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Abstract

This paper focuses on energy model based structured out-
put prediction. Though inheriting the benefits from energy-
based models to handle the sophisticated cases, previous deep
energy-based methods suffered from the substantial compu-
tation cost introduced by the enormous amounts of gradient
steps in the inference process. To boost the efficiency and
accuracy of the energy-based models on structured output
prediction, we propose a novel method analogous to the ad-
versarial learning framework. Specifically, in our proposed
framework, the generator consists of an inference network
while the discriminator is comprised of an energy network.
The two sub-modules, i.e., the inference network and the
energy network, can benefit each other mutually during the
whole computation process. On the one hand, our modified
inference network can boost the efficiency by predicting good
initializations and reducing the searching space for the infer-
ence process; On the other hand, inheriting the benefits of the
energy network, the energy module in our network can eval-
uate the quality of the generated output from the inference
network and correspondingly provides a resourceful guide to
the training of the inference network. In the ideal case, the
adversarial learning strategy makes sure the two sub-modules
can achieve an equilibrium state after steps. We conduct ex-
tensive experiments to verify the effectiveness and efficiency
of our proposed method.

Introduction
Structured output prediction, which aims to learn a mapping
from an input x to a complex multivariate output structure
y, has been receiving significant attention due to its wide
applications. For example, given an image, we predict a set
of semantic labels with inter-relations for it, or output a se-
mantic segmentation map for it. Not surprisingly, predicting
structured output for a given input is challenging because in-
put data, output structures, and their internal relations all live
in a high-dimensional space. To learn the sophisticated rela-
tionships between the input and output, a prediction model
with excellent expressivity capability as well as computa-
tional tractability needs to be learned.
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To solve the aforementioned problem, LeCun (LeCun et
al. 2006) suggest to define a prediction function that asso-
ciates energy values to different configurations of output
structures and name it as Energy-Based Method (EBM).
Specifically, EBM suggests to solve the structured inter-
relation between input x and ground-truth labels y∗ by
learning parameters w for an energy function v(.), i.e.,
y∗ = argmaxyv(x,y). Comparing to feed-forward meth-
ods, the energy based method is able to achieve more ac-
curate results since it can substantially handle complicated
non-convex energies, which has been experimentally proved
in previous work (Belanger, Yang, and McCallum 2017).

As indicated in the previous work (Belanger and McCal-
lum 2016), the critical component in the learning of a deep
energy-based model for structured prediction is how to find
“the most offending incorrect answer” at each training step.
The most offending answer ỹ is defined as an answer with
the highest energy but with an incorrect label, i.e., different
from the ground truth y∗:

ỹ = arg max
y �=y∗

v(x,y). (1)

Some methods (Belanger and McCallum 2016; Gygli,
Norouzi, and Angelova 2017) utilize gradient-based infer-
ence with zero initialization to find ỹ. The inference pro-
cess convergences slowly, especially when the energy-based
models are extremely complex, e.g., deep neural networks,
and y is high-dimensional. Other methods (Tu and Gimpel
2018) propose to learn an inference network to approximate
ỹ. However, learning an optimal inference network at each
training step is still computationally expensive.

To improve the process of finding the most offending ỹ,
we propose a novel adversarial learning framework. Under
the designed framework, the generator network is in the
form of an inference network, while the discriminator net-
work is in the form of an energy network. The inference
network is learned to approximate ỹ and updated for sev-
eral (usually one) gradient steps at each training step. To
eliminate the discrepancy between the inference network ap-
proximation y′ = g(x) and the true ỹ, we further apply a
gradient-based inference to refine y′. The refined y′ is used
to train the energy network, i.e., the discriminator.

Thanks to the adversarial learning strategy, our frame-
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work can make two sub-modules leverage the mutual ben-
efits to boost the final performance. In particular, the infer-
ence network is learned to predict outputs that get closer to
the optimal outputs as the training continues. These outputs
serve as the initialization points for the gradient-based infer-
ence, which speeds up both the training and inference of the
energy network. On the other hand, the energy network will
provide a resourceful guide to the training of the inference
network by evaluating the quality of the generated output
from the inference network.

We name the proposed method Adversarial Localized En-
ergy Network (ALEN). Our approach inherits the advan-
tages of EBM and can handle complicated energy spaces
as EBM does. Compared to previous EBM based meth-
ods (Gygli, Norouzi, and Angelova 2017; Belanger, Yang,
and McCallum 2017; Tu and Gimpel 2018), there are criti-
cal differences between the proposed framework and them:
(1) (Gygli, Norouzi, and Angelova 2017) requires to sample
massive training samples in the entire output space, while in
our framework, the energy network leverages an inference
network to provide training samples which largely reduces
the training complexity; (2) our method takes an inference
network as a generator and conducts the learning process
in an adversarial learning paradigm, while (Belanger, Yang,
and McCallum 2017) fails to achieve this; (3) We adopt a
gradient-based inference to refine further the “inaccurate”
approximations predicted by the inference network, while
(Tu and Gimpel 2018) simply utilize the “inaccurate” ap-
proximations to train the energy network.

Although based on the adversarial learning framework,
our framework has key differences comparing with the clas-
sical adversarial learning framework: (1) the generator (in-
ference network) in our framework does not generate images
but make a coarse structured output prediction; (2) the dis-
criminator (energy network) in our framework does not treat
the generator outputs as negative samples, instead, inherit-
ing the benefits of EBM, it evaluates the quality of the out-
puts from the generator by calculating a real score in a soft
way. Comparing to the hard “real/fake” prediction, the esti-
mated quality score can provide more fine-grained informa-
tion to facilitate the generator to provide predictions closer
to the optimal configurations. In this way, the generator and
discriminator in our framework can take advantage of more
vigorous information to facilitate the training process.

We conduct experiments on different problems for the
validation, including multi-label classification, binary image
segmentation, and 3-class face segmentation tasks. The ex-
perimental results indicate that our proposed method can not
only refine the final results to a higher stage even with a
smaller input resolution, but also improve the convergence
in the training and inference stages.

Preliminary

Energy-based models.

Different from feed-forward models, energy-based mod-
els (LeCun et al. 2006) take an input x and its corresponding
label y as inputs, and predict an energy value. This energy
value measures the compatibility of the label y correspond-

ing to the input x. A large score indicates the high coherence
between y and the ground truth label y∗.

To simplify the discussion without losing the generality,
we begin with the generalized perceptron loss for energy-
based models v(x,y; θv) proposed in (LeCun et al. 2006).

L(θv) =
∑

(x,y∗)∼D

[
max
y∈Y

v(x,y; θv)− v(x,y∗; θv)
]
, (2)

with the input x and ground-truth label y∗ from training set
D.

When learning an energy-based model with this loss func-
tion, it is critical to find the most offending incorrect an-
swers ỹ = argmaxy∈Y v(x,y; θv) at each training step.
Many existing methods (Belanger and McCallum 2016;
Gygli, Norouzi, and Angelova 2017) adopt gradient-based
inference with zero initialization to find ỹ. However, as in-
dicated in previous works (Belanger and McCallum 2016),
when energy-based models are deep neural networks, and
y is high-dimensional, the inference process usually costs
many steps to converges.

Inference network.

An alternative way of finding the most offending ỹ is intro-
ducing an inference network g(x; θg) to make an approxi-
mation (Tu and Gimpel 2018). After introducing the infer-
ence network g(x; θg), the original objective function 2 is
transformed into the following objective function:

max
θv

min
θg

∑
(x,y∗)∼D

[v(x,y∗; θv)− v(x, g(x; θg); θv)] . (3)

The most frequently used strategy to solve this objective
function is to alternatively learn v(x,y; θv) and g(x; θg) at
each training step. More specifically, fixing g(x; θg) and op-
timize v(x,y; θv), and vice verse. In an ideal case, the train-
ing process stops when an equilibrium state is achieved.

Theoretically speaking, different energy-based models
correspond to different inference networks for achieving
the results with high accuracy. During the training process,
the parameters of the energy-based models keep changing,
which correspondingly needs thousands of gradient steps to
find an optimal inference network to match. All of these
make the whole computation process too expensive.

Adversarial localized energy network.
We argue that it is not necessary to achieve a “perfect” in-
ference network at the cost of thousands of gradient steps
for each training step. On the contrary, a “coarse” inference
network has already been able to provide sufficient informa-
tion for the further process. Based on this, we propose to
optimize the inference network for only one gradient step at
each training step. Since the inference network is adjusted
for only one step, the computation cost is minimized to a
great extent. To reduce the discrepancy between the ground
truth and predicted answers y′ = g(x; θg) generated by the
“coarse” inference network, we apply a gradient-based in-
ference to refine y′:

y(t+1) = PY

(
y(t) + η

∂

∂y
v(x,y(t); θv)

)
, (4)
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with y(0) = y′. Here t denotes the t-th refinement step, and
PY denotes an operator that projects the predicted outputs
back to the feasible set of solutions. Note that the inference
process aims to refine y′ rather than learning the energy net-
work. In our observations, this refinement process converges
to an answer approximated to the most offending answer,
i.e., ỹ, in several refinement steps. We name this approxi-
mated answer y′′. Only a few refinement steps are needed in
each training step. We propose to learn v(x,y; θv) with y′′
and rewrite Equation 3 as:

max
θv

min
θg

∑
(x,y∗)∼D

[v(x,y∗; θv)− v(x, g(x; θg); θv)

−v(x,y′′; θv)] .
(5)

Note that the above equation is similar to the objective func-
tion of Wasserstein GAN (WGAN) (Arjovsky, Chintala, and
Bottou 2017). The difference is that we aim to learn an
energy-based model to capture the training data distribution,
while WGAN seeks to learn a vanilla generative model to
achieve the same goal.

Least square objective function. In the experiments, we
notice that learning energy-based models with Equation 5
is unstable. Inspired by the success of Least Square GAN
(LSGAN) (Mao et al. 2016), we propose a least-squares ob-
jective function:

Ladv(θv) =
∑

(x,y∗)∼D

[
1

2
(v(x,y∗; θv)− a)

2 (6a)

+
λv

2
(v(x, g(x; θg); θv)− b)

2 (6b)

+
βv

2
(v(x,y′′; θv)− c)

2
]
, (6c)

Ladv(θg) =
∑
x∼D

[
1

2
(v(x, g(x; θg); θv)− d)

2

]
, (7)

with trade-off parameters λv and βv . We set a = d = 1. We
set b and c to the oracle value functions proposed in deep
value network (DVN) (Gygli, Norouzi, and Angelova 2017):
b = h(g(x; θg),y

∗) and c = h (y′′,y∗). The formulation of
function h will be illustrated in the following parts.

In our experiments, the oracle value function h can be F1

metrics, which are defined on (y,y∗) ∈ {1, 0}M ×{0, 1}M ,

h(y,y∗) =
2(y ∩ y∗)

(y ∩ y∗) + (y ∪ y∗)
. (8)

Here y ∩ y∗ denotes the number of dimension i where both
yi and y∗i are active and y ∪ y∗ denotes the number of di-
mensions where at least one of yi and y∗i is active. yi and
y∗i denote the i-th variable of y and y∗. To apply h(y,y∗)
to the continuous output y, the notions of intersection and
union are extended by using element-wise min and max op-
erators,

y ∩ y∗ =

M∑
i=1

min(yi, y
∗
i ), (9)

Algorithm 1 ALEN training
Input: training data C

1: while not converged do
2: (x,y∗) ∼ C
3: calculate y′′ according to Equation 4.
4: update θv according to Equation 6.
5: update θg according to Equation 11.
6: end while

Output:energy network weight θv and inference network
weight θg

y ∪ y∗ =

M∑
i=1

max(yi, y
∗
i ). (10)

Improvement training for inference networks with
θg . We notice that adding a task-specific surrogate loss
Ltask(θg) = loss(g(x; θg),y∗) can improve the training of
inference networks with parameters θg . For example, the
surrogate loss can be a cross-entropy loss in image seg-
mentation tasks. This loss can make the inference network
predicts answers, i.e., y′, and its refined counterpart, i.e.,
y′′, more close to the ground-truth labels. The energy-based
model is always learned to capture the data distribution of a
local domain around the ground-truth labels. The training of
the energy-based model can be accelerated. To this end, we
translate Equation. 7 into a following formulation:

L(θg) = Ltask(θg) (11a)
+λgLadv(θg), (11b)

with a trade-off parameter λg .

Optimization. We utilize the Adam optimizer (Kingma
and Ba 2014) with the momentum term β1 = 0.5 to train
the inference network and the energy-based model. At each
training iteration, we generate y′′ and update the parame-
ters of the inference network and the energy-based model
according to Equation. 11 and Equation. 6. The process is
summarized in Algorithm 1.

Gradient-based Inference. After the energy-based model
is learned, we also use a gradient-based inference to find
a structural output with a high energy value. Different
from (Gygli, Norouzi, and Angelova 2017), we use the out-
put structure predicted by the inference network as the ini-
tialization of the gradient-based inference. However, it is ob-
served in experiments that the learned EBM tends to give
zero gradients during the gradient-based inference. One rea-
son is that the predicted output structure of the inference
network is already close to the optimal structure. In order
to further improve the predicted output structure of the in-
ference network by using the gradient-based inference and
overcome the zero-gradient issue, we use a normalized gra-

5349



dient method, i.e.,

y(t+1) = PY

⎛
⎝y(t) + η

(
∂
∂yv(x,y

(t); θv)
)

∣∣∣∣∣∣ ∂
∂yv(x,y

(t); θv)
∣∣∣∣∣∣
⎞
⎠ . (12)

In the experiments, we find that the above equation is bene-
ficial for both training and inference processes.

Discussion

The goal of our proposed learning framework is to improve
the efficiency and accuracy of structured output prediction.
We will explain why our framework is helpful based on pre-
vious studies of optimization and learning theory.

Provide better initialization From many optimization
studies for both convex and non-convex optimization, it is
well-known that the convergence of gradient-based meth-
ods depends on the quality of initialization (Mohri, Ros-
tamizadeh, and Talwalkar 2012). A standard analysis of
the gradient descent (GD) method for a smooth function
shows that in order to find a stationary solution x̂ such that
‖∇f(x̂)‖2 ≤ ε, the GD needs at most 2L(f(x0)−f∗)

ε2 itera-
tions, where L is the smoothness constant of f(x). It can be
seen that the convergence speed of the GD depends linearly
on the distance between the initial solution and the station-
ary point in terms of the function value. In our case, the pro-
posed inference network predicts initializations close to the
ground-truth labels for the inference process.

Reduce the size of data space The sample complexity of
learning a hypothesis depends on the size of the data space.
This is implied by many learning theories (Mohri, Ros-
tamizadeh, and Talwalkar 2012). The proposed framework
learns an energy network v(x,y; θv) via a least square loss.
The framework can be understood from a regression setting
with z = (x,y) as input feature and h(y,y∗) as the target
output. Consider a classical learning theory result for learn-
ing a linear model φ(·) ∈ H = {φ : z → w�z : ‖w‖ ≤ B}.
In particular, the excess risk of empirical risk minimizer is
given by

Ez[	(φ̂(z), v)]−min
φ∈H

Ez[	(φ(z), v)]

≤ C1GRn(H) + C2

√
1

n
,

(13)

where C1 and C2 are some constants or parameters that de-
pend on desired confidence score, G is the Lipchitz con-
stant of the loss function 	(·, ·) with respect to the first vari-
able, and Rn(H) is the Rademacher complexity of a func-
tion class H. For a linear model class, Rn(H) ∝ RB/

√
n,

where R = maxz ‖z‖ is the measure of the size of the data
space. Although the above reasoning is not exact for learn-
ing the energy network for structured output prediction, it
suffices to illustrate our point, i.e., the larger the input data
space, the more samples are needed for learning an accurate
model. The proposed framework reduces the input space of
the energy network to a local region around the ground-truth
labels.

Related Work

Generative Adversarial Network. Our ALEN is similar to
the Generative Adversarial Network (GAN) framework to
some extent. The GAN is a framework for training genera-
tive models, and its ability to generate high-quality images
has been shown in (Goodfellow et al. 2014; Radford, Metz,
and Chintala 2015; Denton et al. 2015; Isola et al. 2016;
Park et al. 2018; Song et al. 2018). The GAN framework
consists of a generator network G and a discriminator net-
work D. G is trained to capture the data distribution, while
D is trained to distinguish samples generated by G from the
training data. The difference between GAN and our frame-
work is that our energy network is not to differentiate the
input-output pairs generated by the inference network from
the real input-output pairs. Instead, the generated pairs are
used to accelerate the training of the energy network.

Deep structured prediction. Recent years have wit-
nessed the rising interest in applying neural networks to the
structured prediction (Zheng et al. 2015; Chen et al. 2015;
Song et al. 2016). (Amos, Xu, and Kolter 2016) proposed to
add constraints to the neural network parameters such that
the output of the neural network is a convex function of
(some of) the inputs. Their constraints may impose a strong
restriction on the expressivity of the neural network.

Partly inspired by the energy-based learning framework
proposed by (LeCun et al. 2006), (Belanger and McCal-
lum 2016) introduced Structured Prediction Energy Net-
work (SPEN). SPEN relies on a max-margin surrogate ob-
jective to ensure that the neural network predicts the low-
est energy value for the ground-truth label. (Belanger, Yang,
and McCallum 2017) improved SPEN by proposing an end-
to-end version of SPEN, which directly back-propagates
through a computation graph that unrolls gradient-based en-
ergy minimization.

Inspired by reinforcement learning, (Gygli, Norouzi, and
Angelova 2017) proposed a novel energy-based network to
critique different output configurations directly. The key to
train their network is to generate proper samples that cover
the space of the output, but it becomes hard when the output
has an enormous number of variables. We solve this prob-
lem by introducing an inference network, which is treated
as a generator, to collaborate with the energy network. The
introduced inference network aims to provide appropriate
samples to the energy module, and gradually assist the en-
ergy network in covering a local neighborhood around the
ground-truth label for each input.

Experiments

To make a fair comparison, we follow the same protocol
and tasks like (Gygli, Norouzi, and Angelova 2017), in
which three different tasks are tested, including multi-label
classification, binary image segmentation, and 3-class face
segmentation. Firstly we compare the accuracies from our
framework with previous works, and then we analyze the
convergence speed between ALEN and DVN, which is the
closest to our work. Comparing to DVN, ALEN learns an
inference network to provide better initializations, which re-
duces the searching space and speeds up the inference pro-
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cess. Based on the comparison results, we justify that our
proposed framework not only achieves better prediction re-
sults but also converges faster than (Gygli, Norouzi, and
Angelova 2017). Our implementation is based on Tensor-
flow (Abadi et al. 2016). We also implement the proposed
method with PaddlePaddle and achieve similar performance.
We find the best hyperparameters for all the algorithms via
grid search.

Accuracy Improvement

Multi-label Classification We use standard benchmarks
of this task, namely Bibtex and Bookmarks, introduced
by (Katakis, Tsoumakas, and Vlahavas 2008). The learned
models are evaluated on the testing set of those two
datasets to report the F1 scores. To make a fair compari-
son with (Gygli, Norouzi, and Angelova 2017), we choose
the same energy network architecture, the same optimizer
(Adam) with individually-tuned learning rates. A two-layer
neural network (Belanger and McCallum 2016) is utilized as
our inference network.

We compare the prediction performance of the pro-
posed framework and standard baselines including logis-
tic regression (Lin et al. 2014), a two-layer neural network
with a cross-entropy loss (Belanger and McCallum 2016),
SPEN (Belanger and McCallum 2016), PRLR (Lin et al.
2014), and DVN (Gygli, Norouzi, and Angelova 2017) on
multi-label classification in Table 1. As illustrated in the
table, although utilizing the same architecture, the ALEN
still outperforms the DVN on both Bibtex and Bookmarks
datasets. More than that, ALEN outperforms the SPEN by
a large margin (4.2% on Bibtex, 3.9% on Bookmarks).
Not surprisingly, our framework significantly improves over
feed-forward models: the logistic regression, the two-layer
neural network, and the PRLP, which are lacking the ability
to learn complex correlations among variables in the output
structures.

We implemented an adversarial energy network (AEN)
which learns the energy network only with “inaccurate”
inference network approximations. In other words, AEN
learns the energy network only with the first and the sec-
ond terms of Equation 6. Our method outperforms AEN and
SPEN(InfNet) (Tu and Gimpel 2018) on both datasets. It
shows that applying a gradient-based inference to refine “in-
accurate” inference network approximation, as indicated by
Equation. 4, helps to improve the energy network perfor-
mance.

We make comparisons with the other three methods as
ablation studies. One is named “InfNet baseline”, which is
implemented by training an inference network by minimiz-
ing a task-specific surrogate loss, i.e., the first term of Equa-
tion 11. Another one is “ALEN no Ltask” where ALEN is
learned without the task-specific surrogate loss. The last one
is referred to as “InfNet (ALEN)” representing the results
predicted by the inference network of the ALEN. In this
setting, the inference network and the energy-based model
are trained adversarially, but in the inference stage, only the
inference network is utilized to make the structured pre-
diction. As shown in Table 1, ALEN outperforms all of
the three baseline methods significantly, which demonstrates

Method Bibtex Bookmarks

Logistic Regression 37.2 30.7
Two layer Neural Network 38.9 33.8

SPEN 42.2 34.4
SPEN(InfNet) 42.2 37.6

PRLR 44.2 34.9
DVN 44.7 37.1

Eq 6 Eq 11
a b c a b

InfNet baseline � 38.9 32.8
AEN � � � � 44.2 34.6

ALEN no Ltask � � � � 45.3 37.1
InfNet (ALEN) � � � � � 42.8 37.2

ALEN � � � � � 46.4 38.3

Table 1: The comparison of F1 scores between ALEN and
other state-of-the-art methods on Bibtex and Bookmarks
datasets. The “InfNet baseline” is implemented by training
an inference network by minimizing a task-specifc surrogate
loss, i.e., the first term of Equation 11. “AEN” is a base-
line model that learns the energy network only with “inac-
curate” inference network approximation. “ALEN no Ltask”
denotes that ALEN is learned without the task-specific sur-
rogate loss. The “InfNet (ALEN)” represents the results pre-
dicted by the inference network of the ALEN.

the superiority of the adversarial learning strategy (ALEN
vs. InfNet baseline), task-specific surrogate loss (ALEN vs.
ALEN no Ltask), and the energy network utilization in in-
ference stages (ALEN vs. InfNet(ALEN)).

3-class Face Segmentation We utilize the Labeled Faces
in the Wild (LFW) dataset (Huang et al. 2007) to evaluate
our framework on 3-class face segmentation. This dataset
contains more than 13, 000 images, in which 2, 927 images
are annotated for face segmentation. The annotations pro-
vide superpixel-level labels, which consist of three classes:
face, hair, and background. Since our method generates
pixel-level labels, we map pixel-level labels to superpixel-
level labels by using the most frequent labels in a superpixel
as the superpixel’s label following (Tsogkas et al. 2015;
Gygli, Norouzi, and Angelova 2017). We follow the same
training, validation, and testing splits proposed in (Kae et al.
2013; Tsogkas et al. 2015; Gygli, Norouzi, and Angelova
2017) and utilize the same network architecture and data
augmentation strategy as them.

We report the comparison results in Table 2. Thanks
to the adversarial learning strategy in our method, when
given the same input size of 32 × 32, our framework out-
performs DVN (Gygli, Norouzi, and Angelova 2017) by a
large marge (4.03%). More than that, given low-resolution
input, the performance of our method is still comparable
or better than the previous state-of-the-art methods, which
need high-resolution input (250 × 250). The qualitative re-
sults of our approach are shown on the LFW dataset in Fig-
ure 1. As shown in Figure 1, our method can generate high-
quality hair and face segmentation masks that are close to the
ground-truth labels except for the mustache, which is tiny in
low-resolution images and therefore quite hard to predict.
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METHOD SP ACC.
%

IN
P

U
T

S
IZ

E

3
2
×
3
2 DVN 92.44

FCN BASELINE 95.36
INFNET (ALEN) 95.87

ALEN 96.47
2
5
0
×
2
5
0 CRF 93.23

GLOC 93.23
DNN 96.54

DNN+CRF+SBM 96.97

Table 2: The comparison of superpixel accuracy (SP Acc)
between our framework and other state-of-the-art methods
on the LFW dataset. “InfNet (ALEN)” represents the results
predicted by the inference network of our ALEN.

Binary Image Segmentation Following the work of
DVN (Gygli, Norouzi, and Angelova 2017), we utilize the
Weizmann horses dataset (Borenstein and Ullman 2004) to
compare the performance on binary image segmentation. It
is a commonly used dataset for binary image segmentation,
which consists of 328 left-oriented horse images and cor-
responding binary segmentation masks. In (Gygli, Norouzi,
and Angelova 2017; Li, Tarlow, and Zemel 2013), all im-
ages and segmentation masks are resized to 32× 32. At this
low resolution, the segmentation becomes challenging and
requires models to capture strong priors of the horse shape,
since some thin parts of the horse-like legs, tails are almost
invisible in the images. We follow the experimental proto-
col of (Li, Tarlow, and Zemel 2013) to split the Weizmann
horses dataset and report results on the same testing set.
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Figure 1: Qualitative results on the LFW dataset. Our
method can generate high-quality hair and face segmenta-
tion masks that are close to the ground-truth labels. For the
mustache, it is tiny on low-resolution images and therefore
it is hard to predict.

To achieve better performance on this dataset, we imple-
ment the energy network as a fully convolutional network
(FCN) rather than a classifier. Our energy networks map
(x,y) to score matrices. We view image segmentation as

pixel-level multi-label classification. Our inference network
is also implemented as an FCN. Both FCNs consist of three
5 × 5 convolutional layers and two deconvolution layers.
We follow the same DVN optimization schedule in (Gygli,
Norouzi, and Angelova 2017) to train the energy network in
our framework, which is used as a baseline and referred as
to the “DVN baseline”.

As commonly done in previous works, we report the
Mean IOU as well as the Global IOU over the whole testing
set on the Weizmann horses dataset in Table 3. A higher IOU
score means a more accurate segmentation result. As illus-
trated in Table 3, using an energy network to refine the pre-
dictions of an inference network improves the performance
by 4.2% on the Mean IOU metric and 4.1% on the Global
IOU metric (ALEN vs. InfNet(ALEN)). On both metrics,
our framework outperforms previous state-of-the-art meth-
ods, including MMBM2 (Yang, Safar, and Yang 2014),
MMBM2+GC (Yang, Safar, and Yang 2014) and Shape NN
(Safar and Yang 2015), which take high-resolution images
as their input or utilize a deeper segmentation network((Sa-
far and Yang 2015)). It can be observed that our adversar-
ial learning framework can greatly improve the performance
of the inference network. It improves the Mean IOU from
78.56% to 81.3% and the Global IOU from 78.7% to 81.3%.

Input Method Mean Global
size IOU % IOU %

322

CHOPPS 69.9 -
DVN 84.1 84.0

FCN baseline 78.56 78.7
DVN baseline 84.7 84.3

InfNet (ALEN) 81.3 81.3
ALEN 85.5 85.4

1282
MMBM2 - 72.1

MMBM2 + GC - 75.8
Shape NN - 83.5

Table 3: The comparison of IOU between our ALEN and
other state-of-the-art methods on the Weizmann horses
dataset. “DVN baseline” is implemented by using the frame-
work of (Gygli, Norouzi, and Angelova 2017) to train our
energy network. “InfNet (ALEN)” represents the results pre-
dicted by the inference network of our ALEN.

The qualitative results on the Weizmann horses dataset
are shown in Figure 2. Without using the energy network
in the inference stage, only using the inference network
for segmentation (the third row) shows poor performances
when segmenting thin parts like legs, and generates single-
connected segmentation masks. After introducing the energy
network via adversarial learning framework, our proposed
method refines the inference network output by filling the
missing part (e.g., Figure 2, second and third row, far left
images), generating legs to connect disconnected parts (e.g.,
Figure 2, second and third row, first and second images from
the right).
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Figure 2: Qualitative results on the Weizmann 32×32 dataset.
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Figure 3: The comparison of inference between the DVN
and our ALEN.

Convergence Comparison on Multi-label
Classification

To show that our framework can accelerate the training and
inference of energy networks, we compare the proposed
framework and DVN on the multi-label classification task.
F1 scores calculated at each inference step are reported in
Figure 3. The curves show that the inference network of
the ALEN estimates a good output initialization, and the
ALEN converges faster than the DVN on both datasets. The
gradient ascent optimizer finds the optimal output of the
ALEN within 6 steps, while it takes 18 steps for the DVN.
These results provide the empirical evidence that the infer-
ence network in our framework provides close-to-optimal
initialization and therefore accelerates the convergence of
the gradient-based inference.

We also compare the training process between the pro-
posed framework and the DVN in Figure 4. The models are
evaluated on the testing set every 5 epochs during the train-
ing process. From the figure we can find that: (1) our method
outperforms the DVN at most times; (2) compared with the
DVN, our method tends to converge faster. These results in-
dicate that learning an energy network in a local neighbor-
hood of the optimal output configurations promotes the per-
formance of the energy network and accelerates the training.
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Figure 4: The comparison of the training speed between the
DVN and our ALEN.

Conclusion

This paper proposes a new adversarial learning framework
to solve the structured output prediction. Comparing with
the previous work (Gygli, Norouzi, and Angelova 2017),
our proposed method can not only improve the final perfor-
mance but also speed up the training and inference process.
In this framework, an inference network is learned to gen-
erate outputs close to the optimal output configurations. An
energy network can be learned faster, and the inference can
be accelerated by using the outputs of the inference network.
We jointly train the inference network as well as the energy
network in a systematic way so that they can leverage the
mutual benefit. Our method is applied to multi-label classi-
fication and image segmentation. The experimental results
indicate that the training and inference of our ALEN are
faster than the DVN, and the ALEN outperforms the DVN
and achieves state-of-the-art results on these tasks.

As the future work, we will explore different ways to gen-
erate training tuples and different functions lg(∗, ∗) for the
GAN loss. We will apply our method to state-of-the-art deep
neural networks to solve challenging realistic problems.
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