixed regularization term to the
training objective that measures the correlation between the
residual between a clicked and unclicked item and the group
memberships of the items. In contrast, we enable explicitly
specifying any desired pairwise fairness constraints, and then
directly enforce the desired pairwise fairness criterion using
constrained optimization. Their approach is parameter-free,
but only because it does not give the user any way to control
the trade-off between fairness vs. accuracy.

Second, Beutel et al. consider only two protected groups,
whereas we enable the user to constrain any number of
groups, with the constrained optimization algorithm automat-
ically determining how much each group must be penalized
in order to satisfy the fairness constraints. A straightforward
extension of the fixed regularization approach of Beutel et
al. to multiple groups would have no hyperparameters to
specify how much to weight each group. One could intro-
duce separate weighting hyperparameters to weight each
group’s penalty, but then they would need to be tuned manu-
ally. The approach we propose does this tuning automatically
to achieve the desired fairness constraints.

Finally, there are major experimental differences to Beutel
et al.: they provide an in-depth case study of one real-world
recommendation problem, whereas we provide a broad set
of experiments on public and real-world data illustrating the
effectiveness on both ranking and regression problems, for
categorical or continuous protected attributes.

Another recent work by Kallus and Zhou (2019) also pro-
vide pairwise fairness metrics based on AUC for bipartite
ranking problems. However, they only consider categorical
groups, whereas we also handle regression problems and con-
tinuous protected attributes. Further, their methodology is a
post-processing approach that fits a monotonic transforma-
tion to an existing ranking model to optimize the specified
metrics. In contrast, we provide a more flexible approach that
enables optimizing the entire model by including the desired
metrics as constrains during training.

Pinned AUC Pinned AUC is a fairness metric introduced
by Dixon et al. (2018). With two protected groups, pinned
AUC works by resampling the data such that each of the
two groups make up 50% of the data, and then calculating
the ROC AUC on the resampled dataset. Based on the well-
known equivalence between ROC AUC and average pairwise
accuracy, Borkan et al. (2019) demonstrate that pinned AUC,
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as well as their proposed weighted pinned AUC metric, can
be decomposed as a linear combination of within-group and
cross-group pairwise accuracies. In other words, both pinned
AUC and weighted pinned AUC can be written as linear
combinations of different pairwise accuracies AGi>Gj

in (1).
In our experiments, we compare against (a version of) the
sampling-based approach of Dixon et al. (2018).

Fair Regression Defining fairness metrics in a regression
setting is a challenging task, and has been studied for many
years in the context of standardized testing [e.g. Hunter and
Schmidt 1976]. Komiyama et al. (2018) consider the unfair-
ness of a regressor in terms of the correlation between the
output and a protected attribute. Pérez-Suay et al. (2017)
regularize to minimize the Hilbert-Schmidt independence
between the protected features and model output. These def-
initions have the “flavor” of statistical parity, in that they
attempt to remove information about the protected feature
from the model’s predictions. Here, we focus more on super-
vised fairness notions.

Berk et al. (2017) propose regularizing linear regression
models for the notion of fairness corresponding to the princi-
ple that similar individuals receive similar outcomes (Dwork
et al. 2012). Their definitions focus on enforcing similar
squared error, which fundamentally differs from our defi-
nitions in that we assume each group would prefer higher
scores, not necessarily more accurate scores.

Agarwal, Dudik, and Wu (2019) propose a bounded group
loss definition which requires that the regression error be
within an allowable limit for each group. In contrast, our
pairwise equal opportunity definitions for regression do not
rely on a specific regression loss, but instead are based on the
ordering induced by the regression model within and across
groups.

Continuous Protected Features Most prior work in ma-
chine learning fairness has assumed categorical protected
groups, in some cases extending those tools to continuous
features by bucketing (Kearns et al. 2018). Fine-grained
buckets raise statistical significance challenges, and coarse-
grained buckets may raise unfairness issues due to how the
lines between bins are drawn, and the lack of distinctions
made between element within each bin. Raff, Sylvester, and
Mills (2018) considered continuous protected features in
their tree-growing criterion that addresses fairness. Kearns
et al. (2018) focused on statistical parity-type constraints for
continuous protected features for classification. Komiyama
et al. (2018) controlled the correlation of the model output
with protected variables (which may be continuous). Mary,
Calauzènes, and Karoui (2019) propose a fairness criterion
for continuous attributes based on the Rényi maximum corre-
lation coefficient. Counterfactual fairness (Kusner et al. 2017;
Pearl, Glymour, and Jewell 2016) requires that changing a
protected attribute, while holding causally unrelated attributes
constant, should not change the model output distribution,
but this does not directly address issues with ranking fairness.

Experiments
We illustrate our proposals on five ranking problems and two
regression problems. We implement the constrained and ro-

bust optimization methods using the open-source Tensorflow
constrained optimization toolbox of (Cotter, Jiang, and Srid-
haran 2019; Cotter et al. 2019). The datasets used are split
randomly into training, validation and test sets in the ratio
1/2:1/4:1/4, with the validation set used to tune the relevant
hyperparameters. For datasets with queries, we evaluate all
metrics for individual queries and report the average across
queries. For stochastic models, we report expectations over
random draws of the scoring function f from the stochastic
model.3

Pairwise Fairness for Ranking

We detail the comparisons and ranking problems.

Comparisons We compare against: (1) an adaptation of
the debiasing scheme of Dixon et al. (2018) that optimizes a
weighted pairwise accuracy, with the weights chosen to bal-
ance the relative label proportions within each group; (2) the
recent non-pairwise ranking fairness approach by Singh and
Joachims (2018) that re-ranks the scores of an unconstrained
ranking model to satisfy a disparate impact constraint; (3)
the post-processing pairwise fairness method of Kallus and
Zhou (2019) that fits a monotone transform to an uncon-
strained model; and (4) the fixed regularization pairwise ap-
proach of Beutel et al. (2019) that like us incorporates the
fairness goal into the model training. See Appendix for more
details.

Simulated Ranking Data For this toy ranking task with
two features, there are 5,000 queries, and each query has
11 candidates. For each query, we uniformly randomly
pick one of the 11 candidates to have a positive label
y = +1 and the other 10 candidates receive a negative
label y = −1, and we randomly assign each candidate’s
protected attribute z i.i.d. from a Bernoulli(0.1) distribu-
tion. Then we generate two features simulated to score how
well the candidate matches the query, from a Gaussian dis-
tribution N (μy,z, Σy,z), where μ−1,0 = [−1, 1], μ−1,1 =
[−2,−1], μ+1,0 = [1, 0], μ+1,1 = [−1.5, 0.75], Σ−1,0 =
Σ−1,1 = Σ+1,0 = I2 and Σ+1,1 = 0.5 I2.

We train linear ranking functions f : R2 → R and im-
pose a cross-group equal opportunity with constrained op-
timization by constraining |A0>1 − A1>0| ≤ 0.01. For the
robust optimization, we implement this goal by maximizing
min{A0>1, A1>0, AUC}. We also train an unconstrained
model that optimizes AUC. Table 1 gives the test ranking ac-
curacy, and the test pairwise fairness violations, measured as
|A0>1 −A1>0|. Only constrained optimization achieves the
fairness goal, with robust optimization coming a close second.
Figure 1(a)–(b) shows the 2× 2 pairwise accuracy matrices.
Constrained optimization satisfies the fairness constraint by
lowering A0>1 and improving A1>0.

We also generate a second dataset with 3 groups, where
the first two groups follow the same distribution as groups
0 and 1 above, and the third group examples are drawn
from a Gaussian distribution N (μy,2, Σy,2) where μ−1,2 =
[−1, 1], μ+1,2 = [1.5, 0.5], and Σ−1,2 = Σ+1,2 = I2. We

3Code available at: https://github.com/google-research/
google-research/tree/master/pairwise fairness
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Figure 1: Test pairwise accuracy matrices for Simulated ranking with 2 groups (a)–(b), row-based matrix averages A0>:, A1>:

and A2>: for Simulated ranking with 3 groups (c)–(d), and pairwise accuracy matrices for Wiki Talk Pages ranking (e)–(g).

Table 1: Test AUC (higher is better) with test pairwise fairness violations (in parentheses). For fairness violations, we report
|AG0>G1

−AG1>G0
| when imposing cross-group constraints, |AG0>: −AG1>:| for marginal constraints, and |A> −A<| for

continuous protected attributes. Italicized text indicates strictly best between (Beutel et al. 2019) and constrained optimization.

Data Groups Uncons. Debiased S & J K & Z B et al. Constr. Robust

Sim. 0/1 0.92 (0.28) 0.92 (0.28) 0.88 (0.14) 0.91 (0.12) 0.84 (0.04) 0.86 (0.01) 0.86 (0.02)
Busns. C/NC 0.70 (0.06) 0.70 (0.06) – 0.66 (0.00) 0.69 (0.05) 0.68 (0.00) 0.68 (0.07)
Wiki Term ‘Gay’ 0.97 (0.10) 0.97 (0.01) – 0.97 (0.04) 0.95 (0.01) 0.96 (0.01) 0.94 (0.02)
W3C Gender 0.53 (0.96) 0.54 (0.90) 0.37 (0.85) 0.45 (0.65) 0.55 (0.09) 0.54 (0.10) 0.54 (0.14)
Crime Race % 0.93 (0.18) – – – 0.91 (0.10) 0.81 (0.04) 0.86 (0.04)

use the same number of queries and candidates as above,
and assign the protected attribute z to 0, 1, or 2 with prob-
abilities 0.45, 0.1, and 0.45 respectively. We impose the
marginal equal opportunity fairness goal on this dataset
in two different ways: (i) constraining maxi �=j |Ai>: −
Aj>:| ≤ 0.01 with constrained optimization, and (ii) opti-
mizing min{AUC,A0>:, A1>:, A2>:} with robust optimiza-
tion. We show each group’s row-marginal test accuracies in
Figure 1(c)–(d). While robust optimization maximizes the
minimum of the three marginals, constrained optimization
yields a lower difference between the marginals (and does so
at the cost of lower accuracies for the three groups). This is
consistent with the two optimization problem set-ups: you
get what you ask for.

We provide further results and an additional experiment
with an in-group equal opportunity criterion in the appendix.

Business Matching This is a proprietary dataset from a
large internet services company of ranked pairs of relevant
and irrelevant businesses for different queries, for a total
of 17,069 pairs. How well a query matches a candidate is
represented by 41 features. We consider two protected groups,
chain (C) businesses and not chain (NC) businesses. We
define a candidate as a member of the chain group if its
query is seeking a chain business and the candidate is a chain
business. We define a candidate as a member of the non-
chain group if its query is not seeking a chain business and
the candidate is a non-chain business. A candidate does not
belong to either group if it is chain and the query is non-
chain-seeking, or vice-versa.

We experiment with imposing a marginal equal opportu-
nity constraint: |Achain>: −Anon−chain>:| ≤ 0.01. This re-
quires the model to be roughly as accurate at correctly match-

ing chains as it at matching non-chains. With robust optimiza-
tion, we maximize min{Achain>:, Anon−chain>:, AUC}.
All methods trained a two-layer neural network model with
10 hidden nodes. As seen in Table 1, compared to the un-
constrained approach, constrained optimization yields very
low fairness violation, while only being marginally worse on
the test AUC. The post-processing approach of (Kallus and
Zhou 2019) also achieves a similar fairness metric, but with
a lower AUC. (Singh and Joachims 2018) failed to produce
feasible solutions for this dataset, we believe because there
were very few pairs per query.

Wiki Talk Page Comments This public dataset contains
127,820 comments from Wikipedia Talk Pages labeled with
whether or not they are toxic (i.e. contain “rude, disrespect-
ful or unreasonable” content (Dixon et al. 2018)). This is a
dataset where debiased weighting has been effective in learn-
ing fair, unbiased classification models (Dixon et al. 2018).
We consider the task of learning a ranking function that ranks
comments that are labeled toxic higher than the comments
that are labeled non-toxic, in order to help the model’s users
identify toxic comments. We consider the protected attribute
defined by whether the term ‘gay’ appears in the comment.
This is one of the many identity terms that Dixon et al. (2018)
consider in their work. Among comments that have the term
‘gay’, 55% are labeled toxic, whereas among comments that
do not have the term ‘gay’, only 9% are labeled toxic. We
learn a convolutional neural network model with the same
architecture used in Dixon et al. (2018).

We consider a cross-group equal opportunity crite-
rion. We impose |AOther>Gay − AGay>Other| ≤ 0.01
with constrained optimization and maximize
min{AOther>Gay, AGay>Other, AUC} with robust
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Dataset Prot. Group Unconstrained Beutel et al. Constrained

Law Gender 0.142 (0.30) 0.167 (0.06) 0.143 (0.02)
Crime Race % 0.021 (0.33) 0.033 (0.02) 0.028 (0.03)

Low

H
ig

h Male Female

Male 0.652 0.647
Female 0.666 0.655

Table 2: Left: Regression test MSE (lower is better) and pairwise fairness violation (in parenthesis), with italicized values
indicating strictly best between last two columns. Right: Test pairwise accuracy matrix for constrained optimization on Law
School dataset.

optimization. The results are shown in Table 1 and Fig-
ure 1(e)-(g). Among the cross-group errors, the unconstrained
model is more likely to incorrectly rank a non-toxic comment
with the term ‘gay’ over a toxic comment without the term.
By balancing the label proportions, debiased weighting
reduces the fairness violation considerably. Constrained
optimization yields even lower fairness violation (0.010 vs.
0.014), but at the cost of a slightly lower test AUC. (Singh
and Joachims 2018) could not be applied to this dataset as it
did not have the required query-candidate structure.

W3C Experts Search We also evaluate our methods on
the W3C Experts dataset, previously used to study disparate
exposure in ranking (Zehlike and Castillo 2018). This is a
subset of the TREC 2005 enterprise track data, and consists
of 48 topics and 200 candidates per topic, with each candidate
labeled as an expert or non-expert for the topic. The task is to
rank the candidates based on their expertise on a topic, using a
corpus of mailing lists from the World Wide Web Consortium
(W3C). This is an application where the unconstrained algo-
rithm does better for the minority protected group. We use
the same features as Zehlike and Castillo (2018) to represent
how well each topic matches each candidate; this includes a
set of five aggregate features derived from word counts and
tf-idf scores, and the gender protected attribute.

For this task, we learn a linear model and impose a
cross-group equal opportunity constraint: |AFemale>Male −
AMale>Female| ≤ 0.01. For robust optimization, we maxi-
mize min{AFemale>Male, AMale>Female, AUC}. As seen
in Table 1, the unconstrained ranking model incurs a huge
fairness violation. This is because the unconstrained model
treats gender as a strong signal of expertise, and often ranks
female candidates over male candidates. Not only do the
constrained and robust optimization methods achieve signifi-
cantly lower fairness violations, they also happen to produce
higher test metrics due to the constraints acting as regulariz-
ers and reducing overfitting. On this task, (Beutel et al. 2019)
achieves the lowest fairness violation and the highest AUC.

The method of (Singh and Joachims 2018) performs poorly
because the LP that it solves per query turns out to be infeasi-
ble for most queries in this dataset. Thus, to run this baseline,
we extended their approach to have a per-query slack in their
disparate impact constraints. This required a large slack for
some queries, hurting the overall performance.

Communities and Crime (Continuous Groups) We next
handle a continuous protected attribute in a ranking problem.
We use the Communities and Crime dataset from UCI (Dua
and Graff 2017) which contains 1,994 communities in the
United States described by 140 features, and the per capita

crime rate for each community. As in prior work (Cotter,
Jiang, and Sridharan 2019), we label the communities with
a crime rate above the 70th percentile as ‘high crime’ and
the others as ‘low crime’, and consider the task of learn-
ing a ranking function that ranks high crime communities
above the low crime communities. We treat the percentage of
black population in a community as a continuous protected
attribute.

We learn a linear ranking function, with the protected at-
tribute included as a feature. We do not compare to debiasing,
and the methods of (Singh and Joachims 2018) and (Kallus
and Zhou 2019), as they do not apply to continuous protected
attributes. Adopting the continuous attribute equal opportu-
nity criterion, we impose the constraint |A< −A>| ≤ 0.01.
We extend (Beutel et al. 2019) to optimize this pairwise met-
ric. Table 1 shows the constrained and robust optimization
methods reduce the fairness violation by more than half, at
the cost of a lower test AUC.

Pairwise Fairness for Regression

We next present experiments on two regression problems.
We extend the set-up of Beutel et al. (2019) to also handle

our proposed regression pairwise metrics, and compare to
that. We do not use robust optimization as the squared error
is not necessarily comparable with the regression pairwise
metrics. The results are shown in Table 2.

Law School: This dataset (Wightman 1998) contains de-
tails of 27,234 law school students, and we predict the under-
graduate GPA for a student from the student’s LSAT score,
family income, full-time status, race, gender and the law
school cluster the student belongs to, with gender as the pro-
tected attribute. We impose a cross-group equal opportunity
constraint: |AFemale>Male − AMale>Female| ≤ 0.01. The
constrained optimization approach successfully massively
reduces the fairness violation compared to the unconstrained
MSE-optimizing model, at only a small increase in MSE. It
also performs strictly better than Beutel et al. (2019).

Communities and Crime: This dataset has continuous la-
bels for the per capita crime rate for a community. Once again,
we treat the percentage of black population in a community
as a continuous protected attribute and impose a continuous
attribute equal opportunity constraint: |A> − A<| ≤ 0.01.
The constrained approach yields a huge reduction in fairness
violation, though at the cost of an increase in MSE.

Conclusions

We showed that pairwise fairness metrics can be intuitively
defined to handle supervised and unsupervised notions of
fairness, for ranking and regression, and for discrete and
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continuous protected attributes. We also showed how pair-
wise fairness metrics can be incorporated into training using
state-of-the-art constrained optimization solvers.

Experimentally, the different methods compared often pro-
duced different trade-offs between AUC (or MSE) and fair-
ness, making it hard to judge one as strictly better than others.
However, we showed that the proposed constrained optimiza-
tion approach is the most flexible and direct of the strategies
considered, and is very effective for achieving low pairwise
fairness violations. The closest competitor to our proposals
is the approach of Beutel et al. (2019), but out of the 4 cases
in which one of these two methods strictly performed better
(indicated in blue), ours was the best in 3 of the 4. Lastly,
Kallus and Zhou (2019), being a post-processing method, is
more restricted, and did not perform as well as the proposed
approach that directly trains a model from scratch.

The key way one specifies pairwise fairness metrics is by
the selection of which pairs to consider. Here, we focused
on within-group and cross-group candidates. One could also
bring in side information or condition on other features. For
example, in the ranking setting, we might have side infor-
mation about the presentation order that candidates for each
query were shown to users when labeled, and this position
information could be used to either select or weight candidate
pairs. In the regression setting, we could assign weights to
example pairs based on their label differences.
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