
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Radial and Directional Posteriors for Bayesian Deep Learning∗

Changyong Oh,†1 Kamil Adamczewski,1,2 Mijung Park1,3

1Empirical Inference Department, Max-Planck-Institute for Intelligent Systems
2Max Planck ETH Center for Learning System

3Department of Computer Science, University of Tübingen
{changyong.om, mijung.park}@tuebingen.mpg.de, kamil.m.adamczewski@gmail.com

Abstract

We propose a new variational family for Bayesian neural net-
works. We decompose the variational posterior into two com-
ponents, where the radial component captures the strength
of each neuron in terms of its magnitude; while the direc-
tional component captures the statistical dependencies among
the weight parameters. The dependencies learned via the di-
rectional density provide better modeling performance com-
pared to the widely-used Gaussian mean-field-type varia-
tional family. In addition, the strength of input and output
neurons learned via our posterior provides a structured way
to compress neural networks. Indeed, experiments show that
our variational family improves predictive performance and
yields compressed networks simultaneously.

1 Introduction

Neural networks have recently become revolutionary tools
to solve numerous statistical problems in science and in-
dustry. However, the uncertainty of the network weight es-
timates is often neglected, although there is a growing ne-
cessity to model the uncertainty in many application do-
mains such as medical decision-making and climate predic-
tion (Slingo and Palmer 2011).

Reasoning about uncertainties in the neural network mod-
els was initiated by a few seminal papers (Neal 2012;
MacKay 1995; Dayan and Hinton 1996). These works aimed
to develop Bayesian methods for neural network models,
suggesting a new research direction, called Bayesian neural
networks (BNNs) (Blundell et al. 2015; Hernández-Lobato
and Adams 2015; Gal and Ghahramani 2016; Louizos and
Welling 2016). These, however, rely on prior and pos-
terior pairs that are often chosen for convenience in in-
ference, namely, computational tractability. The so-called
mean-field variational family in these works assumes the
posterior distributions to be all factorizing, and hence ne-
glects the possibility of modelling statistical dependencies
(i.e., correlations) among weight parameters (Graves 2011;
Blundell et al. 2015; Kingma, Salimans, and Welling 2015;

∗At https://arxiv.org/abs/1902.02603v3, supplementary mate-
rial is accessible.

†Work done while at MPI-IS, now at University of Amster-
dam(c.oh@uva.nl)
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Neklyudov 2017; Molchanov, Ashukha, and Vetrov 2017).
Capturing dependencies between the weight parameters and
their uncertainties is likely to yield better models in terms
of predictability. For instance, Louizos and Welling (2016)
and Sun (2017) propose Gaussian posteriors with covari-
ance matrices of certain structures such that each covari-
ance can capture the dependencies among the input and out-
put dimensions of each layer. Rather than proposing a new
variational family, Lakshminarayanan, Pritzel, and Blundell
(2017) use an ensemble of neural network models and Rit-
ter, Botev, and Barber (2018) make use of the Laplace ap-
proximation to a trained network to obtain uncertainty es-
timates. In this work, we follow this train of thought and
along with these papers empirically show that the methods
that model weight dependencies improve prediction perfor-
mance in terms of test likelihoods.

An important application of the learned uncertainty esti-
mates is model selection via model pruning. The concept of
pruning, sparsifying, or compressing a network makes sense
for deep neural network models as neural network models
are often over-parameterized. The task of compressing a net-
work has received much attention due to the immense de-
mand on the efficient deployment of deep models on mobile
devices. For instance, Louizos, Ullrich, and Welling (2017)
consider group Horseshoe priors and log-Normal posteri-
ors for pruning out neurons, and Ghosh (2018) improve the
result of Louizos, Ullrich, and Welling (2017) by adopting
regularized Horseshoe priors and more structured posteriors.
Neklyudov (2017) takes a slightly different approach which
is pruning units via truncated log-Normal priors over unit
scales. After removing redundant parameters, all of these
methods provide significantly compressed networks.

Our contributions In this paper, we propose a new varia-
tional family with the aim of not only tackling the modelling
side of BNNs in terms of capturing correlations among
weight parameters but also addressing the issue of sparsi-
fication of over-parameterized neural network models. We
provide a detailed description of our contributions below.

• Proposing a novel variational family: Our variational
family has two components by decomposing a weight
vector into its magnitude (radius) and angle (direction);
and hence our variational prior and posterior distributions

5298

are decomposed into radial and directional densities. This
combination of prior and posterior pairs have the fol-
lowing benefits. Radial density: We use the Half-Cauchy
prior and the log-Normal posterior to provide a structured
compression method for neural network parameters. The
Half-Cauchy prior is chosen to provide a bias toward zero
in the norm of weights. The log-Normal posterior is cho-
sen to provide a closed-form KL divergence between prior
and posterior in the computation of evidence lower bound.
Directional density: We use the von Mises-Fisher (vMF)
distribution to capture correlations between the weight pa-
rameters inspired by directional data modelling (Banerjee
2005).

• Proposing an approximation method for numerically
stable gradient estimation: While the vMF distribution
is useful for directional data modelling, applying it in vari-
ational inference poses a practical challenge due to diffi-
culty in computing ratios of Bessel functions (not sup-
ported yet in most deep learning frameworks). We pro-
pose an approximation to the polynomials of ratios of
modified Bessel functions for numerically stable gradi-
ent estimation, which is scalable to high dimensions such
as several hundreds or thousands. This approximation can
be applied to general variational inference problems using
vMF distributions in high dimensional spheres.

• Achieving competitive predictive and compression
performance: Equipped with these two components, our
ultimate goal is to find a good model for a dataset, via
finding the dependencies between the weights and reduc-
ing the number of parameters. So the goodness of a model
will be measured by test likelihoods and prediction accu-
racy on test data, along with the size of the resulting model
in terms of number of remaining parameters and FLOPS
(Floating-Point Operations Per Second).

The rest of the paper is organized as follows. We start by
describing essential quantities in variational Bayesian learn-
ing for neural network models in Sec. 2. In Sec. 3, we in-
troduce our new variational family and address how to train
the new model with high dimensional vMF in a numerically
stable way. In Sec. 4, we contrast our method with other ex-
isting work. Finally in Sec. 5 we empirically show that our
method improves predictive ability over existing methods to-
gether with structured pruning.

2 Variational Bayesian learning

for neural networks

Consider a neural network consisting of fully-
connected1 layers with a collection of parameters
W = {W(l)}l=1,··· ,L, where the l-th layer’s weight
matrix is denoted by W(l) ∈ R

nl×nl−1 . Here, nl is the
number of output neurons and nl−1 is the number of input
neurons. In variational Bayesian neural networks, in an
attempt to capture distributional behaviors of the weights,

1For notational simplicity, we stick to a network with fully-
connected layers. See Sec. 3 for details on the implementations for
convolutional layers.

we often assume a tractable parametric family for the prior
distribution pθ(W) and the approximate posterior qφ(W),
where the parameters for each distribution are denoted by
θ and φ, respectively. Given a dataset D, we maximize the
variational (evidence) lower bound (ELBO) to the marginal
data likelihood

L(D;φ,θ) =Eqφ(W)[log p(D|W)]

−DKL(qφ(W)||pθ(W)) (1)
in order to choose the parameters of prior and posterior
distributions. The first term in Eq.1 is the expected log-
likelihood with respect to the variational posterior. The sec-
ond term in Eq.1 is the KL divergence between the varia-
tional posterior and the prior distribution.

We would like to point out two important conditions
for the lower-bound optimization to be successful in prac-
tice. First, under neural network models, the expected log-
likelihod term in Eq.1 does not have a close form and is
typically estimated via Monte Carlo (MC) sampling (Hoff-
man 2013; Kingma and Welling 2013). The MC estimator,
however, exhibits high variance in the gradients of expected
log-likelihood. To alleviate this issue, many solutions have
been proposed (Kingma and Welling 2013; Maddison 2016;
Jang, Gu, and Poole 2016; Figurnov, Mohamed, and Mnih
2018; Tucker 2017). The most known solution among them
is reparametrization trick, which detaches the parameters of
qφ(W) from the randomness of qφ(W) so that the MC-
estimate of the gradient of the expected log-likelihood can
be computed stably even with the randomness involved.
Using the reparametrization, we can reduce the variance
of the MC-estimate of the gradient of log-likelihood. Sec-
ondly, for arbitrary priors p(W) and posteriors q(W), sim-
ilar MC-estimates using the reparametrization trick can be
found (Blundell et al. 2015). However, in practice, many
models propose closed-form KL-divergence to further re-
duce the variance of the gradient estimates (Louizos, Ull-
rich, and Welling 2017). In summary, being able to use the
reparameterization trick and having a closed-form KL diver-
gence are important conditions for variational learning to be
effective in BNNs. We will revisit this point in Sec. 3.

From a modelling perspective, specifying the paramet-
ric forms of the prior and posterior distributions is es-
sential in variational BNNs. One of the most commonly
used variational family is fully factorized distribution re-
ferred to as the mean-field variational family (Graves 2011;
Blundell et al. 2015; Kingma, Salimans, and Welling 2015;
Neklyudov 2017; Molchanov, Ashukha, and Vetrov 2017),

q(W) =
L∏

l=1

∏
w∈W(l)

q(w),

where the posterior distribution is described by a product
of distributions of each individual entry in W. This choice
is due to computational tractability. Consider the Gaussian
mean-field variational family, q(w(l)

i,j |φi,j) = N (μi,j , σ
2
i,j),

where the variational parameters are φi,j = {μi,j , σ
2
i,j}.

This formulation assumes independence between variational
parameters. However, this variational family ignores any sta-
tistical correlations between the weight parameters, which

5299

is the issue we address in this paper. Next we describe
our new variational family which we developed taking into
consideration all the aforementioned computational aspects,
namely, the reparameterizability of expected log-likelihood
term, a closed-form KL divergence term, and independence
between variational parameters.

3 RDP: Radial and directional posterior

We propose a new variational family, which is an instance
of structured mean-field approximation where each row
(and/or column) of W(l) is factorized,

q(W) =
L∏

l=1

nl∏
r=1

q(l)r (w(l)
r),

where w
(l)
r ∈ R

nl−1 is the r-th row of the weight matrix at
l-th layer. For the sake of simplicity, we consider row-wise
factorization here. But we discuss both row and column-
wise factorizations at the end of this section. We decompose
each factor q(l)r into a density on the L2-norm of w(l)

r and
another density on the direction of the normalized vector

w(l)
r

‖w(l)
r ‖2

, i.e., q(l)r (w
(l)
r) = q

(l)
r,rad(‖w(l)

r ‖2)·q(l)r,dir

(
w(l)

r

‖w(l)
r ‖2

)
,

where q(l)r,rad is the radial density and q
(l)
r,dir is the directional

density.

Directional density We take the prior p(l)r,dir and the pos-

terior q(l)r,dir distributions to be the von Mises-Fisher (vMF)
distribution (Mardia and Jupp 2009), which is a probability
density on a unit (hyper)sphere

q
(l)
r,dir

(
w(l)

r

‖w(l)
r ‖2

)
= vMF

(
w(l)

r

‖w(l)
r ‖2

;μ(l)
r , κ(l)

r

)
, (2)

where vMF (x;μ, κ) = Cd(κ) exp (κμ
Tx), where

Cd(κ) =
κd/2−1(κ)

(2π)d/2Id/2−1(κ)
. The location parameter μ is also

a d-dimensional unit vector, κ is the concentration param-
eter, and Id/2−1 is the modified Bessel function of the first
kind at order d/2 − 1. The vMF distribution is intuitively
understood as multivariate Gaussian distribution with a di-
agonal covariance matrix on unit (hyper)sphere.

In our prior and posterior distributions, we assume that
the concentration parameter is shared across all the rows in
each layer, by assigning a single concentration parameter,
κ
(l)
r = κ(l) for all r = {1, · · · , nl}, while the mean vector

parameters are separately assigned for each row. This way
we can reduce the number of variational and prior param-
eters significantly. The resulting prior p

(l)
r,dir and posterior

q
(l)
r,dir distributions have the following forms:

p
(l)
r,dir

(
w(l)

r

‖w(l)
r ‖2

)
= vMF

(
μ(l)

p,r, κ
(l)
p

)
,

q
(l)
r,dir

(
w(l)

r

‖w(l)
r ‖2

)
= vMF

(
μ(l)

q,r, κ
(l)
q

)
, (3)

where the prior mean parameters and the concentration pa-
rameter are denoted by μ

(l)
p,r and κ

(l)
p , respectively, and those

in the posterior distribution are denoted by μ
(l)
q,r, and κ

(l)
q .

Explicitly modelling the directional component using vMF
allows us to capture the dependence within the weight pa-
rameters of each row. Having the same concentration param-
eter across all the rows within each layer induces a particular
way of dependence in the weight parameters within the same
layer. If the mean parameters of each row’s weights are close
to each other, having the same concentration level, possibly
a high concentration level (which we expect if the posterior
confidence is high) makes the row-wise directional densi-
ties more similar to each other, and vice versa. This particu-
lar way of parameterizing the variational parameters allows
us to capture the dependence across rows without assigning
concentration parameters to each of the rows and layers sep-
arately.

Radial density While we could adopt any probability dis-
tribution with a non-negative support for the radial density,
we focus on distributions that can promote sparsity in the
resulting posterior. Specifically, inspired by the group horse-
shoe prior proposed in (Louizos, Ullrich, and Welling 2017),
we take a product of two Half-Cauchy distributions to be our
prior in order to induce sparsity in the norms of the weights.
First, we write down the norm of each row given a layer as a
product of two independent half-Cauchy random variables,
‖w(l)

r ‖2 = s(l)z
(l)
r , where s(l) ∼ C+(γ), z

(l)
r ∼ C+(1), and

the prior is given by

p
(l)
r,rad(‖w(l)

r ‖2) = C+(s(l); γ) · C+(z(l)r ; 1), (4)

where the probability density function for a half-Cauchy
distributed random variable x is given by C+(x; γ) =

2
πγ(1+(x/γ)2) , with a scale parameter γ > 0. The smaller the
scale parameter gets, the larger the probability mass concen-
trates around zero. At this point, it might not be immediately
clear why we chose to use two Half-Cauchy distributions as
a prior rather than one. Our explanation is as follows.

What we ultimately hope to control is the level of sparsity
in the weights drawn from the resulting posterior distribu-
tion. We allow the posterior to have two different levels of
sparsity, namely, local (row-wise) sparsity and global (layer-
wise) sparsity. The reason we write the norm as a product of
two terms ‖w(l)

r ‖2 = s(l)z
(l)
r is that each of these terms af-

fects the local sparsity via z(l)r and global sparsity via s(l) in
the posterior distribution, respectively. Even when all radii
are small, the largest one among them has significant influ-
ence in model performance. Thus, we can use the relative
strength of radius densities to prune out.

Before describing our radial posterior density, we need to
elaborate on the fact that each of half-Cauchy distributions
can be further factorized. As used in (Louizos, Ullrich, and
Welling 2017), the half-Cauchy distribution can be written
as a product of an inverse-Gamma density and a Gamma
density due to the fact that the square of half-Cauchy C+

is equal in distribution to a product of Gamma and inverse-
Gamma (Neville 2014). Hence, we rewrite the two factors

5300

radius direction

Figure 1: Graphical representation of our generative model.
The black rectangle describes row parameters and red rect-
angle layer parameters. The radius part is controlled by two
half-Cauchy random variables s(l) and z

(l)
r , while the direc-

tional part is controlled by a vMF distribution governed by
the prior mean vector and a concentration parameter, μ(l)

r

and κ
(l)
p , respectively. The two parts taken together govern

the data probability (bottom).

z
(l)
r and s(l) for describing ‖w(l)

r ‖2 as√
z
(l)
r = α(l)

r β(l)
r ,where α(l)

r ∼ G(12 , 1), β(l)
r ∼ IG(12 , 1),√

s(l) = s(l)a s
(l)
b ,where s(l)a ∼ G(12 , γ2), s

(l)
b ∼ IG(12 , 1),

where we denote the Gamma distribution by G and the
inverse-Gamma distribution by IG. In addition, Gamma
(and inverse-Gamma) random variables have another nice
property, that is, one can obtain a closed-form expression of
KL divergence between a Gamma (and inverse-Gamma) dis-
tribution and a log-normal distribution. Using this fact, we
take the log-normal distribution to be our posterior such that
each of these terms can control the local sparsity and global
sparsity, given as

q
(l)
r,rad(‖w(l)

r ‖) =LN (α(l)
r |μ(l)

r , σ2 (l)
r)LN (β(l)

r |μ̂(l)
r , σ̂2 (l)

r)

LN (s(l)a |μ(l), σ2 (l))LN (s
(l)
b |μ̂(l), σ̂2 (l)),

(5)

where μ
(l)
r , σ2 (l)

r and μ̂
(l)
r , σ̂2 (l)

r are the variational parame-
ters regularized by Gamma density and inverse-Gamma den-
sity of C+(z

(l)
r |1), respectively. Similarly, μ(l), σ2 (l) and

μ̂(l), σ̂2 (l) are variational parameters for the prior C+(s(l)|γ)
the same way.

Radial and directional posterior (RDP) In summary, our
variational family q(W) is given as

q(W) =

L∏
l=1

nl∏
r=1

q
(l)
r,rad(‖w(l)

r ‖)vMF
(

w(l)
r

‖w(l)
r ‖2

;μ(l)
q,r, κ

(l)
q

)

(6)

We refer to this collection of densities as the radial and di-
rectional posterior (RDP). Our prior distribution p(W) is
also factored into radius and direction as in the proposed
variational family

p(W) =
L∏

l=1

C+(s(l); γ)

nl∏
r=1

C+
(
z(l)r ; 1

)

· vMF
(

w(l)
r

‖w(l)
r ‖2

;μ(l)
p,r, κ

(l)
p

)
. (7)

We denote the prior parameters collectively
by θ = {γ,μ(l)

p,r, κ
(l)
p } for all layers l =

{1, · · · , L}, and the variational parameters by φ =

{μ(l), σ2 (l), μ̂(l), σ̂2 (l), μ
(l)
r , σ

2 (l)
r , μ̂

(l)
r , σ̂

2 (l)
r ,μ

(l)
q,r, κ

(l)
q }

for all layers l = {1, · · · , L} and all rows r = {1, · · · , nl}.
A graphical representation of our model is given in Fig. 1
for the generative process.

Optimizing evidence lower bound with RDP

Recall that as far as our objective function Eq.1 is concerned,
two conditions need to be met for the gradients of this objec-
tive function to well behave. The first condition (about MC
estimates of the expected log-likelihood term) is whether
our posterior is reparameterizable. In fact, we can represent
our choice of posterior by a differentiable function h(ε,φ),
where the variational parameters φ are separated from the
random source, ε ∼ s(ε). See Supplement for details.

The second condition is whether the KL term is closed-
form, which is the case as we choose the prior and
posterior pair considering this condition. The KL term
DKL(qφ(W)‖pθ(W)) is given by

∑
l

nl∑
r

DKL(vMF (μ(l)
q,r, κ

(l)
q)‖vMF (μ(l)

p,r, κ
(l)
p))

+DKL(q
(l)
r,rad(‖w(l)

r ‖2)‖p(l)r,rad(‖w(l)
r ‖2)),

and the closed-form expressions of each of the terms are
given in Supplement. Although the KL term between the
vMF prior and posterior is elegantly written in closed-form,
DKL(vMF (μq, κq)‖vMF (μp, κp)) =

(κq − κpμ
T
p μq)

Id/2(κq)

Id/2−1(κq)
+ log(Cd(κq))− log(Cd(κp))

the gradient expressions (see Supplement) with respect
to the variational parameters require computing the ratio
Id/2(κq)

Id/2−1(κq)
(Davidson 2018), which is numerically unstable.

This is due to the fact that the modified Bessel function of
the first kind (Bessel function) decays rapidly, so the compu-
tation of ratios of Bessel functions causes numerical errors
when it tries to compute 0

0 (See Supplement for detailed ex-
planations). This gets worse with higher dimensions, and oc-
curs even for moderate dimensions such as 50 to 100. Hence,
rather than numerically computing the ratio of Bessel func-
tions, we resort to the following Theorem.
Theorem 1 (Theorem 5 in (Ruiz-Antolı́n and Segura 2016)).

B2(ν, κ) <
Iν(κ)

Iν−1(κ)
< B0(ν, κ), when ν ≥ 1/2 (8)

5301

where Bα(ν, κ) = κ

δα(ν,κ)+
√

δα(ν,κ)2+κ2
, δα(ν, κ) =

(ν − 1/2) + λ
2
√
λ2+κ2

, λ = ν + (α − 1)/2, and ν de-
notes the dimension and z denotes the concentration pa-
rameter. Our observation is that the gap between the upper
and lower bounds of the ratio becomes tighter as the dimen-
sion grows as shown in Supplement. Even in low dimen-
sions, the gap is less than e−10 for various concentration pa-
rameter values (κ). Using this fact, we simply approximate
the ratio by the average over the lower and upper bounds,
Iν(κ)

Iν−1(κ)
≈ B2(ν,κ)+B0(ν,κ)

2 . Empirically we find that this
simple approximation allows us to obtain numerically sta-
ble gradients on dimensions of several thousands. Further-
more, this approximation saves us from directly computing
modified Bessel function. Since the modified Bessel func-
tion of the first kind of high order is not supported yet in
most deep learning frameworks, using this approximation,
variational inference with high dimensional vMF distribu-
tions can utilize GPU acceleration without extra efforts on
CUDA implementations of Bessel functions.

Structured compression using the radial density

Subsequently to presenting the RDP family and overcom-
ing the optimization issues, we show the utility of the ra-
dius component in search for a more optimal model in
form of model compression. Thus, using the radial den-
sity given in Eq.6, we can prune out output neurons on
each layer depending on the contribution of each neu-
ron measured by the learned posterior distribution. We
call this scheme row-grouping as depicted in Fig. 2. One
can also employ column-grouping. Or one can also prune
out both input and output neurons simultaneously, using
double-grouping, with an additional constraint that every el-
ement of the weight matrix is a product of each element
of row and column matrices, i.e., W

(l)
i,j = w

(l)
r,i · w(l)

l,j

to ensure q(W) is a proper probability density (i.e., nor-
malized), q(W) =

∏L
l=1

∏nl

r=1

∏nl−1

c=1 q
(l)
r (w

(l)
r)q

(l)
c (w

(l)
c),

where q
(r)
r (w

(l)
r) = q

(r)
c,rad(‖w(l)

r ‖2)q(l)r,dir

(
w(l)

r

‖w(l)
r ‖2

)
, and

q
(c)
r (w

(l)
c) = q

(c)
c,rad(‖w(l)

c ‖2)q(l)c,dir

(
w(l)

c

‖w(l)
c ‖2

)
. The prior

distribution also needs to be modified according to which
grouping the posterior distribution takes.

Note that for a neural network with convolutional layers,
W(l) is a convolutional filters of 4D tensor of nl × nl−1 ×
kw × kh where nl−1 is the number of input channels, nl

is the number of output channels and kw and kh are kernel
width and height. Then row-wise grouping of the filter W(l)

is row-wise grouping of 2D flattened matrix of dimension
nl× (nl−1 ·kw ·kh) which is grouped by an output channel.
Column-wise grouping is to group by input channels, group-
ing of the flattened matrix of dimension (nl ·kw ·kh)×nl−1.

Following Louizos, Ullrich, and Welling (2017), we use
the (log of) posterior mode (which is the mean parameter
minus the variance parameter of the log-normal posterior
distribution) as a cut-off threshold to determine which out-
put neuron needs to remain or be pruned out from the model.
Recall that there are four log-normal distributions to approx-

row-grouping

co
lu

m
n-

gr
ou

pi
ng

Figure 2: Column grouping (red) to prune out input neurons,
depending on L2-norm of each column vector. Row group-
ing (grey) to prune out output neurons. Double grouping (red
and grey) to prune out both input and output neurons.

imate the posterior over the radius in Eq.5. Since a product
of two log-normals is a log-normal with summed-up param-
eters from the two, we use the mode of this combined log-
normal for pruning. Note that for pruning rows (or columns
or both) only the two ’local’ log-normal distributions in Eq.5
matter as the remainders are ’global’ ones (i.e., the global
ones scale up and down the local ones in the exact same way
across rows/columns).

4 Related Work

As mentioned in Sec. 2, many existing papers on varia-
tional BNNs assume the mean-field posterior distribution
on the network weights. Recently, Louizos and Welling
(2016), Sun (2017), and Zhang et al. (2018) proposed to
model dependency between weights explicitly, e.g., using
a matrix normal posterior with diagonal covariance matri-
ces (Louizos and Welling 2016). There are also methods
to model dependencies between weights without explicitly
specifying a parametric family for the posterior (Louizos
and Welling 2017; Sun 2019). However, unlike these, we
capture dependency between weights through a directional
component by restricting it to be on a unit sphere, which
impose dependencies on weights (within a row and/or a col-
umn) directly. In addition, by coupling the concentration pa-
rameters per layer, we capture similarities among weights
across rows, columns, and/or both.

The reparametrization trick is an essential tool in vari-
ational learning of BNNs. When it comes to von Mises-
Fisher distribution, only the vMF reparametrization trick
proposed by Davidson (2018) that implements rejection
sampling (Naesseth et al. 2017) is practically applicable, due
to the complexity of the sampling procedure for vMF. In our
case, using the vMF posterior introduces a new challenge
as scalability to high dimension is required. We improve
the above approaches with a simple approximation method
which makes the vMF reparametrization trick scalable up to
several thousands of dimensions. Besides, the approxima-
tion yields MC gradient estimates that are corrected to be
unbiased for more efficient and stable training (see Supple-
mentary material for details).

Research on neural network compression started with
non-Bayesian approaches (Hassibi and Stork 1993) and

5302

Data PBP Dropout VMG RDP

Bos. -2.57±.09 -2.46±.25 -2.46±.09 -2.60±.03
Con. -3.16±.02 -3.04±.09 -3.01±.03 -2.61±.02
Ene. -2.04±.02 -1.99±.09 -1.06±.03 -1.18±.03
Kin. 0.90±.01 0.95±.03 1.10±.01 2.17±.00
Nav. 3.73±.01 3.80±.05 2.46±.00 2.50±.00
Pow. -2.84±.01 -2.80±.15 -2.82±.01 -0.14±.01
Pro. -2.97±.00 -2.89±.01 -2.84±.00 -1.34±.01
Win. -0.97±.01 -0.93±.06 -0.95±.01 -0.45±.00
Yac. -1.63±.02 -1.55±.12 -1.30±.02 -2.36±.04
Yea. -3.60±NA -3.59±NA -3.59±NA -3.51±NA

Table 1: Average test log-likelihood on UCI regression tasks.
Our method (RDP) achieves better test likelihoods (6 out of
10 datasets) than other methods.

mostly focused on non-structured pruning (Han 2015). Re-
cently, hardware-oriented considerations have turned the re-
search towards structured pruning for more practical speed-
ups (Srinivas and Babu 2015; Li 2016; Wen 2016; Lebe-
dev and Lempitsky 2016; Zhou, Alvarez, and Porikli 2016).
Subsequently by taking into account the network weights’
uncertainties, Bayesian methods have achieved an impres-
sive compression rate. For example, Molchanov, Ashukha,
and Vetrov (2017) proposed the mean-field Gaussian poste-
rior along with sparsity inducing prior on scale parameters;
and Louizos, Ullrich, and Welling (2017) proposed struc-
turaly grouping weights through a group Horseshoe prior. In
contrast, our RDP utilizes the probability density over the
magnitudes of weights and prune out neurons based on cap-
tured uncertainties over the magnitudes.

5 Experiments

In this section we provide empirical evidence supporting
RDP’s strengths. In all experiments, we use Adam opti-
mizer (Kingma and Ba 2014) with Pytorch default setting. In
all tasks, double grouping is used. Our code is on GitHub2.

Regression using UCI data We compare the predictive
performance on regression tasks UCI dataset tested in (Gal
and Ghahramani 2016; Louizos and Welling 2016) follow-
ing the experimental settings from (Hernández-Lobato and
Adams 2015). We split the datasets 90%/10% between
training and test data.3 To model noise variance (or preci-
sion), we use Gamma prior τ , p(τ) = G(a0 = 6, b0 = 6)
and posterior q(τ) = G(a1, b1). We optimize for a1, b1
along with all the other variational parameters. The archi-
tecture used is ninput-50-1 except for the Protein and Year
datasets where 100 hidden neurons are used. In the case of
the second layer with the output dimension being one, we
use fully factorized Gaussian and RDP with double group-
ing is only applied to the first layer. This is just enough to
see improvement over mean-field based BNNs, such as Vari-
ational Inference (VI) (Graves 2011), Probabilistic Back-

2https://github.com/ChangYong-Oh/BayesianNeuralNetwork
3We follow the splitting rule given in https://github.com/

yaringal/DropoutUncertaintyExps

��� �������	
�� ���

Figure 3: Predictive distributions (mean±3×std) from BBB,
Radius-only and RDP. We chose the one with the best val-
idation LL(on 9 equally spaced points) from 10 runs. RDP
shows high uncertainty around the area where observations
(red dots) are sparse.

Propagation(PBP) (Hernández-Lobato and Adams 2015),
Dropout (Gal and Ghahramani 2016). Compared to another
dependency aware posterior, Variational Matrix Gaussian
(VMG) (Louizos and Welling 2016), 6 out of 10 dataset,
RDP shows better test log-likelihood(LL) than others. For
more extensive comparison on this task, refer to Bui (2016).

Uncertainty quantification To illustrate the benefits of
decomposing the posterior into two components in uncer-
tainty estimation, we conduct two experiments, a 1-dim
function prediction to directly visualize predictive distribu-
tions and a contextual bandit problem to indirectly test the
effect of the quality of uncertainty in the downstream task.

We consider three different types of posteriors: RDP with
both Radial and Directional parts, Radius-only that contains
only the Radial part and BBB (Blundell et al. 2015). In the
1-dim problem we predict function (1+x) sin(1.2x)+ 0.2ε
with 1-10-10-1 neural network architecture and ReLU ac-
tivation. We observe that RDP exhibits high uncertainty in
both inter/extrapolation regions without data and that RDP
provides smoother predictions than others in Fig. 3.

In the Wheel bandit problem (Riquelme 2018), the uncer-
tainty plays a significant role to balance between exploration
and exploitation. We train networks (5-dim context and 5
actions) with 5-50-50-5 architecture and ReLU activation.
Two posteriors, RDP and Radius-only (RDP without the di-
rectional component), were compared. The original context
is 2-dim, but we added 3-dim dummy variables to make the
problem more challenging. With 10 different random initial-
ization, we compute the average cumulative regret (lower is
better) in each case. The resulting average cumulative regret
in the case of RDP is 2.4 with standard deviation 0.71 and
that in the case of the Radial-only posterior was 3.6 with
standard deviation 0.85.

Both experiments support that having both the directional
and radial components in the posterior is helpful to capture
posterior uncertainty better. Moreover, the RPD provides
better-calibrated uncertainty than Radius-only and BBB.

Compression We further extend the applicability of the
proposed variational family to the task of structured com-
pression of convolutional neural network architecture. On
MNIST dataset, we compress the architecture of LeNet54,

4https://github.com/BVLC/caffe/tree/master/examples/mnist

5303

Method Architecture FLOPs/Params Error
RDP 4-7-110-66 125K / 20K 1.0%

BC-GNJ 8-13-88-13 307K / 22K 1.0%
BC-GHS 5-10-76-16 169K / 15K 1.0%

FDOO(1e5) 2-7-112-478 119K / 66K 1.1%
FDOO(2e5) 3-8-128-499 163K / 81K 1.0%

GL 3-12-192-500 236K / 134K 1.0%
GD 7-13-208-16 298K / 49K 1.1%
SBP 3-18-284-283 295K / 164K 0.9%

Table 2: The structured pruning of LeNet-5-Caffe with
architecture 20-50-800-500. We benchmark our method
against BC-GNJ, BC-GHS (Louizos, Ullrich, and Welling
2017), FDOO (Tang, Adhikari, and Lin 2018), Gener-
alized Dropout(GD) (Srinivas and Babu 2015), Group
Lasso(GL) (Wen 2016), Structured Bayesian Prun-
ing(SBP) (Neklyudov 2017).

which consists of 2 convolutional layers and 2 fully-
connected layers. We choose the model which has the best
training cross-entropy during last 10 epochs. After training,
we plot a statistics (log of mode) of radius posteriors and
prune it according to clearly separated clusters as shown
in Supplement. In terms of various criteria for compressed
architecture, compression using RDP shows well-balanced
scores such as the number of parameters, FLOPs, and loss
in accuracy. We compute FLOPs for convolutional layers by
(KwKhCin+1)(Ih+Ph−Kh+1)(Iw+Pw−Kw+1)Cout

where Ih, Iw are input height and width, Kh,Kw are kernel
height and width, Pw, Ph are padding height and width, and
Cin, Cout are the number of input and output channels. For
fully-connected layers, we compute FLOPs by (Iin+1)Iout,
where Iin and Iout are the number of input and output neu-
rons, respectively.

The approach achieves competitive results with the state-
of-the-art methods. As given in Table 2, the RDP architec-
ture shows particularly good compression for convolutional
layers, which helps in decreasing the number of FLOPs. Di-
rect Optimization Objective(100K) (FDOO) is only slightly
less computationally heavy but at the cost of three times
more parameters. Similarly, RDP comes only second to BC-
GHS in terms of parameter number which though has 1.5
more FLOPs.

We also test RDP’s compression capability on VGG16
and CIFAR10. Once we prune based on the radial compo-
nent as in the LeNet experiment (denoted by RDP (R) in
Table 3), we attempt to prune out further using the direc-
tional component (denoted by RDP (RD) in Table 3). Our
hypothesis is that if many rows and columns have similar
directions, removing some of them would not hurt the accu-
racy by much. We use the K-medoids algorithm to cluster
the rows and columns per each layer (we define five clus-
ters per layer) among the remaining rows and columns from
the radial pruning. We then, remove the rows and columns
that have small norms within the clusters whose total num-
ber of members are above a certain threshold5. Using the

5We set the threshold by kt/c with k = 0.7, where t is the

Architecture Err FLOPs
Params

RDP 27-57-125-122-236-244-246 8.7 172M
(R) -340-127-77-89-52-380-414 % 3.1M

RDP 27-57-125-122-235-244-246 9.1 170M
(RD) -335-122-72-84-47-375-409 % 3M
BC 63-64-128-128-245-155-63 8.6 142M

(GNJ) -26-24-20-14-12-11-15 % 1M
BC 51-62-125-128-228- 129-38 9.0 122M

(GHS) -13-9-6-5-6-6-20 % 0.8M

Table 3: The structured pruning of VGG16. RDP show com-
parable performance as BC-GNJ, BC-GHS. Compared to
BC-GNJ and BC-GHS, RDP compresses better convolu-
tional layers closer to the input layer.

directional component this way, we obtain a slightly better
pruning outcome than using the radial component alone. Al-
though the RDP compression performance is slightly worse
than BC-GNJ and BC-GHS, an intriguing aspect is that RDP
is better at compressing convolutional layers closer to input,
while BC-GNJ and BC-GHS prune almost none near the in-
put layer and prune very heavily near the output layer.

6 Conclusion

We proposed a new variational family to capture depen-
dencies between weight parameters in a structured way for
Bayesian Neural Networks. RDP’s capability to capture the
dependency between weights is empirically supported by
its performance on regression tasks. Also, RDP has a nat-
ural structure for compression and it scores competitive to
other methods in multiple compression performance mea-
sures. For practical implementations of variational inference
with RDP, we proposed a simple approximation to the ratio
of Bessel functions and a reparametrization trick for von-
Mises Fisher(vMF) distribution. We expect our proposal to
be useful as there is a wide range of applications where vari-
ational inference with high dimensional vMF distributions
could be useful.

Acknowledgments

We are grateful to the Max Planck Society for its support. M.
Park also thanks to the Gibs Schüle Foundation and the In-
stitutional Strategy of the University of Tübingen (ZUK63).

References

Banerjee, A. e. a. 2005. Clustering on the unit hypersphere
using von mises-fisher distributions. JMLR 6(Sep):1345–
1382.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural networks. In Proceed-
ings of the 32nd International Conference on International
Conference on Machine Learning-Volume 37, 1613–1622.
JMLR. org.

number of neurons in a layer, c is the number of clusters in a layer.

5304

Bui, T. e. a. 2016. Deep gaussian processes for regression
using approximate expectation propagation. In ICML, 1472–
1481.
Davidson, T. R. e. a. 2018. Hyperspherical variational auto-
encoders. arXiv preprint arXiv:1804.00891.
Dayan, P., and Hinton, G. E. 1996. Varieties of helmholtz
machine. Neural Networks 9(8):1385–1403.
Figurnov, M.; Mohamed, S.; and Mnih, A. 2018. Implicit
reparameterization gradients. In Advances in Neural Infor-
mation Processing Systems, 441–452.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian
approximation. In ICML, 1050–1059.
Ghosh, S. e. a. 2018. Structured variational learning of
Bayesian neural networks with horseshoe priors. In ICML,
1744–1753.
Graves, A. 2011. Practical variational inference for neural
networks. In NIPS, 2348–2356.
Han, S. e. a. 2015. Compressing deep neural networks
with pruning, trained quantization and huffman coding.
arXiv:1510.00149.
Hassibi, B., and Stork, D. G. 1993. Second order derivatives
for network pruning: Optimal brain surgeon. In NIPS, 164–
171.
Hernández-Lobato, J. M., and Adams, R. 2015. Probabilis-
tic backpropagation for scalable learning of bayesian neural
networks. In ICML, 1861–1869.
Hoffman, M. D. e. a. 2013. Stochastic variational inference.
JMLR 14(1):1303–1347.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparame-
terization with gumbel-softmax. arXiv:1611.01144.
Kingma, D. P., and Ba, J. 2014. A method for stochastic
optimization. arXiv:1412.6980.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv:1312.6114.
Kingma, D. P.; Salimans, T.; and Welling, M. 2015. Vari-
ational dropout and the local reparameterization trick. In
NIPS, 2575–2583.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. In Advances in Neural Information Pro-
cessing Systems, 6402–6413.
Lebedev, V., and Lempitsky, V. 2016. Fast convnets using
group-wise brain damage. CVPR.
Li, H. e. a. 2016. Pruning filters for efficient convnets.
arXiv:1608.08710.
Louizos, C., and Welling, M. 2016. Structured and efficient
variational deep learning with matrix gaussian posteriors. In
ICML, 1708–1716.
Louizos, C., and Welling, M. 2017. Multiplicative normal-
izing flows for variational bayesian neural networks. In In-
ternational Conference on Machine Learning, 2218–2227.
Louizos, C.; Ullrich, K.; and Welling, M. 2017. Bayesian
compression for deep learning. In NIPS, 3288–3298.

MacKay, D. J. 1995. Probable networks and plausible
predictions–a review of practical bayesian methods for su-
pervised neural networks. Network: computation in neural
systems 6(3):469–505.
Maddison, C. J. e. a. 2016. The concrete distribu-
tion: A continuous relaxation of discrete random variables.
arXiv:1611.00712.
Mardia, K. V., and Jupp, P. E. 2009. Directional statistics,
volume 494. John Wiley & Sons.
Molchanov, D.; Ashukha, A.; and Vetrov, D. 2017. Vari-
ational dropout sparsifies deep neural networks. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, 2498–2507. JMLR. org.
Naesseth, C.; Ruiz, F.; Linderman, S.; and Blei, D. 2017.
Reparameterization gradients through acceptance-rejection
sampling algorithms. In International Conference on Artifi-
cial Intelligence and Statistics.
Neal, R. M. 2012. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media.
Neklyudov, K. e. a. 2017. Structured bayesian pruning via
log-normal multiplicative noise. In NIPS, 6775–6784.
Neville, S. E. e. a. 2014. Mean field variational bayes for
continuous sparse signal shrinkage: pitfalls and remedies.
Electronic Journal of Statistics 8(1):1113–1151.
Riquelme, C. e. a. 2018. Deep bayesian bandits showdown.
In ICLR.
Ritter, H.; Botev, A.; and Barber, D. 2018. A scalable laplace
approximation for neural networks. In ICLR.
Ruiz-Antolı́n, D., and Segura, J. 2016. A new type of
sharp bounds for ratios of modified bessel functions. JMAA
443(2):1232–1246.
Slingo, J., and Palmer, T. 2011. Uncertainty in weather and
climate prediction. Phil. Trans. R. Soc. A 369(1956):4751–
4767.
Srinivas, S., and Babu, R. V. 2015. Data-free parameter
pruning for deep neural networks. arXiv:1507.06149.
Sun, S. e. a. 2017. Learning structured weight uncertainty
in bayesian neural networks. In AISTATS, 1283–1292.
Sun, S. e. a. 2019. Functional variational bayesian neural
networks. arXiv:1903.05779.
Tang, R.; Adhikari, A.; and Lin, J. 2018. Flops as a direct
optimization objective for learning sparse neural networks.
arXiv:1811.03060.
Tucker, G. e. a. 2017. Low-variance, unbiased gradient es-
timates for discrete latent variable models. In NIPS, 2627–
2636.
Wen, W. e. a. 2016. Learning structured sparsity in deep
neural networks. In NIPS, 2074–2082.
Zhang, G.; Sun, S.; Duvenaud, D.; and Grosse, R. 2018.
Noisy natural gradient as variational inference. In Interna-
tional Conference on Machine Learning, 5847–5856.
Zhou, H.; Alvarez, J. M.; and Porikli, F. 2016. Less is more:
Towards compact cnns. In ECCV, 662–677. Springer.

5305

