
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Overcoming Catastrophic Forgetting by Neuron-Level Plasticity Control

Inyoung Paik, Sangjun Oh, Taeyeong Kwak
Deep Bio Inc., Seoul, Republic of Korea

{iypaik, tykwak}@deepbio.com, me@juneoh.net

Injung Kim
Handong Global University, Pohang, Republic of Korea

ijkim@handong.edu

Abstract

To address the issue of catastrophic forgetting in neural net-
works, we propose a novel, simple, and effective solution
called neuron-level plasticity control (NPC). While learning a
new task, the proposed method preserves the existing knowl-
edge from the previous tasks by controlling the plasticity of
the network at the neuron level. NPC estimates the importance
value of each neuron and consolidates important neurons by
applying lower learning rates, rather than restricting individual
connection weights to stay close to the values optimized for
the previous tasks. The experimental results on the several
datasets show that neuron-level consolidation is substantially
more effective compared to connection-level consolidation
approaches.

Introduction

In the path to realizing artificial general intelligence with
deep neural networks, catastrophic forgetting remains one
of the most fundamental challenges. Gradient descent, the
most popular learning algorithm, is problematic when applied
to train a neural network for multiple tasks in a sequential
manner. When gradient descent optimizes the neural network
for the task at hand, the knowledge for the previous tasks is
catastrophically overwritten by new knowledge.

Since the initial discovery of the problem (McCloskey and
Cohen 1989), various approaches have been proposed to al-
leviate catastrophic forgetting in artificial neural networks.
One of these approaches is to include the data for multiple
tasks in every mini-batch. Although such a method can be
effective in retaining the performance of the previous tasks, it
causes an overhead to keep the training data for the previous
tasks. There have been several attempts to achieve a simi-
lar effect using only a limited portion of the previous data,
(Gepperth and Karaoguz 2016; Lopez-Paz 2017; Nguyen et
al. 2017) or none at all.(Li and Hoiem 2018; Shin et al. 2017;
Kamra, Gupta, and Liu 2017; Zacarias and Alexandre 2018;
Kim, Kim, and Lee 2018)

Another approach is to isolate the parts of the neural net-
work containing previous knowledge, and learn the new task
using other parts of the network. This includes designing

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dynamic architectures for neural networks,(Fernando et al.
2017; Aljundi, Chakravarty, and Tuytelaars 2017; Lee et al.
2017a; Serrà et al. 2018; Masse, Grant, and Freedman 2018;
Siavash Golkar 2019) where the capacity to learn the new
task is obtained by assigning different parts of the network
to the new task. Note that these methods isolate a portion
of neurons, rather than parameters, to effectively(sometimes
perfectly) preserve the existing knowledge of the neural net-
work.

Weight consolidation is a remarkable step made in this
area. Elastic Weight Consolidation(EWC)(Kirkpatrick et al.
2017) uses the diagonals of the Fisher information matrix
to identify and consolidate the parameters, which corre-
spond to the connection weights in neural networks, that
are important for the previous tasks. In this way, the net-
work learns the new task using less important parameters
while preserving previously learned knowledge. In Mem-
ory Aware Synapses(MAS)(Aljundi et al. 2018), the im-
portance value of each weight is measured by the sam-
ple mean of the absolute value of the gradient. In Synap-
tic Intelligence(SI)(Zenke, Poole, and Ganguli 2017), the
importance value of each weight is computed by integrat-
ing the contribution to the change in loss. Meanwhile,
Selfless Sequential Learning(SSL)(Aljundi, Rohrbach, and
Tuytelaars 2018) suggests imposing sparsity on neuron ac-
tivation while learning the preceding tasks to avoid ex-
hausting all capacities. Their work and ours both focus
on neuron-level information. However, in contrast, while
the purpose of SSL is to save network capacity for the
subsequent tasks, we aim to preserve knowledge from the
previous tasks while learning a new task. Weight consol-
idation algorithms have drawn much attention, and there-
fore, have been adopted in many studies(Lee et al. 2017b;
Liu et al. 2018). Recent works(Kim, Kim, and Lee 2018;
Lee et al. 2017a) show that this approach may be used in
combination with other methods as a means of regulariza-
tion.

In this study, we present the limitation of weight consol-
idation (or, for purposes of comparison, ’connection-level
consolidation’) in deep neural networks, and propose a novel
algorithm, called neuron-level plasticity control (NPC). As
the name suggests, NPC retains existing knowledge by con-

5339

Figure 1: Comparison of connection-level and neuron-level
consolidation. (a) The neurons and connections important
for Task 1. (b) Connection-level consolidation. The im-
portant connections are consolidated, but the neurons can
still be affected by other incoming connections that can
change while learning Task 2. (c) Neuron-level consolidation.
NPC consolidates all incoming connections of the important
neurons, which is more effective in preserving the knowl-
edge of the neurons. A similar intuition was pointed out
by(Aljundi, Rohrbach, and Tuytelaars 2018; Lee et al. 2017a;
Serrà et al. 2018; Siavash Golkar 2019).

trolling the plasticity of each neuron or each filter in a con-
volutional neural network (CNN). As a result, it is signifi-
cantly more effective at preserving knowledge of deep neural
networks. Moreover, NPC contains a memory-efficient con-
solidation algorithm. Most existing consolidation algorithms
restrict individual connection weights to stay close to the val-
ues optimized for the previous tasks. Such algorithms need to
save the weight and importance value of each connection for
every task, and therefore, require memory and computation
proportional to the number of tasks. On the other hand, NPC
controls the plasticity of the neurons by simply adjusting their
learning rates according to their importance value and elimi-
nates the overhead to retain the task-specific information. As
NPC stores only a single importance value per neuron instead
of multiple sets of per-task parameter values, the memory
requirement remains consistent regardless of the number of
tasks.

Neuron-level Versus Connection-level

Consolidation

While the connection-level consolidation algorithms(Kirk-
patrick et al. 2017; Lee et al. 2017b; Liu et al. 2018;

Zenke, Poole, and Ganguli 2017; Aljundi et al. 2018) fo-
cus on the idea that knowledge is stored in the parameters,
which are the connection weights for neural networks, less
emphasis is given to their correlation. The connection-level
consolidation can be represented as the following loss func-
tion:

Loss = λ
∑
k<n

∑
i

Wi(θi − θi,k)
2 (1)

Where θi and θi,k denote the i-th parameter and its value
at the end of the learning of the k-th task, respectively. Wi

denotes the importance value of θi and λ is a hyperparameter.
Note that eq. (1) is based on an implicit assumption that

the weights in neural networks are roughly independent, and
a neural network can be linearly approximated by its weights.
However, the structure of deep neural networks is inherently
hierarchical, and therefore, the parameters are highly corre-
lated, i.e., modifying a parameter can affect the importance
value of another.

We argue that the neuron, or CNN filter, is more appro-
priate than the individual connection for the basic unit of
knowledge in the consolidation of the artificial neural net-
work. Conventional connection-level algorithms do not guar-
antee the preservation of important knowledge expressed by
neurons. Even if the learning algorithm consolidates some of
the connections to an important neuron, the neuron may have
remaining free incoming connections, the change of which
may severely affect the knowledge carried by the neuron.

Figure 1 illustrates the limitation of the connection-level
consolidation in deep neural networks more clearly. In the fig-
ure, although the neuron X is important for Task 1, changing
the value of θ1 or θ2 individually may not change the output
for task 1 significantly if the values of both θ1 and θ2 are
close to zero. In such a case, due to their low importance val-
ues, connection-level algorithms would consolidate neither
of the two connection parameters. Nonetheless, the neuron
X can be seriously affected during the subsequent learning,
when both parameters are rapidly increased, because they
are highly correlated and increasing one of them can boost
the importance of the other. This problem can be particularly
serious in convolution layers in which the same filters are
shared between multiple positions. Thus, even if the concept
of connection-level consolidation is perfectly implemented,
catastrophic forgetting cannot be eliminated completely.

To overcome this problem, we propose controlling the
plasticity at the neuron level rather than at the connection
level as shown in Figure 1(c). The proposed algorithm, NPC,
collectively consolidates all the incoming connections of
important neurons, including the connections that might not
individually be evaluated as important. As a result, NPC
protects the important neurons more effectively from the
change of unimportant neurons than the connection-level
consolidation algorithms. Note that the connection from an
unimportant neuron to an important neuron is likely to be
small, because otherwise, the evaluation algorithm would
not have determined the source neuron to be unimportant.
In the example shown in Figure 1, NPC consolidates all
the input connections of X , and as a result, the value of θ1
remains small, preventing the change of θ2 from affecting
X severely. On the other hand, NPC does not consolidate a

5340

connection whose destination neuron is unimportant, even if
the source neuron is important. Therefore, the total number
of consolidated connections in the whole network remains
acceptable.

Neuron-level Plasticity Control

Evaluation of Neuron Importance

To evaluate the importance of each neuron, we adopt a cri-
terion based on Taylor expansion that has been used in the
field of network pruning (Molchanov et al. 2016). Taylor
criterion is simple but powerful and remains one of the state-
of-the-art methods for network pruning.(Molchanov et al.
2019) Furthermore, the Taylor criterion is more computa-
tionally efficient than other methods such as (Yu et al. 2018;
Luo and Wu 2017; Luo, Wu, and Lin 2017), since Taylor
criterion is computed from the gradient of the loss function
with respect to the neurons, which is computed during back-
propagation. Therefore, it can easily be integrated into the
training process with minimal additional computation. We
have also attempted a few alternatives including the square
of gradient as (Kirkpatrick et al. 2017), but could not obtain
an improved result during experiment.

We measure the importance of each neuron by the nor-
malized Taylor criterion as shown in eq. (2) and (3). Then,
we take their exponential moving averages (EMA) as eq.
(4) to preserve the importance from the previous tasks. The
EMA also reduces the fluctuation of the measurements and
improves learning stability.

c
(t)
i = average

batch
|n(t)

i

dL(t)

dn
(t)
i

| (2)

c̄i
(t) =

c
(t)
i∑

layer c
(t)
j /Nlayer

(3)

C
(0)
i = 0, C

(t)
i = δC

(t−1)
i + (1− δ) c̄i

(t) (4)

C
(t)
i is the importance value of the i-th neuron at training

step t, ni denotes the activation of the i-th neuron. L is the
loss, and Nlayer is the number of nodes on the layer, and
δ is a hyperparameter that should be set to a value close to
one. The importance value of a convolution filter is computed
by averaging the importance values of the neurons on the
corresponding feature map before computing its absolute
value, following the original paper(Molchanov et al. 2016).
However, we use the arithmetic mean as in eq. (3), instead of
the L2-norm, in order to enforce stricter balance among the
layers composed of different number of neurons.

Plasticity Control

The stability-plasticity dilemma is a well-known constraint
in both artificial and biological neural systems(Mermillod,
Bugaiska, and Bonin 2013). Catastrophic forgetting can be
seen as a consequence of the same trade-off problem: at-
tempting to determine the optimal point that maximizes the
performance of the neural network for multiple tasks. We
control the plasticity of each neuron by applying different

learning rates ηi for each neuron. If ηi is high, the neuron ac-
tively learns the new knowledge at the cost of rapidly losing
existing knowledge. On the other hand, if ηi is low, existing
knowledge can be preserved better; however, the neuron will
be reluctant to learn new knowledge.

In order to encourage the neural network to find a good
stability-plasticity balance, we define two costs as functions
of ηi that play opposite roles; subsequently, we combine them.
The first is the stability-wise cost to minimize the forgetting
of existing knowledge. It should be a monotonically increas-
ing function of ηi starting at ηi = 0 and bounded above by
the amount of current knowledge. We heuristically defined
this function as lstability = a1Ci σ(b1ηi), where Ci is the
importance of the neuron, and σ is the activation function in-
creasing from zero to one, and a1, b1 are constants to control
the scale and the slope, respectively.

The second function is the plasticity-wise cost to decrease
the reluctance against new knowledge. It is a decreasing
function of ηi that starts from the maximum value at ηi = 0
and decreases monotonically to zero. The upper bound in
this case does not regard existing knowledge, and therefore,
is unrelated to Ci. We thus define the plasticity-wise cost as
lplasticity = a2(1− σ(b2ηi))

To find the balance between stability and plasticity, we
choose the ηi that minimizes the combined cost function eq.
(5).

η∗i = argmin
ηi

(lstability(ηi) + lplasticity(ηi))

= argmin
ηi

{a1Ciσ(b1ηi) + a2(1− σ(b2ηi))}
(5)

For σ, we considered hyperbolic tangent, sigmoid, and
error function. But we could not find a huge difference among
the choices of σ. We use sigmoid function, which is slightly
better than the others after the dense hyperparameter search.

By solving this minimization problem we get eq.(6),
where α =

√
4/(b22 − b21), β = a2b2/a1b1 are hyperparame-

ters.(Please see appendix for details.)

η∗i =

{
α
√

β
Ci
− 1 ifCi ≤ β

0 ifCi > β
(6)

As our intuition, a larger Ci draws a smaller η∗i , thereby
consolidating the important neurons in the subsequent learn-
ing. However, if Ci = 0, then η∗i diverges. This is explainable
from the perspective of the plasticity-stability dilemma: if a
neuron has no knowledge at all, it is desirable to learn the
new knowledge as much as possible without considering the
cost of existing knowledge. However, this cannot be applied
to reality. Therefore, we set an upper bound of the learning
rate ηmax.

η∗i =

{
min(ηmax, α

√
β
Ci
− 1) ifCi ≤ β

0 ifCi > β
(7)

We heuristically set ηmax = 0.1 for all experiments, which
is a common upper bound for neural network training.

Algorithm 1 summarizes the NPC algorithm. Considering
that Ci is also simply computed from the activation and

5341

Algorithm 1 Neuron-level Plasticity Control (NPC)
f : neural network model
ni : i-th neuron in f
wji : weight of connection from nj to ni

ηmax : upper bound of learning rate
α, β : hyperparameters controlling learning rate
δ : decay rate of the importance value of each neuron
Ci : importance value of i-th neuron

Ci ← 0, ∀i
for input, label in full training dataset do
y ← f(input)
L← CrossEntropy(y, label)
for ni in f do
ci ← average

batch
|ni

dL
dni
|

c̄i ← c
(t)
i∑

layer c
(t)
j /Nlayer

Ci ← δCi + (1− δ) c̄i

ηi ← min(ηmax, α
√
max(β

Ci
− 1, 0))

wji ← wji − ηi
dL
dwji

, ∀j
end for

end for

the gradient, which are computed by the back-propagation
algorithm, the overhead to implement NPC is minimal.

Instance Normalization

Batch normalization (BN) plays a key role in the training of
deep neural networks(Ioffe and Szegedy 2015). However, the
vanilla batch normalization does not work well in continual
learning environments, because the mean and the variance
are heavily affected by the transition of tasks. There are a few
alternatives available in such cases, such as conditional batch
normalization(De Vries et al. 2017) and virtual batch nor-
malization(Salimans et al. 2016). However, they are not ap-
propriate for NPC since they maintain task-specific informa-
tion. Therefore, we apply a instance normalization(Ulyanov,
Vedaldi, and Lempitsky 2016) with the affine transforms re-
moved. As instance normalization is applied to each sample
independently, it operates without any special manipulation
of model parameters not only at the training time but also at
the test time.

Experiments

We experimented on an incremental version of MNIST(Le-
Cun et al. 1998) and CIFAR100(Krizhevsky and Hinton
2009) datasets, where the datasets containing X classes were
divided into K subsets of X/K classes, each of which is
classified by the k-th task. We set K to 5 for MNIST and 10
for CIFAR100. For preprocessing, we applied random crop-
ping with padding size of 4 for both datasets. We also applied
random horizontal flip for the incremental CIFAR100 (iCI-
FAR100) dataset. Additionally, we experimented on sequen-
tial tasks with heterogeneous datasets, which is composed of
MNIST(LeCun et al. 1998), fashion-MNIST(fMNIST)(Xiao,

Rasul, and Vollgraf 2017), EMNIST(balanced dataset)(Co-
hen et al. 2017), and smallNORB (LeCun 2004).

For consistency, we redefined the unit of one epoch in
all experiments as the cycle in which the total number of
train data was seen. For example, as the original MNIST
dataset has 60,000 training samples, we defined one epoch
of the iMNIST dataset as the processing of the 12,000 task-
specific samples five times. With this definition of an epoch,
we trained the models for 30 epochs on each task. All experi-
ments were performed on a server with 2 NVIDIA Tesla P40
GPUs.

We used a simple CNN with 3 convolutional layers with
(128, 512, 256) channels, and 2 fully connected layers with
(512, number of classes) nodes. Each convolutional layer con-
sists of convolution, Instance normalization, ReLU activation,
and (2,2) max pooling. Dropout(Srivastava et al. 2014) of
rate 0.2 is applied between two fully connected layers. The
cross-entropy loss for each task was computed from only the
output nodes belonging to the current task.

For direct comparison between neuron-level and parameter
-level consolidation, we implemented an alternative algorithm
called ’Connection-level Plasticity Control(CPC)’ that is al-
most the same as NPC except that it consolidates the network
at the connection level. Note that producing a neuron-level
counterpart of weight consolidation is not trivial, since re-
stricting individual neurons to stay close to certain values is
not appropriate.

We compared our methods with EWC(Kirkpatrick et al.
2017), SI(Zenke, Poole, and Ganguli 2017), MAS(Aljundi
et al. 2018), SSL(Aljundi, Rohrbach, and Tuytelaars 2018),
and baseline SGD with simple L2 regularization. For hyper-
parameters of various continual algorithms. We first searched
with a unit of 10 based on average validation accuracy on
iCIFAR100 dataset. After that, we searched in space of one
significant digit. For example, if we found that λ = 10 is
better than λ = 1 or λ = 100, we searched for best value of
λ in (5,6,7,8,9,10,20,30,40,50).

As a result, we used αNPC = 0.05, βNPC =
0.5, δNPC = 1 − 2 · 10−4, λEWC = 900, λMAS =
3.0, λSI = 0.08, λSSL = 2 · 10−6. In a baseline experiment,
we used L2 regularization with λ = 10−4. Experiments are
averaged over 3 runs, But training curves are visualization of
single run.

In all experiments, NPC performed significantly better
than the connection-level consolidation algorithms. In partic-
ular, we found that CPC is very inefficient at preserving old
knowledge, even though it consolidates similar numbers of
weights with NPC. This shows that the neurons are more ap-
propriate than the connections as the units of neural network
consolidations.

We tuned our hyperparameters in the iCIFAR100 experi-
ment(Figure 2), based on average accuracy. Therefore each
algorithm has different balance points. NPC has achieved av-
erage validation accuracy 72.43% in iCIFAR100 experiment,
while that of connection-level consolidation algorithms is
between 50 ∼ 60%.

iMNIST experiment(Figure 3) is a relatively easy environ-
ment with only five binary classification tasks. We used larger
confidence decay(δ = 1−10−3) in this experiment. All algo-

5342

Figure 2: Training results of continual learning algorithms on the iCIFAR100 dataset. (top) Average validation ac-
curacy of tasks that have been trained up to each moment. (bottom) Average validation accuracy and standard
error(standard deviation /

√
of runs) for each task after finished training for all 10 tasks. NPC exhibits the best performance

for all tasks after finished training except for the last task. CPC was inefficient at preserving old knowledge, even though it
consolidates similar numbers of weights with NPC.

Figure 3: Training results of continual learning algorithms on the iMNIST dataset. (top) Average validation accuracy of tasks that
have been trained up to each moment. (bottom) Average validation accuracy and standard error for each task after completing
training for all five tasks. All algorithms achieved 100.0% validation accuracy for the last(5th) task. NPC preserved old knowledge
almost perfectly(99.63% average validation accuracy), but all other algorithms also worked well.

5343

Figure 4: Change in the activation of the neurons on the second top layer after learning a subsequent task. Using NPC, the average
change of the important neurons(0.094, center) was significantly smaller than the average change of all the neurons(0.383, left),
while the average change of less important neurons(0.667, right) was much larger than that of all neurons. Without consolidation,
there was no meaningful correlation between the change in neuron activation and their importance values.

Figure 5: Training curves of continual learning algorithms on
the MNIST, fMNIST, EMNIST, smallNORB dataset. (a) Av-
erage validation accuracy of tasks that have been trained up to
each moment. (b) Training curves of the four tasks according
to the learning algorithms. We used the same hyperparameter
with experiment on iCIFAR100(Figure 2) without modifi-
cation. Similar to other experiments, NPC exhibits the best
performance for all tasks after completing training except for
the last task.

rithms achieved 100.0% validation accuracy for the last(5th)
task. NPC preserved old knowledge almost perfectly(99.63%
average validation accuracy), but all other algorithms also
worked well.

In experiments with four different datasets(MNIST, fM-
NIST, EMNIST, smallNORB)(Figure 5), NPC also exhibits
the best performance. Some algorithms have had difficulty
maintaining performance when learning from smallNORB,
which is the most heterogeneous dataset of the four, but NPC
was hardly affected.

Additionally, we measured the change in the activation
of the neurons on the second top layer after learning a sub-
sequent task to see whether NPC successfully consolidates
important neurons. First, we trained a CNN for Task 1 of
iCIFAR100 for 30 epochs and recorded the neuron activation
values of the second top neurons(just before the final clas-
sifier) extracted from randomly chosen 256 samples. (512
neurons × 256 samples = 131,072 data points in total.) Then,
we trained the CNN for Task 2 for another 30 epochs. Fi-
nally, we measured the change in the neuron activation values
from the same sample. Figure 3 displays the results. Without
consolidation, there was no meaningful correlation between
the change in neuron activation and their importance values.
However, using NPC, the average change of activation of all
neurons was 0.383. The average change of activation of the
most important 10% of the neurons was only 0.094, while
that of the least important 10% of neurons was 0.667. These
results suggest that NPC successfully preserved the neurons
important for Task 1, while Task 2 was learned mainly by the
neurons less important for Task 1.

Conclusion and Discussion

In this paper, we proposed a continual learning algorithm,
NPC, that controls the plasticity of a neural network at the
neuron level, instead of restricting individual connection

5344

weights to stay close to certain values. NPC is effective in
preserving old knowledge since it consolidates all the incom-
ing pathways to important neurons. The experimental results
on three different sequential datasets show that NPC is sig-
nificantly more effective than conventional connection-level
consolidation algorithms that do not consider the relation
among connections. NPC has an additional benefit that it
does not maintain any task-specific information such as the
latest set of parameters optimized for each task, which makes
it more efficient in terms of memory and computational com-
plexity.

While NPC defines the unit and the method for controlling
plasticity, strategies for evaluating and managing the impor-
tance value of each neuron leaves room for exploration. Stud-
ies on network pruning show us how deep learning models
can learn complicated knowledge with a surprisingly small
size. However, without explicit intervention, deep neural net-
works tend to consume more capacity than actually needed.
As a result, we found that the model trained with NPC algo-
rithm performed relatively poorly on the last task in sequen-
tial training. We believe that NPC will benefit greatly if there
is a method to enforce the model to use minimal capacity per
task.

Appendix

Derivation of optimal plasticity

Starting from eq. (5),

η∗i = argmin
ηi

(lstability(ηi) + lplasticity(ηi))

= argmin
ηi

{a1Ciσ(b1ηi) + a2(1− σ(b2ηi))}
(8)

To get the minimum, first take dl/dηi = 0, if σ(x) ≡
sigmoid(x) = 1/(1 + e−x), we get eq. (10), where β =
a2b2/a1b1.

a1b1Ci

2(1 + cosh(b1η))
− a2b2

2(1 + cosh(b2η))
= 0 (9)

⇐⇒ 1 + cosh(b2η)

1 + cosh(b1η)
=

a2b2
a1b1Ci

=
β

Ci
(10)

The nature of function (1 + cosh(b2η))/(1 + cosh(b1η))
depends heavily on whether b1 ≥ b2 or b1 < b2. We set
b1 < b2 as a constraint, since otherwise optimal η∗i becomes
a simple step function of Ci.

Let us first assume that Ci ≤ β. we apply the Taylor
approximation to solve eq. (10) because there is no closed-
form inverse function of (1 + cosh(b2x))/(1 + cosh(b1x)).
Given that cosh is an even function, only the even degree
terms remain, as shown in eq. (11).

1 + cosh(b2ηi)

1 + cosh(b1ηi)
= 1 +

1

4
(b22 − b21)η

2
i +O(η4i) =

β

Ci
(11)

Assuming O(η4i) ≈ 0, the solution of eq. (11) is the same
as eq. (12), where α =

√
4/(b22 − b21).

η∗i =

√
4

b22 − b21

(β

Ci
− 1

)
= α

√
β

Ci
− 1 (12)

In case of Ci > β, l(ηi) increases strictly w.r.t. ηi. Since
η is non-negative, we simply get optimal η as η∗i = 0. Note
that η∗i = 0 at Ci = β in eq. (9), which makes the two
functions continuously connected. Combining the two cases
where Ci > β and Ci ≤ β, respectively, the solution of eq.
(6) is given by eq. (10), where α, β > 0 are hyperparameters.

η∗i =

{
α
√

β
Ci
− 1 ifCi ≤ β

0 ifCi > β
(13)

If we use σ(x) ≡ tanh(x) = (ex − e−x)/(ex + e−x),
with similar Taylor approximation, we get eq. (14), where
α = 1/

√
b22 − b21, β = a2b2/a1b1.

η∗i =

⎧⎨
⎩α

√√
β
Ci
− 1 ifCi ≤ β

0 ifCi > β
(14)

For error function, since derivative of error function is
simple Gaussian, we get eq. (15) without approximation,
where α = 1/

√
b22 − b21, β = a2b2/a1b1

η∗i =

{
α
√

log(β/Ci) ifCi ≤ β

0 ifCi > β
(15)

Since sigmoid, tanh, and error function are S-shape func-
tions with similar shape, the derived functions of optimal
plasticity also have similar shapes and properties. We found
that the choice of σ does not critically affect the performance
of NPC. We used sigmoid function, which does not outper-
form but does slightly better than the others.

References

Aljundi, R.; Babiloni, F.; Elhoseiny, M.; Rohrbach, M.; and
Tuytelaars, T. 2018. Memory aware synapses: Learning what
(not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), 139–154.
Aljundi, R.; Chakravarty, P.; and Tuytelaars, T. 2017. Expert
gate: Lifelong learning with a network of experts. 3366–
3375.
Aljundi, R.; Rohrbach, M.; and Tuytelaars, T. 2018. Selfless
sequential learning. arXiv preprint arXiv:1806.05421.
Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
Emnist: an extension of mnist to handwritten letters. arXiv
preprint arXiv:1702.05373.
De Vries, H.; Strub, F.; Mary, J.; Larochelle, H.; Pietquin,
O.; and Courville, A. C. 2017. Modulating early visual
processing by language. 6594–6604.
Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.;
Rusu, A. A.; Pritzel, A.; and Wierstra, D. 2017. PathNet:
Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734.
Gepperth, A., and Karaoguz, C. 2016. A bio-inspired incre-
mental learning architecture for applied perceptual problems.
Cognitive Computation 8(5):924–934.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

5345

Kamra, N.; Gupta, U.; and Liu, Y. 2017. Deep generative
dual memory network for continual learning. arXiv preprint
arXiv:1710.10368.
Kim, H.-E.; Kim, S.; and Lee, J. 2018. Keep and learn:
Continual learning by constraining the latent space for
knowledge preservation in neural networks. arXiv preprint
arXiv:1805.10784.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Des-
jardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.;
Grabska-Barwinska, A.; et al. 2017. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the
national academy of sciences 201611835.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple
layers of features from tiny images.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
LeCun, Y., H. F. J. B. L. 2004. Learning methods for generic
object recognition with invariance to pose and lighting. IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition 2(104).
Lee, J.; Yun, J.; Hwang, S.; and Yang, E. 2017a. Life-
long learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547.
Lee, S.-W.; Kim, J.-H.; Jun, J.; Ha, J.-W.; and Zhang, B.-T.
2017b. Overcoming catastrophic forgetting by incremental
moment matching. 4652–4662.
Li, Z., and Hoiem, D. 2018. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 40(12):2935–2947.
Liu, X.; Masana, M.; Herranz, L.; Van de Weijer, J.; Lopez,
A. M.; and Bagdanov, A. D. 2018. Rotate your networks:
Better weight consolidation and less catastrophic forgetting.
arXiv preprint arXiv:1802.02950.
Lopez-Paz, D. 2017. Gradient episodic memory for contin-
ual learning. Advances in Neural Information Processing
Systems 6467–6476.
Luo, J.-H., and Wu, J. 2017. An entropy-based
pruning method for cnn compression. arXiv preprint
arXiv:1706.05791.
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level
pruning method for deep neural network compression. 5068–
5076.
Masse, N. Y.; Grant, G. D.; and Freedman, D. J. 2018. Alle-
viating catastrophic forgetting using context-dependent gat-
ing and synaptic stabilization. Proceedings of the National
Academy of Sciences 115(44):E10467–E10475.
McCloskey, M., and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. 24:109–165.
Mermillod, M.; Bugaiska, A.; and Bonin, P. 2013. The
stability-plasticity dilemma: Investigating the continuum
from catastrophic forgetting to age-limited learning effects.
Frontiers in psychology 4:504.

Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; and Kautz, J.
2016. Pruning convolutional neural networks for resource
efficient inference. arXiv preprint arXiv:1611.06440.
Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; and Kautz,
J. 2019. Importance estimation for neural network pruning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 11264–11272.
Nguyen, C. V.; Li, Y.; Bui, T. D.; and Turner, R. E. 2017. Vari-
ational continual learning. arXiv preprint arXiv:1710.10628.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for
training GANs. 2234–2242.
Serrà, J.; Surı́s, D.; Miron, M.; and Karatzoglou, A. 2018.
Overcoming catastrophic forgetting with hard attention to the
task. arXiv preprint arXiv:1801.01423.
Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual
learning with deep generative replay. 2990–2999.
Siavash Golkar, Michael Kagan, K. C. 2019. Continual learn-
ing via neural pruning. arXiv preprint arXiv:1903.04476.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2016. Instance
normalization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han, X.;
Gao, M.; Lin, C.-Y.; and Davis, L. S. 2018. NISP: Pruning
networks using neuron importance score propagation. 9194–
9203.
Zacarias, A. S., and Alexandre, L. A. 2018. Over-
coming catastrophic forgetting in convolutional neural net-
works by selective network augmentation. arXiv preprint
arXiv:1802.08250.
Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual learn-
ing through synaptic intelligence. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
3987–3995. JMLR. org.

5346

