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Abstract

Being able to reach any desired location in the environment
can be a valuable asset for an agent. Learning a policy to nav-
igate between all pairs of states individually is often not fea-
sible. An all-goals updating algorithm uses each transition
to learn Q-values towards all goals simultaneously and off-
policy. However the expensive numerous updates in parallel
limited the approach to small tabular cases so far. To tackle
this problem we propose to use convolutional network archi-
tectures to generate Q-values and updates for a large number
of goals at once. We demonstrate the accuracy and generaliza-
tion qualities of the proposed method on randomly generated
mazes and Sokoban puzzles. In the case of on-screen goal
coordinates the resulting mapping from frames to distance-
maps directly informs the agent about which places are reach-
able and in how many steps. As an example of application
we show that replacing the random actions in ε-greedy ex-
ploration by several actions towards feasible goals generates
better exploratory trajectories on Montezuma’s Revenge and
Super Mario All-Stars games.

1 Introduction

Reinforcement learning (RL) (Sutton and Barto 1998) envi-
ronments can typically be separated into goal-reaching and
reward-based types. In the former case, tasks like navigat-
ing a maze or moving an object to a target location directly
justify the use of agents that are conditioned on both the ob-
servations of the world and the goals. In the latter case of
RL environments, maximizing the discounted sum of future
rewards provides a more subtle objective that can describe
any given task. While learning can be more challenging in
this case, it can sometimes be greatly simplified by learn-
ing a task-agnostic goal-directed policy in combination with
a higher-level task-dependent one. (Bakker and Schmid-
huber 2004; Kulkarni et al. 2016; Vezhnevets et al. 2017;
Peng et al. 2017).

In both cases, learning to reach each goal independently
would be very inefficient. However, because the goals con-
ditioning the policy do not modify the dynamics of the en-
vironment, off-policy algorithms can greatly improve the
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sample efficiency by using goal relabeling. When replay-
ing a past transition, this technique consists of substituting
the given goal with another valid goal, in order to evaluate
the action with respect to the new goal. Multiple strategies
exist for selecting these goals. For example, within the list of
future states visited in the episode from which the transition
originated, as was proposed in Hindsight Experience Replay
(HER) (Andrychowicz et al. 2017), randomly (Schaul et al.
2015; Veeriah, Oh, and Singh 2018) or from a generative
model (Nair et al. 2018). However, in the case where all the
possible goals can be enumerated, a single transition can be
maximally used by updating the policy towards all-goals.

A traditional goal-conditioned network requires one for-
ward pass per goal which can be intractable in the case of
large goal sets. Instead, we propose to use a network pro-
ducing Q-values for all combinations of actions and goals
with a single observation in input. Furthermore, we propose
to use convolutional neural networks (ConvNets) to scale to
a large number of outputs simultaneously, exploiting the cor-
relations between neighbouring goals.

We evaluate the accuracy and generalization properties
of the proposed network on tasks consisting in finding the
shortest path towards all points in random mazes and solv-
ing random Sokoban puzzles. Our results show that the pro-
posed approach converges faster and achieves better final
performance while being more stable than the the goal-in-
input approach. We then demonstrate that the proposed net-
work learns well in more visually complex and difficult to
control environments. On Montezuma’s Revenge we show
that the capacity to query this large number of Q-values can
allow an agent to explore well by selecting random but fea-
sible goals. Finally, on Super Mario All-Stars, we show that
when coupled with a task-learner DQN agent (Mnih et al.
2015) the exploration method significantly improves the per-
formance.

The source code and videos are available on the website:
https://sites.google.com/view/q-map-rl.

2 Related work

2.1 Goal relabeling strategies

Goal relabeling strategies rely on the fact that a single tran-
sition can be used to update the policy towards any goal. A
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few different methods for selecting these goals have been
proposed, some of which are explained bellow.

Future states In Hindsight Experience Replay (HER)
(Andrychowicz et al. 2017), the goals are sampled from the
list of subsequent states traversed in the remainder of the
episode when selecting a transition. This allows to quickly
propagate successful examples of goal reaching as all of
the required transitions are present in the recorded episode.
However, this approach limits the scope of goals considered.

Random states A simpler approach is to select goals uni-
formly over the set of goals which can be known or discov-
ered through interaction (Schaul et al. 2015; Veeriah, Oh,
and Singh 2018). This approach allows to learn to reach any
known goal if trajectories can be discovered in the set of
transitions or the model has enough capacity to generalize.
One downside however, is that many goals can be unreach-
able from a given state or not useful and the value function
can easily bootstrap from incorrect values.

Imagined goals from a generative model If the set of
possible states is unknown and we wish to get more diverse
goals than the ones discovered so far, it is possible to learn a
generator from which the goals can be sampled. For exam-
ple, a variational autoencoder (VAE) (Kingma and Welling
2014) can be trained to learn the distribution of states and
used to generate new plausible goals (Nair et al. 2018). This
approach can lead to more general-purpose goal-reaching
policies but relies on the accuracy of the learned generator.
Therefore, a mixture of imagined and random goals can be
more advantageous (Nair et al. 2018).

All goals The previous approaches are sometimes referred
to as many-goals learning (Veeriah, Oh, and Singh 2018)
and are general enough to work with continuous and un-
known goal spaces. However, many tasks of interest have
a known finite number of goals. In which case, the best use
of a single transition can be achieved by updating the policy
towards all goals, hence the name all-goals updates. For ex-
ample, an independent Q-value for each of the goals can be
learned separately with tabular Q-learning (Kaelbling 1993).
The main issue with this approach is that the number of up-
dates scales linearly with the number of goals.

2.2 Using ConvNets to represent value functions

Training several function approximations in parallel quickly
becomes impractical in the case of representing many value
functions. Multiple works showed how a shared torso fully
connected to multiple heads can be used to learn several
value functions (Osband et al. 2016; Van Seijen et al. 2017;
Cabi et al. 2017; Tavakoli, Pardo, and Kormushev 2018). A
few approaches aim at representing value functions using
convolutional neural networks, some of which are described
bellow.

RL with unsupervised auxiliary tasks In UNREAL
(Jaderberg et al. 2017), the main policy is trained along mul-
tiple unsupervised auxiliary policy heads to help generate
useful features. The pixel-control task trains the agent to
predict which actions generate the most change in the input
frames. The head specific to this task uses transposed con-
volutions to generate a three dimensional array of Q-values.
These values were however never used to control the agent
and were not specialised in goal-reaching.

Value Iteration Networks A VIN module (Tamar et al.
2016) creates a reward frame which is fed into a convolu-
tional layer generating Q-values which are then max-pooled
along the action channel to produce a frame which is it-
eratively fed into the module until it represents the state-
values of the optimal policy. An attention mechanism is then
applied on the value frame to create features for a policy
trained via reinforcement learning. A VIN module can in
theory perform planning as demonstrated on goal-reaching
tasks. While VIN is related to our model it has many dif-
ferences. First, it does not directly use the generated values
to act. Second, for goal-reaching tasks, those values are the
expected returns when starting from each state location for a
goal given in input while our approach represents the values
of starting from a given state to reach all the possible goals.
Finally, VIN performs planning by iteratively recomputing
the values at every step while our approach is solely based
on learning a direct mapping from inputs to values.

3 Background

Q-values We consider the standard reinforcement learn-
ing framework (Sutton and Barto 1998), in which an agent
interacts sequentially with its environment, formalized as
a Markov Decision Process (MDP) with state space S , ac-
tion space A, reward function r(s, a, s′) and state-transition
function p(s′|s, a). At each time step t, the agent generates
an action at sampled from its policy π(at|st) conditioned on
the state st. The environment responds by providing a new
state st+1 and a reward rt+1. Some states can be terminal,
meaning that no more interaction is possible after reaching
them, which can be simply considered as a deadlock state
that only transitions to itself, providing no reward.

The action-value function of the policy is defined as:

Qπ(s, a) = Es′∼p,a′∼π

[
r(s, a, s′) + γQπ(s′, a′)

]

It indicates the quality (Q-value) of each possible immediate
action when following the policy afterwards.

Q-learning In the Q-learning algorithm (Watkins and
Dayan 1992), the action-value function of the optimal pol-
icy π∗ is iteratively approximated by updating the estimated
Q-values:

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)

It uses previously experienced transitions (s, a, s′, r) and
a learning rate α. In ε-greedy exploration, this learned
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action-value function can be used to take greedy ac-
tions a = argmaxa Q(s, a) or random actions uniformly
a ∼ U(A) with probability ε. Finally, the fact that the tar-
get r+γmaxa′ Q(s′, a′) does not rely on the policy used to
generate the data, allows Q-learning to learn off-policy, effi-
ciently re-using previous transitions stored in a replay buffer
or generated by another mechanism.

Generalized and Universal Value Functions While an
action-value function is usually specific to the rewards defin-
ing the task, the Generalized Value Functions (GVFs) (Sut-
ton et al. 2011) Qπ

g (s, a) are trained with pseudo-reward
functions rg(s, a, s

′) that are specific to each goal g. The
Horde architecture combines a large number of independent
GVFs trained to predict the effect of actions on sensor mea-
surements and can be simultaneously trained off-policy. The
Universal Value Function Approximators (UVFAs) (Schaul
et al. 2015) extend the concept of GVFs by adopting a
unique action-value function Qπ(s, a, g) parameterized by
goals and states together, enabling interpolation and extrap-
olation between goals.

4 Proposed model

4.1 Training and usage

While UVFA-like architectures take observations and goals
in input and generate Q-values for every action in output,
our model, named Q-map, only takes observations in input
and generates Q-values for every goal and action in output.
For example, in the case of a grid of 2D goal coordinates,
when a stack of observation frames are provided in input,
another stack of 2D Q-frames are generated where the rows
and columns represent the goal locations and the number
of frames represents the number of actions. Note that the
height and width of the observations and generated frames
can be different for example if the observations require more
resolution as shown in some of the following experiments.

These output values represent Q-values in the context of
the goal-reaching reward function awarding 1 with episode-
termination at the goal and 0 otherwise. The discount factor
γ creates exponentially decaying values γk−1 indicating the
number of steps k to the goal. A value of 0 indicates that the
goal cannot be reached (for example in an obstacle) and 1
means that the goal will be reached at the next time step.

For a given transition, only the output frame correspond-
ing to the taken action is updated using a mean-squared error
with a target frame. This target is generated as follows: First,
a forward pass in the model is performed with the next obser-
vation in input. Then, the generated frames are maximized
over the action dimension to generate a single frame repre-
senting a measure of the minimum expected number of steps
towards each of the goals. This frame is then clipped to the
range (0, 1) to reduce the under- and over-estimations. Fi-
nally, the frame is discounted by γ and the location reached
at the next step is set to 1. This procedure effectively uses
one environmental transition to virtually create a set of inde-
pendent one-step episodes, one per goal, with termination on
success and partial-episode bootstrapping otherwise (Pardo
et al. 2018).

Figure 1: Training process for the proposed model, updating
the prediction towards all goals at once.

To use the generated Q-frames to reach a specific goal,
one only needs to take the vector of Q-values at the goal
location and select the action of maximum value.

4.2 Neural network architectures

We considered multiple neural network architectures to sup-
port the proposed model. The first choice, which will be
our baseline in the rest of the paper, is a UVFA-like net-
work which takes a stack of observation and goal frames
and generates the corresponding vector of Q-values, one for
each action. To create a many-goals or all-goals update, the
batch needs to consists of frames where the observation re-
mains the same but the goal, represented by a one-hot frame,
changes to cover all desired values. The batch output is then
a set of vectors which can be reshaped to create the expected
stack of Q-frames.

The second network uses an autoencoder-inspired archi-
tecture, with convolutions followed by fully-connected lay-
ers in turn followed by transposed convolutions. This net-
work takes observation frames in input and generates the
full Q-frames in output. The convolutional nature of this ap-
proach benefits from a potentially better capacity to share
features and use correlations between the vision of the envi-
ronment and the expected number of steps.

Finally, the last network architecture that we considered is
composed solely of convolutions without compression and
decompression. For example if the height and width of the
Q-frames corresponds to the ones of the observations, strides
1 and padding “same” are used to keep the shape of the fea-
ture maps constant, not loosing any localization information.

4.3 Exploration with random goals

As a simple application case for a Q-map we propose an
exploration method that replaces the noisy random actions
frequently used to explore in reinforcement learning with
a sequence of steps towards a goal. Using the Q-frames
produced via Q-map, the goal is selected within a esti-
mated close proximity to the current position and the ac-
tions are chosen greedily in order to reach it. While we do
not expect this exploration method to outperform specialised
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ones that use a variety of intrinsic signals, such as informa-
tion gain (Kearns and Koller 1999; Brafman and Tennen-
holtz 2002), state visitation counts (Bellemare et al. 2016;
Tang et al. 2017) or prediction error (Stadie, Levine, and
Abbeel 2015; Pathak et al. 2017), it can be incorporated into
most of those or used as a drop-in replacement for ε-greedy.
It is worth noting that other works proposed to base the
exploration on goal selection (Baranes and Oudeyer 2013;
Florensa et al. 2017; Péré et al. 2018; Colas, Sigaud, and
Oudeyer 2018) but to the best of our knowledge none of
them relied on generating large and consistent steps in the
environment using an auxiliary goal-reaching policy.

5 Experiments

In sections 5.1 and 5.2 we aim to evaluate the accuracy,
training time and generalization properties of the proposed
Q-map model on gridworld environments while in sections
5.3 and 5.4 we test Q-map in more visually complex en-
vironments and propose an application to exploration in
reinforcement learning. In all of the experiments we use
γ = 0.9 for the goal-reaching Q-functions and the neural
networks are described using the notations: conv(filters, ker-
nel sizes, strides) for convolutions (with padding “same” un-
less stated otherwise), deconv2d for transposed convolutions
and dense(units) for dense layers. Elu activation functions
are used for every layer except for the output ones. For more
details, the full source code of the experiments is available
at https://sites.google.com/view/q-map-rl.

5.1 Pathfinding in random mazes

The environment consists of a single pixel that can be moved
in cardinal directions in a 16×16 area with traversable path-
ways surrounded by walls and generated such that any two
points in the maze are only connected by one path. Actions
towards walls result in the pixel remaining stationary. The
observations consist of a stack of 16 × 16 RGB frames of
the full view of the maze. The background is white, walls
are black while the controlled pixel is in red. For the base-
line model we use a green pixel to represent the goal.

We consider three duelling double DQN architectures
for evaluation (Wang et al. 2016; Hasselt 2010; Mnih
et al. 2015). The baseline architecture “goal-in-input”
uses 2×conv(64, 4, 2)-dense(512) layers followed by a
dense(256)-dense(4) advantage branch and a dense(256)-
dense(1) state-value branch. The online network (not count-
ing the target one) uses approximately 860K parameters.
The second architecture Q-map “with compression” uses
2×conv(64, 4, 2)-dense(512)-dense(1024) layers followed
by a deconv(64, 4, 2)-deconv(4, 4, 2) advantage branch
and a deconv(64, 4, 2)-deconv(1, 4, 2) state-value branch.
The online network uses approximately 1, 260K parame-
ters. The third architecture Q-map “without compression”
is composed of 4×conv(64, 4, 1) layers followed by a
3×deconv(64, 4, 1)-deconv(4, 4, 1) advantage branch and
3×deconv(64, 4, 1)-deconv(1, 4, 1) state-value branch. The
online network uses approximately 800K parameters.

Instead of letting the agents interact with the environment
we choose to generate a training and testing sets that are

Figure 2: Learning to solve random mazes. Top: 10 unseen
random mazes, then for each agent: the max Q-frames (max-
imized over the action dimension) and the first greedy action
towards each goal. Bottom: percentage of correct greedy ac-
tions to take towards each possible goal. The Q-map archi-
tecture performs better than the baseline, in particular with
the no-compression network.

identical between the agents in order to remove any explo-
ration bias when comparing the quality of the Q-frames gen-
erated. The training set is comprised of all possible transi-
tions in 2, 317 different mazes for a total of 1, 000, 220 tran-
sitions. The testing set is comprised of all possible starting
points in 10 new mazes for a total of 1, 075 observations.
The agents are trained with batches of 50 random transi-
tions from the training set. The evaluation metric is the “suc-
cess rate” which is a proportion of state-goal pairs where the
agents correctly predict the greedy action towards all feasi-
ble goals, obtained by using the argmax operator over the
action dimension.

The Figure 2 shows the training success rate curves for the
architectures as well as examples of the learned Q-frames
for the test mazes. In the solid-color filled maze images the
color of a pixel depicts the action-choice made by the cor-
responding agent towards that pixel from the given location.
Logically all pathways towards a single direction from the
agent’s location should have the same color. The Q-map
“without compression” architecture clearly outperforms the
alternative, achieving 99% success rate at 1M training it-
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Figure 3: Left: Comparison between the max Q-frames
learned by Q-map and the all-goals in input approaches on
unseen 10 × 10 puzzles. Right: A separate example from a
Q-map trained on 15× 15 levels.

erations. The “Goal in input” architecture has learned what
one could consider a naive first-pass solution to the task -
that is a fading gradient centered on the agent’s location in
the maze, but failed to recognize walls of the maze. This is
a common phase in training of all architectures, and indi-
cates that the approach could require many more training
iterations to improve further. The Q-map “with compres-
sion” based architecture performed significantly better but
still struggled to produce sufficiently sharp Q-frames, unable
to determine correct action choices outside of close prox-
imity to the agent. It is worth noting that the Q-values for
the maze walls are not specifically masked and the Q-map
successfully learns to decay them to 0. Videos showing the
Q-frames and actions through the training of all three archi-
tectures are available on the website.

5.2 Solving Sokoban puzzles

In this section we consider a notoriously difficult environ-
ment suited for planning (Racanière et al. 2017): Sokoban,
from Gym-Sokoban (Schrader 2018). A significant differ-
ence to the previously considered Maze environment is that
the goal is specified for a box which has to be carefully
pushed by an agent-controlled avatar.

Similarly to the previous experiments, we compare the Q-
map “without compression” model with two goal-in-input
baselines. The two baselines differ by their goal-relabeling
strategies: one uses random goals while the other one uses
all goals. All the models are trained on the same batch size of
100. For the all-goals updates model, because there are 100
possible goals, a batch contains a single observation repli-
cated 100 times with each of the possible goals.

Both of the baseline models uses a 5×conv(64, 5, 1)-
2×conv(64, 5, 1, valid)-dense(256)-dense(4) network, while
the Q-map “with compression” uses a 7×conv(64, 5, 1)-
conv(4, 5, 1) network. We keep the total number of param-
eters roughly the same between the models with approxi-
mately 688K for the baselines and 626K for the Q-map.

We generate a unique 10× 10 Sokoban level per episode
including for evaluation. The models are provided with

Figure 4: Success rate on unseen Sokoban puzzles. Q-
map performs better than the goal-in-input baselines. The
random-goals baseline is particularly unstable.

10 × 10 RGB frames representing the walls, box and the
agent’s locations in red, green and blue respectively. In con-
trast to the Maze environment, we generate data by perform-
ing exclusively random actions and storing the state transi-
tions in an unlimited buffer. This results in a less uniform
training set that is more representative of an agent interact-
ing with the environment, while using the same seeds gen-
erates identical transitions between agents.

Multiple generated Q-frames examples are given in Fig-
ure 3. The Q-map model was able to learn better represen-
tations showing how the box should be moved even in com-
plex scenarios requiring a sequence of actions with long-
term dependencies. Figure 4 shows the success rate of each
of the considered models measured as the proportion of
goals reached with greedy actions. Each point on the graph
represents an average of 10 individual evaluation runs. The
Q-map model straight away outperforms both of the base-
lines and keeps improving until almost perfect performance
in a very stable way. Of the two baselines, the one trained
with random-goals initially seems to learn faster but then
deteriorates, suggesting that learning with all goals simulta-
neously is more stable.

Finally, we note that the Q-map model could in theory
support multiple boxes by increasing the dimensionality of
the outputs to account for the combinatorial nature of the
problem. We however leave this experiment for future work.

5.3 Montezuma’s Revenge

So far we have demonstrated the efficiency of the proposed
Q-map model in a selection of gridworld problems which,
while challenging to solve, have very simple state spaces and
action dynamics. In this section we use the Montezuma’s
Revenge (Atari 2600) game to evaluate the learning capabil-
ity of Q-map and roughly compare the exploration bound-
aries between a random-action policy and a random-goal
policy that utilizes Q-map for action selection. Environmen-
tal rewards are ignored and no task-learner agent is present
in this experiment.

The actions are limited to “no-op, left, right, jump, jump-
left, jump-right, down” and are repeated four times. The
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Figure 5: A random sequence of goal-reaching steps suc-
cessfully exploring most of the first room in the Mon-
tezuma’s Revenge game. The goals are shown with circles
and the corresponding learned max Q-frames accurately rep-
resent reachable places.

game frames are zero-padded to reach a resolution of 160×
224 before being scaled with a factor of 1/4. Three grey-
scale 40 × 56 frames, spaced by two steps are stacked to
produce the observations while another scaling factor of 1/2
is used for the coordinates, limiting the Q-frames to 20×28.

We use a Q-map “with compression” to accommodate
the resolution discrepancy between the observations and
the output. The network uses conv(32,8,2)-conv(32,6,2)-
conv(64,4,2)-dense(1024)-dense(1024) layers followed by a
deconv(32, 4, 2)-deconv(32, 6, 2)-deconv(4, 8, 1) advantage
branch and a deconv(32, 4, 2)-deconv(32, 6, 2)-deconv(1,
8, 1) state-value branch. A random goal is chosen within
15 to 30 predicted steps from the agent’s current position.
An individual goal-directed trajectory terminates upon ei-
ther reaching the goal or exceeding 150% of the original
predicted number of steps. Furthermore, there is a chance
to take a random action decayed linearly from 0.1 to 0.05.

Qualitatively, the learned Q-frames are sufficiently accu-
rate for the random-goal policy to be able to navigate much
further through the environment and even actively avoid the
contact with the skull on the way towards a goal. Example
Q-frames are shown in Figure 5. We also tracked the number
of keys picked up by both of the policies during the training,
with the random policy only reaching the key once in the 5
million steps, while the random-goal policy first reached the
key at the 1.2 million steps and overall 398 times.

5.4 Super Mario All-Stars

Finally, the proposed exploration method is used as a drop-
in replacement for the ε-greedy exploration in a DQN agent
on the Super Mario All-Stars game (SNES) (OpenAI 2018).
The actions are limited to “no-op, left, right, up-left, up, up-
right” and are repeated four times. The rewards from the
game are divided by 100 with 0 bonus for moving to the
right or penalty for game overs. Terminations by touching
enemies or falling into pits and the coordinates of Mario
and of the scrolling window are extracted from the RAM.
Episodes are naturally limited by the timer of 400 seconds
present in the game, which corresponds to 2, 402 steps. Ob-
servations consist in three 56 × 64 grayscale frames spaced
by two steps and the goal space is scaled down to 32× 28.

We used the network described in Section 5.3 for Q-map.

Figure 6: Example of learned max Q-frames on Super Mario
All-Stars. The Q-map successfully take into account the ob-
stacles. The horizontal patterns are due to the action repeat.

The network used for DQN has conv(32,8,2)-conv(32,6,2)-
conv(64,4,2) layers followed by a dense(1024)-dense(6)
advantage branch and a dense(1024)-dense(1) state-value
branch. Furthermore, to account for the movement of the
screen in the game, the target Q-frames are shifted accord-
ingly before performing the updates.

Similarly to Section 5.3, we initially compare a random-
goal Q-map based policy with a random-action policy. The
states visited during 2 million steps of interaction are dis-
played in Figure 7). As can be seen, the proposed explo-
ration method covers significantly larger area, allowing the
agent to almost reach the end of the level without using any
environmental or intrinsic reward.

We then evaluate an augmented agent that is comprised of
a Q-map-based exploration and a DQN (Mnih et al. 2015)
task-learner agent. For both this agent and the baseline we
use an exploratory schedule that linearly decreases from
100% to 5%. For the proposed agent, the random action
probability is decreased from 10% to 5% over the course
of the training. In order for the total proportion of explo-
ration steps to match the planned schedule, the chance to
start a new goal-reaching trajectory is then dynamically ad-
justed. Furthermore, to focus the exploration towards the
task-learner policy a 50% chance to select the goals with a
first greedy action identical to the one from the task-learner
is introduced.

To measure the performance of the proposed combined
agent in terms of the sum of rewards collected per episode
and the number of flags reached, we ran both agents for 5
million steps with the same four seeds (0, 1, 2, 3) and re-
ported the results in Figure 8. The initial performance of the
augmented agent is worse than the baseline, likely due to
the fact that early rewards can easily be collected with ran-
dom movements. In turn the longer exploration horizon of
the augmented agent enables it to learn to progress through
the level faster and learn to reach the final flag consistently.
In total, the baseline reached the flag 9 times while the pro-
posed agent reached it 33 times with a final performance
30% higher. Finally, we also tested the capacity of the Q-
map model to adapt to a different level and found that the
learning was significantly faster when transferring a pre-
trained Q-map model from one level to another than when
training from scratch as visible in the videos.
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Figure 7: Coordinates visited after 2 million steps on the first level of Super Mario All-Stars. First image: Random walk (red)
compared against the proposed Q-map random-goal walk (green). Second image: DQN using ε-greedy (red) compared against
DQN with the proposed exploration (green). In both cases, Q-map allows to explore significantly further

Figure 8: Performance comparison between ε-greedy explo-
ration (red), and the proposed exploration (green) with con-
fidence intervals of 99%. The vertical bars indicate flags
reached. The proposed agent significantly outperforms the
baseline, reaching the flag earlier and more frequently.

6 Discussion

In the experiments using Montezuma’s Revenge and Super
Mario All-Stars we assumed that the location of the avatar
was available to create the updates. While this can appear as
a strong assumption, it is not unreasonable to imagine that an
agent could learn to localize its avatar or other controllable
objects (Moniz, Patra, and Garg 2019; Sawada 2018) and
use this knowledge when training a Q-map model.

Furthermore, it is worth noting that the proposed approach
could be extended beyond images in observations, such as
angles and velocities of objects or point clouds and the Q-
frames could be replaced by Q-tensors to represent larger
coordinate spaces architecturally achieved by using multi-
dimensional convolutions. This could, for example, enable
an agent to control robotic arms or flying drones.

Beyond the examples demonstrated in Section 5, learning
to reach coordinates with Q-map can be useful in many sce-
narios. For example in hierarchical reinforcement learning,
a high-level agent could be rewarded to provide useful goals
to a low-level Q-map model. Also, a count-based exploration
method could be combined with the estimated distance from
a Q-map to select close and less visited coordinates. Fur-
thermore, learning Q-map in itself could be a signal for a
curiosity-like exploration algorithm.

7 Conclusion

We proposed an all-goals Q-learning model that is computa-
tionally efficient and able to generalise to previously unseen
goals. A single environmental transition is used to generate
a value estimate for the full set of possible goals in a sin-
gle forward pass in the network. This is achieved by utilis-
ing a convolutional architecture with the intuition that such
a model would take advantage of the correlations between
the input features and the similarities of the neighbouring
goals in the environment. We have demonstrated that this
approach significantly outperforms goal-in-input baselines
and achieves nearly perfect success rate in gridworld maze
pathfinding and Sokoban tasks. In addition we have shown
that the Q-map model is capable to learn to navigate in visu-
ally complex environments such as Montezuma’s Revenge
and Super Mario All-Stars games. Finally we provide an ex-
ample of an application where by replacing random ε-greedy
exploration actions with random goal-directed trajectories
we improve the performance of a DQN agent.
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