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Abstract

In contrast to conventional (single-label) classification, the
setting of multilabel classification (MLC) allows an instance
to belong to several classes simultaneously. Thus, instead of
selecting a single class label, predictions take the form of a
subset of all labels. In this paper, we study an extension of
the setting of MLC, in which the learner is allowed to par-
tially abstain from a prediction, that is, to deliver predictions
on some but not necessarily all class labels. We propose a
formalization of MLC with abstention in terms of a general-
ized loss minimization problem and present first results for
the case of the Hamming loss, rank loss, and F-measure, both
theoretical and experimental.

1 Introduction

In statistics and machine learning, classification with ab-
stention, also known as classification with a reject op-
tion, is an extension of the standard setting of classifica-
tion, in which the learner is allowed to refuse a prediction
for a given query instance; research on this setting dates
back to early work by Chow (1970) and Hellman (1970)
and remains to be an important topic till today, most no-
tably for binary classification (Bartlett and Wegkamp 2008;
Cortes, DeSalvo, and Mohri 2016; Franc and Prusa 2019;
Grandvalet et al. 2008). For the learner, the main reason
to abstain is a lack of certainty about the corresponding
outcome—refusing or at least deferring a decision might
then be better than taking a high risk of a wrong decision.

Nowadays, there are many machine learning problems in
which complex, structured predictions are sought (instead
of scalar values, like in classification and regression). For
such problems, the idea of abstaining from a prediction can
be generalized toward partial abstention: Instead of predict-
ing the entire structure, the learner predicts only parts of it,
namely those for which it is certain enough. This idea has al-
ready been realized, e.g., for the case where predictions are
rankings (Cheng et al. 2010; 2012).

Another important example is multilabel classification
(MLC), in which an outcome associated with an instance is
a labeling in the form of a subset of an underlying reference
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set of class labels (Dembczyński et al. 2012; Tsoumakas,
Katakis, and Vlahavas 2009; Zhang and Zhou 2014). In this
paper, we study an extension of the setting of MLC, in which
the learner is allowed to partially abstain from a prediction,
that is, to deliver predictions on some but not necessarily all
class labels (or, more generally, to refuse committing to a
single complete prediction). Although MLC has been stud-
ied extensively in the machine learning literature in the re-
cent past, there is surprisingly little work on MLC with ab-
stention so far—a notable exception is (Pillai, Fumera, and
Roli 2013), to which we will return in the Section 7.

Prediction with abstention is typically realized as a two-
stage approach. First, the learner delivers a prediction that
provides information about its uncertainty. Then, taking this
uncertainty into account, a decision is made about whether
or not to predict, or on which parts. In binary classification,
for example, a typical approach is to produce probabilistic
predictions and to abstain whenever the probability is close
to 1/2. We adopt a similar approach, in which we rely on pro-
babilistic MLC, i.e., probabilistic predictions of labelings.

In the next section, we briefly recall the setting of mul-
tilabel classification. The generalization toward MLC with
(partial) abstention is then introduced and formalized in Sec-
tion 3. Instantiations of the setting of MLC with abstention
for the specific cases of the Hamming loss, rank loss, and
F-measure are studied in Sections 4–6, respectively. Related
work is discussed in Section 7. Finally, experimental results
are presented in Section 8, prior to concluding the paper in
Section 9. All formal results in this paper (propositions, re-
marks, corollaries) are stated without proofs, which are de-
ferred to the supplementary material.

2 Multilabel Classification

In this section, we describe the MLC problem in more de-
tail and formalize it within a probabilistic setting. Along the
way, we introduce the notation used throughout the paper.

Let X denote an instance space, and let L={λ1, . . . , λm}
be a finite set of class labels. We assume that an instance
x ∈ X is (probabilistically) associated with a subset of la-
bels Λ = Λ(x) ∈ 2L; this subset is often called the set of
relevant labels, while the complement L\Λ is considered as
irrelevant for x. We identify a set Λ of relevant labels with a
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binary vector y = (y1, . . . , ym), where yi = �λi ∈ Λ�.1 By
Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be realizations of random vari-
ables generated independently and identically (i.i.d.) accord-
ing to a probability distribution p on X × Y , i.e., an ob-
servation y = (y1, . . . , ym) is the realization of a corre-
sponding random vector Y = (Y1, . . . , Ym). We denote by
p(Y |x) the conditional distribution of Y given X = x, and
by pi(Yi |x) the corresponding marginal distribution of Yi:

pi(b |x) =
∑

y∈Y:yi=b

p(y |x) . (1)

A multilabel classifier h is a mapping X −→ Y that assigns
a (predicted) label subset to each instance x ∈ X . Thus, the
output of a classifier h is a vector

ŷ = h(x) = (h1(x), . . . , hm(x)) .

Given training data in the form of a finite set of observa-
tions (x,y) ∈ X ×Y , drawn independently from Pr(X,Y),
the goal in MLC is to learn a classifier h : X −→ Y that
generalizes well beyond these observations in the sense of
minimizing the expected risk with respect to a specific loss
function.

In the literature, various MLC loss functions have been
proposed, including the Hamming loss, the subset 0/1 loss,
the F-measure, the Jaccard measure, and the rank loss. The
Hamming loss is given by

�H(y, ŷ) =

m∑
i=1

�yi �= ŷi� , (2)

and the subset 0/1 loss by �S(y, ŷ) = �y �= ŷ�. Thus, both
losses generalize the standard 0/1 loss commonly used in
classification, but in a very different way. Hamming and
subset 0/1 are prototypical examples of what is called a
(label-wise) decomposable and non-decomposable loss, re-
spectively (Dembczyński et al. 2012). A decomposable loss
can be expressed in the form

�(y, ŷ) =
m∑
i=1

�i(yi, ŷi) (3)

with suitable binary loss functions �i : {0, 1}2 −→ R,
whereas a non-decomposable loss does not permit such a
representation. It can be shown that, to produce optimal pre-
dictions ŷ = h(x) minimizing expected loss, knowledge
about the marginals pi(Yi |x) is enough in the case of a de-
composable loss, but not in the case of a non-decomposable
loss (Dembczyński et al. 2012). Instead, if a loss is non-
decomposable, high-order probabilities are needed, and in
the extreme case even the entire distribution p(Y |x) (like
in the case of the subset 0/1 loss). On an algorithmic level,
this means that MLC with a decomposable loss can be tack-
led by what is commonly called binary relevance (BR) learn-
ing (i.e., learning one binary classifier for each label indi-
vidually), whereas non-decomposable losses call for more
sophisticated learning methods that are able to take label-
dependencies into account.

1�·� is the indicator function, i.e., �A� = 1 if the predicate A is
true and = 0 otherwise.

3 MLC with Abstention

In our generalized setting of MLC with abstention, which is
introduced in this section, the classifier is allowed to produce
partial predictions

ŷ = h(x) ∈ Ypa
..= {0,⊥, 1}m , (4)

where ŷi = ⊥ indicates an abstention on the label λi; we
denote by A(ŷ) ⊆ [m] ..= {1, . . . ,m} and D(ŷ) ..= [m] \
A(ŷ) the set of indices i for which ŷi = ⊥ and ŷi ∈ {0, 1},
respectively, that is, the indices on which the learner abstains
and decides to predict.

3.1 Risk Minimization

To evaluate a reliable multilabel classifier, a generalized loss
function

L : Y × Ypa −→ R+ (5)

is needed, which compares a partial prediction ŷ with a
ground-truth labeling y. Given such a loss, and assuming
a probabilistic prediction for a query instance x, i.e., a prob-
ability p(· |x) on the set of labelings (or at least an estima-
tion thereof), the problem of risk minimization comes down
to finding

ŷ ∈ argmin
ŷ∈Ypa

E
(
L(y, ŷ)

)
(6)

= argmin
ŷ∈Ypa

∑
y∈Y

L(y, ŷ) · p(y |x) .

The concrete form of this optimization problem as well as
its difficulty depend on several choices, including the under-
lying MLC loss function � and its extension L.

3.2 Generalized Loss Functions

On the basis of a standard MLC loss �, a generalized loss
function (5) can be derived in different ways, also depend-
ing on how to penalize the abstention. Further below, we
propose a generalization based on an additive penalty. Be-
fore doing so, we discuss some general properties that might
be of interest for generalized losses.

As a first property, we should expect a generalized loss
L to reduce to its conventional version � in the case of no
abstention. In other words,

L(y, ŷ) = �(y, ŷ) ,

whenever ŷ is a precise prediction ŷ ∈ Y . Needless to say,
this is a property that every generalized loss should obey.

Monotonicity. Another reasonable property is monotonic-
ity: The loss should only increase (or at least not decrease)
when (i) turning a correct prediction on a label λi into an ab-
stention or an incorrect prediction, (ii) or turning an absten-
tion into an incorrect prediction. This reflects the following
chain of preferences: a correct prediction is better than an
abstention, which in turn is better than an incorrect predic-
tion. More formally, for a ground-truth labeling y and a par-
tial prediction ŷ1, let C1, A1 ⊆ L denote the subset of labels
on which the prediction is correct and on which the learner
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abstains, respectively, and define C2, A2 ⊆ L analogously
for a prediction ŷ2. Then

(C2 ⊆ C1) ∧
(
(C2 ∪A2) ⊆ (C1 ∪A1)

)
(7)

⇒ L(y, ŷ1) ≤ L(y, ŷ2) .

Uncertainty-alignment. Intuitively, when producing a
partial prediction, an optimal prediction rule is supposed to
abstain on the most uncertain labels. More formally, con-
sider a generalized loss function L and a prediction ŷ which,
for a query x ∈ X , is a risk-minimizer (6). Moreover, denot-
ing by pi = pi(1 |x) the (marginal) probability that label λi

is relevant for x, it is natural to quantify the degree of uncer-
tainty on this label in terms of

ui = 1− 2|pi − 1/2| = 2min(pi, 1− pi) , (8)

or any other function symmetric around 1/2. We say that ŷ is
uncertainty-aligned if

∀ yi ∈ A(ŷ), yj ∈ D(ŷ) : ui ≥ uj .

Thus, a prediction is uncertainty-aligned if the following
holds: Whenever the learner decides to abstain on label λi

and to predict on label λj , the uncertainty on λj cannot
exceed the uncertainty on λi. We then call a loss function
L uncertainty-aligned if it guarantees the existence of an
uncertainty-aligned risk-minimizer, regardless of the prob-
ability p = p(· |x).
Additive Penalty for Abstention Consider the case of a
partial prediction ŷ and denote by ŷD and ŷA the projec-
tions of ŷ to the entries in D(ŷ) and A(ŷ), respectively. As
a natural extension of the original loss �, we propose a gen-
eralized loss of the form

L(y, ŷ) = �(yD, ŷD) + f(A(ŷ)) , (9)

with �(yD, ŷD) the original loss on that part on which the
learner predicts and f(A(ŷ)) a penalty for abstaining on
A(ŷ). The latter can be seen as a measure of the loss of
usefulness of the prediction ŷ due to its partiality, i.e., due
to having no predictions on A(ŷ).

An important instantiation of (9) is the case where the
penalty is a counting measure, i.e., where f only depends
on the number of abstentions:

L(y, ŷ) = �(yD, ŷD) + f
(
|A(ŷ)|

)
. (10)

A special case of (10) is to penalize each abstention ŷi = ⊥
with the same constant c ∈ [0, 1], which yields

L(y, ŷ) = �(yD, ŷD) + |A(ŷ)| · c . (11)

Of course, instead of a linear function f , more general
penalty functions are conceivable. For example, a practically
relevant penalty is a concave function of the number of ab-
stentions: Each additional abstention causes a cost, so f is
monotone increasing in |A(ŷ)|, but the marginal cost of ab-
stention is decreasing.
Proposition 1. Let the loss � be decomposable in the sense
of (3), and let ŷ be a risk-minimizing prediction (for a query

instance x). The minimization of the expected loss (10) is
then accomplished by

ŷ = argmin
1≤d≤m

E (�(y, ŷd)) + f(m− d) , (12)

where the prediction ŷd is specified by the index set

Dd(ŷd)
..= {π(1), . . . , π(d)} , (13)

and the permutation π sorts the labels in increasing order of
the label-wise expected losses

si = min
ŷi∈{0,1}

E(�i(yi, ŷi)) ,

i.e., sπ(1) ≤ · · · ≤ sπ(m).

As shown by the previous proposition, a risk-minimizing
prediction for a decomposable loss can easily be found in
time O(m log(m)), simply by sorting the labels according
to their contribution to the expected loss, and then finding
the optimal size d of the prediction according to (12).

4 The Case of Hamming Loss

This section presents first results for the case of the Ham-
ming loss function (2). In particular, we analyze extensions
of the Hamming loss according to (10) and address the cor-
responding problem of risk minimization.

Given a query instance x, assume conditional probabil-
ities pi = p(yi = 1 |x) are given or made available by an
MLC predictor h. In the case of Hamming, the expected loss
of a prediction ŷ is then given by

E (�H(y, ŷ)) =
∑

i:ŷi=1

1− pi +
∑

i:ŷi=0

pi

and minimized by ŷ such that ŷi = 0 if pi ≤ 1/2 and ŷi = 1
otherwise.

In the setting of abstention, we call a prediction ŷ a d-
prediction if |D(ŷ)| = d. Let π be a permutation of [m]
that sorts labels according to the uncertainty degrees (8), i.e.,
such that uπ(1) ≤ uπ(2) ≤ · · · ≤ uπ(m). As a consequence
of Proposition 1, we obtain the following result.

Corollary 1. In the case of Hamming loss, let ŷ be a risk-
minimizing prediction (for a query instance x). The mini-
mization of the expected loss (10) is then accomplished by

ŷ = argmin
1≤d≤m

E (�H(y, ŷd)) + f(m− d) , (14)

where the prediction ŷd is specified by the index set

Dd(ŷd) = {π(1), . . . , π(d)} . (15)

Corollary 2. The extension (10) of the Hamming loss is
uncertainty-aligned. In the case of the extension (11) of the
Hamming loss, the optimal prediction is given by (15) with

d = |{i ∈ [m] | min (pi, 1− pi) ≤ c}| .

Remark 1. The extension (10) of the Hamming loss is
monotonic, provided f is non-decreasing and such that
f(k + 1)− f(k) ≤ 1 for all k ∈ [m− 1].
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5 The Case of Rank Loss

In the case of the rank loss, we assume predictions in the
form of rankings instead of labelings. Ignoring the possibil-
ity of ties, such a ranking can be represented in the form of
a permutation π of [m], where π(i) is the index j of the la-
bel λj on position i (and π−1(j) the position of label λj).
The rank loss then counts the number of incorrectly ordered
label-pairs, that is, the number of pairs λi, λj such that λi

is ranked worse than λj although λi is relevant while λj is
irrelevant:

�R(y, π) =
∑

(i,j):yi>yj

�
π−1(i) > π−1(j)

�
,

or equivalently,

�R(y, π) =
∑

1≤i<j≤m

�yπ(i) = 0 ∧ yπ(j) = 1� . (16)

Thus, given that the ground-truth labeling is distributed ac-
cording to the probability p(· |x), the expected loss of a
ranking π is

E(π) ..= E (�R(y, π)) =
∑

1≤i<j≤m

pπ(i),π(j)(0, 1 |x) ,

(17)

where pu,v is the pairwise marginal

pu,v(a, b |x) =
∑

y∈Y:yu=a,yv=b

p(y |x) . (18)

In the following, we first recall the risk-minimizer for the
rank loss as introduced above and then generalize it to the
case of partial predictions. To simplify notation, we omit
the dependence of probabilities on x (for example, we write
pu,v(a, b) instead of pu,v(a, b |x)), and write (i) as indices
of permuted labels instead of π(i). We also use the follow-
ing notation: For a labeling y, let r(y) =

∑m
i=1 yi be the

number of relevant labels, and c(y) = r(y)(m − r(y)) the
number of relevant/irrelevant label pairs (and hence an upper
bound on the rank loss).

A risk-minimizing ranking π, i.e., a ranking minimizing
(17), is provably obtained by sorting the labels λi in decreas-
ing order of the probabilities pi = pi(1 |x), i.e., according
to their probability of being relevant (Dembczyński et al.
2012). Thus, an optimal prediction π is such that

p(1) ≥ p(2) ≥ · · · ≥ p(m) . (19)

To show this result, let π̄ denote the reversal of π, i.e., the
ranking that reverses the order of the labels. Then, for each
pair (i, j) such that yi > yj , either π or π̄ incurs an error,
but not both. Therefore, �R(y, π) + �R(y, π̄) = c(y), and

�R(y, π)− �R(y, π̄) = 2�R(y, π)− c(y) . (20)

Since c(y) is a constant that does not depend on π, minimiz-
ing �R(y, π) (in expectation) is equivalent to minimizing the

difference �R(y, π) − �R(y, π̄). For the latter, the expecta-
tion (17) becomes

E′(π) =
∑

1≤i<j≤m

p(i),(j)(0, 1)− p(i),(j)(1, 0) (21)

=
∑

1≤i<j≤m

p(j) − p(i)

=
∑

1≤i≤m

(2i− (m+ 1))p(i) ,

where the transition from the first to the second sum is valid
because (Dembczyński, Cheng, and Hüllermeier 2010)

pu,v(0, 1)− pu,v(1, 0)

= pu,v(0, 1) + pu,v(1, 1)− pu,v(1, 1)− pu,v(1, 0)

= pv(1)− pu(1) = pv − pu .

From (21), it is clear that a risk-minimizing ranking π is
defined by (19).

To generalize this result, let us look at the rank loss of a
partial prediction of size d ∈ [m], i.e., a ranking of a subset
of d labels. To simplify notation, we identify such a predic-
tion, not with the original set of indices of the labels, but
the positions of the corresponding labels in the sorting (19).
Thus, a partial prediction of size d is identified by a set of
indices K = {k1, . . . , kd} such that k1 < k2 < · · · < kd,
where k ∈ K means that the label λ(k) with the kth largest
probability p(k) in (19) is included. According to the above
result, the optimal ranking πK on these labels is the identity,
and the expected loss of this ranking is given by

E(πK) =
∑

1≤i<j≤d

p(ki),(kj)(0, 1) . (22)

Lemma 1. Assuming (conditional) independence of label
probabilities in the sense that pi,j(yi, yj) = pi(yi)pj(yj),
the generalized loss (10) is minimized in expectation by a
partial prediction with decision set of the form

Kd = 〈〈a, b〉〉 ..= {1, . . . , a} ∪ {b, . . . ,m} , (23)
with 1 ≤ a < b ≤ m and m+ a− b+ 1 = d.

According to the previous lemma, an optimal d-selection
Kd leading to an optimal (partial) ranking of length d is al-
ways a “boundary set” of positions in the ranking (19). The
next lemma establishes an important relationship between
optimal selections of increasing length.
Lemma 2. Let Kd = 〈〈a, b〉〉 be an optimal d-selection (23)
for d ≥ 2. At least one of the extensions 〈〈a+1, b〉〉 or 〈〈a, b−
1〉〉 of Kd is an optimal (d+ 1)-selection.

Thanks to the previous lemma, a risk-minimizing par-
tial ranking can be constructed quite easily (in time
O(m log(m)). First, the labels are sorted according to (19).
Then, an optimal decision set is produced by starting with
the boundary set 〈〈1,m〉〉 and increasing this set in a greedy
manner ( a concrete algorithm is given in the supplementary
material).
Proposition 2. Given a query instance x, assume condi-
tional probabilities p(yi = 1 |x) = hi(x) are made avail-
able by an MLC predictor h. A risk-minimizing partial rank-
ing can be constructed in time O(m log(m)).
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Remark 2. The extension (10) of the rank loss is not
uncertainty-aligned.

Since a prediction is a (partial) ranking instead of a (par-
tial) labeling, the property of monotonicity as defined in Sec-
tion 3.2 does not apply in the case of rank loss. Although
it would be possible to generalize this property, for exam-
ple by looking at (in)correctly sorted label pairs instead of
(in)correct labels, we refrain from a closer analysis here.

6 The Case of F-measure

The F-measure is the harmonic mean of precision and recall
and can be expressed as follows:

F (y, ŷ) ..=
2
∑m

i=1 yiŷi∑m
i=1(yi + ŷi)

. (24)

The problem of finding the expected F-maximizer

ŷ = argmax
ŷ∈Y

E (F (y, ŷ)) (25)

= argmax
ŷ∈Y

∑
y∈Y

F (y, ŷ) · p(y |x)

has been studied quite extensively in the literature (Chai
2005; Dembczyński et al. 2011; Decubber et al. 2018;
Jansche 2007; Lewis 1995; Quevedo, Luaces, and Baha-
monde 2012; Waegeman et al. 2014; Ye et al. 2012). Ob-
viously, the optimization problem (25) can be decomposed
into an inner and an outer maximization as follows:

ŷk ..= arg max
ŷ∈Yk

E (F (y, ŷ)) , (26)

ŷ ..= arg max
k∈{0,...,m}

E
(
F (y, ŷk)

)
, (27)

where Yk
..= {ŷ ∈ Y|

∑m
i=1 ŷi = k} denotes the set of all

predictions with exactly k positive labels.
Lewis (1995) showed that, under the assumption of con-

ditional independence, the F-maximizer has always a spe-
cific form: it predicts the k labels with the highest marginal
probabilities pi as relevant, and the other m − k labels as
irrelevant. More specifically, for any number k = 0, . . . ,m,
the solution of the optimization problem (26), namely a k-
optimal solution ŷk, is obtained by setting ŷi = 1 for the k
labels with the highest marginal probabilities pi, and ŷi = 0
for the remaining ones. Thus, the F-maximizer (27) can be
found as follows:

• The labels λi are sorted in decreasing order of their (pre-
dicted) probabilities pi.

• For every k ∈ {0, . . . ,m}, the optimal prediction ŷk is
defined as described above.

• For each of these ŷk, the expected F-measure is com-
puted.

• As an F-measure maximizer ŷ, the k-optimal prediction
ŷk with the highest expected F-measure is adopted.

Overall, the computation of ŷ can be done in time O(m2)
(Decubber et al. 2018; Ye et al. 2012).

To define the generalization of the F-measure, we first turn
it into the loss function �F (y, ŷ) ..= 1 − F (y, ŷ). The gen-
eralized loss is then given by

LF (y, ŷ) ..= 1− F (yD, ŷD) + f(|A(ŷ)|).
Minimizing the expectation of this loss is obviously equiv-
alent to maximizing the following generalized F-measure in
expectation:

FG(y, ŷ) ..=

{
1− f(a) if a = m,
2
∑

i∈D(ŷ) yiŷi
∑

i∈D(ŷ)(yi+ŷi)
− f(a) otherwise,

(28)

where a ..= |A(ŷ)|.
Remark 3. If f in (28) is a strictly increasing function, then
- turning an incorrect prediction or an abstention on a label
λi into a correct prediction increases the generalized F-
measure, whereas

- turning an incorrect prediction into an abstention may de-
crease the measure.

Therefore, the generalized F-measure (28) is not monotonic.
The F-maximizer ŷ of the generalized F-measure (28) is

given by
ŷ = arg max

ŷ∈Ypa

E (FG(y, ŷ)) (29)

= arg max
ŷ∈Ypa

∑
y∈Y

F (yD, ŷD) · p(y |x)− f(a) .

In the following, we show that the F-maximizer of the
generalized F-measure (28) can be found in the time O(m3).
For any k = 0, . . . ,m, denote by

Yk
pa

..=

⎧⎨
⎩ŷ ∈ Ypa

∣∣∣ ∑
i∈D(ŷ)

ŷi = k

⎫⎬
⎭ . (30)

The optimization problem (29) is decomposed into an inner
and an outer maximization as follows:

ŷk ..= arg max
ŷ∈Yk

pa

E (FG(y, ŷ)) , (31)

ŷ ..= arg max
ŷ∈{ŷk|k=0,...,m}

E
(
FG(y, ŷ

k)
)
. (32)

Lemma 3. For any partial prediction ŷ ∈ Ypa and any
index j ∈ D(ŷ),
- E (FG(yD, ŷD)) is an increasing function of pj if ŷj = 1;
- E (FG(yD, ŷD)) is a decreasing function of pj if ŷj = 0.
Lemma 4. Let π be the permutation that sorts the labels in
decreasing order of the marginal probability pi(yi |x) de-
fined in (19). Assuming (conditional) independence of label
probabilities in the sense that

p(y|x) =
m∏
i=1

pyi

i (1− pi)
1−yi , (33)

the generalized F-measure (28) is maximized in expectation
by an optimal k-prediction ŷk with decision set of the form

D(ŷk) = 〈〈k, l〉〉 ..= {1, . . . , k} ∪ {l, . . . ,m} , (34)
with some l ≥ k + 1 and

ŷ(i) =

{
1 if i ∈ {1, . . . , k} ,
0 if i ∈ {l, . . . ,m} . (35)
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Thanks to the previous lemma, a maximizer ŷ of the gen-
eralized F-measure (28) can be constructed following a pro-
cedure similar to the case of the rank loss. First, the labels
are sorted according to (19). Then, we evaluate all possible
partial predictions with decision sets 〈〈k, l〉〉 of the form (34),
and find the one with the highest expected F-measure (28) (a
concrete algorithm is given in the supplementary material).

Proposition 3. Given a query instance x, assume condi-
tional probabilities pi = p(yi = 1 |x) = hi(x) are made
available by an MLC predictor h. Assuming (conditional)
independence of label probabilities in the sense of (33), a
prediction ŷ maximizing the generalized F-measure (28) in
expectation is constructed in time O(m3).

7 Related Work

In spite of extensive research on multilabel classification in
the recent past, there is surprisingly little work on absten-
tion in MLC. A notable exception is an approach by Pil-
lai, Fumera, and Roli (2013), who focus on the F-measure
as a performance metric. They tackle the problem of maxi-
mizing the F-measure on a subset of label predictions, sub-
ject to the constraint that the effort for manually providing
the remaining labels (those on which the learner abstains)
does not exceed a pre-defined value. The decision whether
or not to abstain on a label is guided by two thresholds on
the predicted degree of relevance, which are tuned in a suit-
able manner. Even though this is an interesting approach, it
is arguably less principled than ours, in which optimal pre-
dictions are derived in a systematic way, based on decision-
theoretic ideas and the notion of Bayes-optimality. Besides,
Pillai, Fumera, and Roli (2013) offer a solution for a specific
setting but not a general framework for MLC with partial ab-
stention.

More indirectly related is the work by Park and Simoff
(2015), who investigate the uncertainty in multilabel classi-
fication. They propose a modification of the entropy measure
to quantify the uncertainty of an MLC prediction. Moreover,
they show that this measure correlates with the accuracy
of the prediction, and conclude that it could be used as a
measure of acceptance (and hence rejection) of a prediction.
While Park and Simoff (2015) focus on the uncertainty of
a complete labeling y, Destercke (2015) and Antonucci and
Corani (2017) quantify the uncertainty in individual predic-
tions yi using imprecise probabilities and so-called credal
classifiers, respectively. Again, corresponding estimates can
be used for the purpose of producing more informed deci-
sions, including partial predictions.

8 Experiments

In this section, we present an empirical analysis that is meant
to show the effectiveness of our approach to prediction with
abstention. To this end, we perform experiments on a set of
standard benchmark data sets from the MULAN repository2

(cf. Table 1), following a 10-fold cross-validation procedure.

2http://mulan.sourceforge.net/datasets.html

Table 1: Data sets used in the experiments
# name # inst. # feat. # lab.

1 cal500 502 68 174
2 emotions 593 72 6
3 scene 2407 294 6
4 yeast 2417 103 14
5 mediamill 43907 120 101
6 nus-wide 269648 128 81

8.1 Experimental Setting

For training an MLC classifier, we use binary relevance (BR)
learning with logistic regression (LR) as base learner (in its
default setting in sklearn, i.e., with regularisation parameter
set to 1)3. Of course, more sophisticated techniques could
be applied, and results using classifier chains are given in
the supplementary material. However, since we are dealing
with decomposable losses, BR is well justified. Besides, we
are first of all interested in analyzing the effectiveness of ab-
stention, and less in maximizing overall performance. All
competitors essentially only differ in how the conditional
probabilities provided by LR are turned into a (partial) MLC
prediction.

We first compare the performance of reliable classifiers
to the conventional BR classifier that makes full predictions
(MLC) as well as the cost of full abstention (ABS)—these
two serve as baselines that MLC with abstention should
be able to improve on. A classifier is obtained as a risk-
minimizer of the extension (10) of Hamming loss (2), instan-
tiated by the penalty function f and the constant c. We con-
duct a first series of experiments (SEP) with linear penalty
f1(a) = a · c, where c ∈ [0.05, 0.5], and a second series
(PAR) with concave penalty f2(a) = (a · m · c)/(m + a),
varying c ∈ [0.1, 1]. The performance of a classifier is eval-
uated in terms of the average loss. Besides, we also compute
the average abstention size |A(ŷ)|/m.

The same type of experiment is conducted for the rank
loss (with MLC and ABS denoting full prediction and full
abstention, respectively). A predicted ranking is a risk-
minimizer of the extension (10) instantiated by the penalty
function f and the constant c. We conduct a first series of
experiments (SEP) with f1 as above and c ∈ [0.1, 1], and a
second series (PAR) with f2 as above and c ∈ [0.2, 2].

8.2 Results

The results (illustrated in Figures 1 and 2 for three data sets–
results for the other data sets are similar and can be found
in the supplementary material) clearly confirm our expec-
tations. The Hamming loss (cf. Figure 1) under partial ab-
stention is often much lower than the loss under full pre-
diction and full abstention, showing the effectiveness of the
approach. When the cost c increases, the loss increases while
the abstention size decreases, with a convergence of the per-
formance of SEP and PAR to the one of MLC at c = 0.5

3For an implementation in Python, see
http://scikit.ml/api/skmultilearn.html
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Figure 1: Binary relevance with logistic regression: Exper-
imental results in terms of expected Hamming loss (LH ·
100)/m and abstention size (in percent) for f1(a) = a · c
(SEP) and f2(a) = (a ·m · c)/(m+a) (PAR), as a function
of the cost of abstention.

and c = 1, respectively.
Similar results are obtained in the case of rank loss (cf.

Figure 2), except that convergence to the performance of
MLC is slower (i.e., requires lager cost values c, especially
on the data set cal500). This is plausible, because the cost of
a wrong prediction on a single label can be as high as m−1,
compared to only 1 in the case of Hamming.

Due to space restrictions, we transferred experimental re-
sults for the generalized F-measure to the supplementary
material. These results are very similar to those for the rank
loss. In light of the observation that the respective risk-
minimizers have the same structure, this is not very surpris-
ing.

The supplementary material also contains results for other
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Figure 2: Binary relevance with logistic regression: Exper-
imental results in terms of expected rank loss LR/m and
abstention size (in percent) for f1(a) = a · c (SEP) and
f2(a) = (a ·m · c)/(m+a) (PAR), as a function of the cost
of abstention.

MLC algorithms, including BR with support vector ma-
chines (using Platt-scaling (Lin, Lin, and Weng 2007; Platt
1999) to turn scores into probabilities) as base learners and
classifier chains (Read et al. 2009) with LR and SVMs as
base learners. Again, the results are very similar to those
presented above.

9 Conclusion

This paper presents a formal framework of MLC with partial
abstention, which builds on two main building blocks: First,
the extension of an underlying MLC loss function so as to
accommodate abstention in a proper way, and second the
problem of optimal prediction, that is, minimizing this loss
in expectation.

We instantiated our framework for the Hamming loss,
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the rank loss, and the F-measure, which are three impor-
tant and commonly used loss functions in multi-label clas-
sification. We elaborated on properties of risk-minimizers,
showed them to have a specific structure, and devised effi-
cient methods to produce optimal predictions. Experimen-
tally, we showed these methods to be effective in the sense
of reducing loss when being allowed to abstain.

In future work, we will further elaborate on our formal
framework. As a concrete next step, we plan to investigate
instantiations for other loss functions commonly used in
MLC and the cases of label dependence (Dembczyński et
al. 2012; Waegeman et al. 2014).
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