
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Achieving Fairness in the Stochastic Multi-Armed Bandit Problem

Vishakha Patil, Ganesh Ghalme, Vineet Nair, Y. Narahari
Indian Institute of Science, Bengaluru, India
{patilv, ganeshg, vineet, narahari}@iisc.ac.in

Abstract

We study an interesting variant of the stochastic multi-armed
bandit problem, which we call the FAIR-MAB problem,
where, in addition to the objective of maximizing the sum of
expected rewards, the algorithm also needs to ensure that at
any time, each arm is pulled at least a pre-specified fraction
of times. We investigate the interplay between learning and
fairness in terms of a pre-specified vector denoting the frac-
tions of guaranteed pulls. We define a fairness-aware regret,
which we call r-Regret, that takes into account the above fair-
ness constraints and extends the conventional notion of regret
in a natural way. Our primary contribution is to obtain a com-
plete characterization of a class of FAIR-MAB algorithms via
two parameters: the unfairness tolerance and the learning al-
gorithm used as a black-box. For this class of algorithms, we
provide a fairness guarantee that holds uniformly over time,
irrespective of the choice of the learning algorithm. Further,
when the learning algorithm is UCB1, we show that our al-
gorithm achieves constant r-Regret for a large enough time
horizon. Finally, we analyze the cost of fairness in terms of
the conventional notion of regret. We conclude by experimen-
tally validating our theoretical results.

1 Introduction

The multi-armed bandit (MAB) problem is a classic frame-
work for sequential decision-making in uncertain environ-
ments. Starting with the seminal work of Robbins (1952),
over the years, a significant body of work has been devel-
oped to address both theoretical aspects and practical ap-
plications of this problem; see (Bubeck and Cesa-Bianchi
2012; Lattimore and Szepesvári 2018; Slivkins 2019) for
textbook expositions of the MAB problem. Indeed, the
study of the MAB problem and its numerous variants con-
tinues to be a central pursuit in multiple fields such as online
learning and reinforcement learning. In the MAB setup, at
every round a decision maker (an online algorithm) is faced
with k choices, which correspond to unknown (to the algo-
rithm) reward distributions. Each choice is referred to as an
arm and when the decision maker pulls a specific arm she
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receives a reward drawn from the corresponding (a priori
unknown) distribution1. The goal of the decision maker is
to maximize the cumulative reward in expectation accrued
through a sequence of arm pulls, i.e. if the process repeats
for T rounds then in each round the decision maker selects
an arm with the objective of maximizing the total expected
reward2.

Several variations of the MAB problem have been exten-
sively studied in the literature. Various papers study MAB
problems with additional constraints which include bandits
with knapsack constraints (Badanidiyuru, Kleinberg, and
Slivkins 2013), bandits with budget constraints (Xia et al.
2015), sleeping bandits (Kleinberg, Niculescu-Mizil, and
Sharma 2010; Chatterjee et al. 2017), etc. In this paper we
consider FAIR-MAB, a variant of the MAB problem where,
in addition to maximizing the cumulative expected reward,
the algorithm also needs to ensure that uniformly (i.e., at
the end of every round) each arm is pulled at least a pre-
specified fraction of times. This imposes an additional con-
straint on the algorithm which we refer to as a fairness con-
straint, specified in terms of a vector r ∈ R

k.

Formally, each component ri of the given vector r speci-
fies a fairness-quota for arm i and the online algorithm must
ensure that for all time steps t (i.e. uniformly), each arm i
is pulled at least �ri · t� times in t rounds. The goal of the
online algorithm is to minimize expected regret while sat-
isfying the fairness requirement of each arm. The expected
regret in this setting, which we call r-Regret, is computed
with respect to the optimal fair policy (see Definition 4).
We note that the difficulty of this problem is in satisfying
these fairness constraints at the end of every round, which
in particular ensures fairness even when the time horizon is
unknown to the algorithm beforehand. It is relevant to note
that the current work contributes to the long line of work
in constrained variants of the MAB problem (Badanidiyuru,
Kleinberg, and Slivkins 2013; Kleinberg, Niculescu-Mizil,
and Sharma 2010; Xia et al. 2015).

1The arms which are not pulled do not give any reward.
2We study the standard setup in which T is not known upfront

to the online algorithm.
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The fairness constraints described above naturally capture
many real-world settings wherein the arm pulls correspond
to allocation of resources among agents with specified enti-
tlements (quotas). The objective of ensuring a certain mini-
mum allocation guarantee to each individual is, at times, at
odds with the objective of maximizing efficiency, the classi-
cal goal of any learning algorithm. However, in many appli-
cations the allocation rules must consider such constraints
in order to ensure fairness. The minimum entitlement over
available resources secures the prerogative of individuals.
For concreteness, we next present a motivating example.

The US Department of Housing and Urban Development
recently sued Facebook for engaging in housing discrimi-
nation by targeting ads based on attributes such as gender,
race, religion, etc. which are protected classes under the US
law3. Facebook’s algorithm that decides which ad should
be shown to a particular user, inadvertently ends up dis-
criminating because of the objective that it is trying to op-
timize. For example if the algorithm learns that it can gen-
erate more revenue by displaying an ad to more number of
men as compared to women, then it would end up discrimi-
nating against women. The proposed FAIR-MAB model en-
sures that both men and women are shown the ad for at least
a pre-specified fraction of the total number of ad displays,
thereby preserving the fundamental right of equal access
to opportunities. In a way, the minimum fraction guarantee
also provides a moral justification to the chosen allocation
rule by evaluating it to be fair under the veil of ignorance
(Rawls 1971) in which an allocation rule is considered as
a hypothetical agreement among free and equal individuals
unaware of the natural capabilities and circumstantial advan-
tages and biases they might have i.e. a socially agreed upon
allocation in the original position (refer to (Freeman 2019;
Heidari et al. 2018) for a detailed discussion).

The fairness model in this work naturally captures many
resource allocation situations such as the sponsored ads on a
search engine where each advertiser should be guaranteed a
certain fraction of pulls in a bid to avoid monopolization of
ad space; crowd-sourcing where each crowd-worker is guar-
anteed a fraction of tasks in order to induce participation;
and a wireless communication setting where the receiver
must ensure minimum quality of service to each sender. The
work by (Li, Liu, and Ji 2019) contains a detailed discus-
sion of these applications. We discuss other related works
on fairness in Section 7.

Our contributions: We first define the FAIR-MAB prob-
lem in Section 2. Any FAIR-MAB algorithm is evaluated
based on two criteria: the fairness guarantee it provides and
its r-Regret. The fairness notion that we consider requires
that the fairness constraints be satisfied after each round,
and the r-Regret notion is a natural extension of the con-
ventional notion of regret which is defined with respect to an
optimal policy that satisfies the fairness constraints. The uni-
form time fairness guarantee that we seek ensures fairness
even in horizon-agnostic case, that is when the time horizon

3https://www.technologyreview.com/s/613274/facebook-
algorithm-discriminates-ai-bias/

T is unknown to the algorithm. We remark that, even when
the horizon T is known, the intuitive approach of pulling
each arm sufficiently many times to satisfy its fairness con-
straint does not guarantee fairness at the end of each round.
The reader is referred to the Appendix of the extended ver-
sion4. As our primary contribution, in Section 3, we define a
class of FAIR-MAB algorithms, called FAIR-LEARN, char-
acterized by two parameters: the unfairness tolerance and the
learning algorithm used as a black-box. We prove that any
algorithm in FAIR-LEARN satisfies the fairness constraints
at any time t. Thus the fairness guarantee for FAIR-LEARN
holds uniformly over time, independently of the choice of
the learning algorithm. We note here that our meta-algorithm
FAIR-LEARN, allows any MAB algorithm to be plugged-in
as a black-box. This simple yet elegant framework can be
implemented on top of any existing MAB algorithm to en-
sure fairness with quantifiable loss in terms of regret. The
practical applicability of our algorithm is a notable feature
of this work.

When the learning algorithm is UCB1, we prove a sub-
logarithmic r-Regret bound for the FAIR-UCB algorithm.
Additionally, for sufficiently large T we see that the FAIR-
UCB incurs constant r-Regret. We then evaluate the cost of
fairness in FAIR-MAB with respect to the conventional no-
tion of regret in Section 4. We conclude by providing de-
tailed experimental results to validate our theoretical guaran-
tees in Section 6. In particular, we compare the performance
of FAIR-UCB with LFG algorithm proposed in (Li, Liu, and
Ji 2019), which is the work closest to the current paper. We
remark here that we obtain a much stronger fairness guar-
antee that holds at any time, unlike the asymptotic fairness
guarantee of LFG . We also prove a better regret bound with
finer dependence on the problem instance parameters. Sec-
tion 7 provides a detailed comparison.

2 The Model

In this section we formally define the FAIR-MAB problem,
the notion of fairness, and the concept of r-regret used in
this work.

The FAIR-MAB Problem

An instance of the FAIR-MAB problem is a tuple
〈T, [k], (μi)i∈[k], (ri)i∈[k]〉, where T is the time horizon,
[k] = {1, 2, . . . , k} is the set of arms, μi ∈ [0, 1] repre-
sents the mean of the reward distribution Di associated with
arm i, and (ri)i∈[k] represents the fairness constraint vector.
In the FAIR-MAB setting, the fairness constraints are ex-
ogenously specified to the algorithm in the form of a vector
r = (r1, r2, . . . , rk) where ri ∈ [0, 1/k), for all i ∈ [k],
and consequently

∑
i∈[k] ri < 1 and ri denotes the mini-

mum fraction of times an arm i ∈ [k] has to be pulled in T
rounds, for any T . We consider ri ∈ [0, 1/k) to be consistent
with the notion of proportionality wherein, guaranteeing any

4Extended version can be found at https://arxiv.org/abs/1907.
10516
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arm a fraction greater than its proportional fraction, which is
1/k, is unfair in itself.

In each round t, a FAIR-MAB algorithm pulls an arm
it ∈ [k] and collects the reward Xit

∼ Dit
. We assume that

the reward distributions are Bernoulli(μi) for each arm i ∈
[k]. This assumption holds without loss of generality since
one can reduce the MAB problem with general distributions
supported on [0,1] to a MAB problem with Bernoulli re-
wards using the extension provided in (Agrawal and Goyal
2012). Note that the true value of μ = (μ1, μ2, . . . , μk) is
unknown to the algorithm. Throughout this paper we assume
without loss of generality that μ1 > μ2 > . . . > μk and arm
1 is called the optimal arm. Next, we formalize the notions
of fairness and regret used in the paper.

Notion of Fairness

Let Ni,t denote the number of times arm i is pulled in t
rounds. We first present the definition of fairness proposed
by (Li, Liu, and Ji 2019) and then define the stronger notion
of fairness considered in this paper.

Definition 1. (Li, Liu, and Ji 2019) A FAIR-MAB algorithm
A is called (asymptotically) fair if lim inft→∞�A

[
ri −

Ni,t

t

] ≤ 0 for all i ∈ [k].

We refer to the above notion of fairness as asymptotic fair-
ness. We now define a much stronger notion of fairness that
holds over all rounds and is parameterized by the unfairness
tolerance allowed in the system which is denoted by a con-
stant α ≥ 0.

Definition 2. Given an unfairness tolerance α ≥ 0, a FAIR-
MAB algorithm A is said to be α-fair if �rit� − Ni,t ≤ α
for all t ≤ T and for all arms i ∈ [k].

In particular, if the above guarantee holds for α = 0, then
we call the FAIR-MAB algorithm fair. Note that our fairness
guarantee holds uniformly over the time horizon and for any
sequence of arm pulls (it)t≤T by the algorithm. Hence it is
much stronger than the guarantee in (Li, Liu, and Ji 2019)
which only guarantees asymptotic fairness (Definition 1).
Notice that for any given constant α ≥ 0, α-fairness (Defi-
nition 2) implies asymptotic fairness.

Notions of Regret

In the MAB setting, the optimal policy is the one which
pulls the optimal arm in every round. The regret of a MAB
algorithm is defined as the difference between the cumula-
tive reward of the optimal policy and that of the algorithm.

Definition 3. The expected regret of a MAB algorithm A
after T rounds is defined as:

RA(T ) =
∑
i∈[k]

Δi · E[Ni,T ] (1)

where Δi = μ1−μi and Ni,T denotes the number of pulls
of an arm i ∈ [k] by A in T rounds.

We call an algorithm optimal if it attains zero regret. It
is easy to see that the above notion of regret does not ad-
equately quantify the performance of a FAIR-MAB algo-
rithm as the optimal policy here does not account for the
fairness constraints. Also, note that the conventional regret
in the FAIR-MAB setting can be O(T ) (see Section 4 for
further details). Hence, we first state the fairness-aware op-
timal policy that we consider as a baseline.
Observation 1. A FAIR-MAB algorithm A is optimal iff
A satisfies the following: if �riT � − α > 0 then Ni,T =
�riT � − α, else Ni,T = 0, for all i 
= 1.

From Observation 1 we have that an optimal FAIR-MAB
algorithm that knows the value of μ must play sub-optimal
arms exactly �ri ·T �−α times in order to satisfy the fairness
constraint and play the optimal arm (arm 1) for the rest of the
rounds i.e. for T−∑

i �=1�ri·T �+(k−1)α rounds. The regret
of an algorithm is compared with such an optimal policy that
satisfies the fairness constraints in the FAIR-MAB setting.
Definition 4. Given a fairness constraint vector r =
(r1, r2, . . . , rk) and the unfairness tolerance α ≥ 0, the
fairness-aware r-Regret of a FAIR-MAB algorithm A is de-
fined as:

Rr
A(T ) =

∑
i∈[k]

Δi ·
(
E[Ni,T ]− max

(
0, �ri · T � − α

))

(2)

The max(0, �ri · T �−α) in the above definition accounts
for the number of pulls of arm i made by the optimal algo-
rithm to satisfy its fairness constraint. Also the r-Regret of
an algorithm that is not α-fair could be negative but this is
an infeasible solution. A learning algorithm that pulls a sub-
optimal arm i for more than �riT � − α rounds, incurs a re-
gret of Δi = μ1 − μi for each extra pull. The technical
difficulties in designing an optimal algorithm for the FAIR-
MAB problem are the conflicting constraints on the quantity
Ni,T −�riT � for a sub-optimal arm i 
= 1: at any time T for
the algorithm to be fair we want Ni,T − �riT � to be at least
α whereas to minimize the regret we want Ni,T − �riT � to
be close to α.

3 A Framework for Fair MAB Algorithms

In this section, we provide the framework of our proposed
class of FAIR-MAB algorithms. Our meta-algorithm FAIR-
LEARN is given in Algorithm 1. The key result in this
work is the following theorem, which guarantees that FAIR-
LEARN is α-fair (see Definition 2), independent of the
choice of the learning algorithm Learn(·). Note that the
fairness guarantee holds uniformly over the time horizon,
for any sequence of arm pulls by FAIR-LEARN.
Theorem 1. For a given α ≥ 0 and for any given fairness
constraint vector r = (r1, r2, . . . , rk) where ri ∈ [0, 1

k ) for
all i ∈ [k], FAIR-LEARN is α-fair irrespective of the choice
of the learning algorithm Learn(·).

The proof of Theorem 1 is given in Section 5. The guaran-
tee in the above theorem also holds when α = 0 and hence
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Algorithm 1: FAIR-LEARN

Input: [k], (ri)i∈[k], α ≥ 0, Learn(·)
1 Initialize:
2 Ni,0 = 0 for all i ∈ [k]
3 Si,0 = 0 for all i ∈ [k], where Si,t = total reward of

arm i in t rounds
4 for t = 1, 2, . . . do

5 Define : A(t) =
{
i
∣∣ ri · (t− 1)−Ni,t−1 > α

}
6 Pull arm

it =

⎧⎨
⎩
argmaxi∈[k](

ri · (t− 1)−Ni,t−1

)
IfA(t) 
= ∅

Learn(Nt, St) Otherwise
7 Update parameters Nt and St

8 end

FAIR-LEARN with α = 0 is fair. In particular, when the
learning algorithm Learn(·) = UCB1, we call this algo-
rithm FAIR-UCB. We provide the r-Regret bound for FAIR-
UCB.

Theorem 2. The r-Regret of FAIR-UCB is given by

Rr
FAIR-UCB(T ) ≤

(
1 +

π2

3

)
·
∑
i∈[k]

Δi

+
∑

i∈S(T )
i �=1

Δi ·
(
8 lnT

Δ2
i

−
(
ri · T − α

))

where S(T ) =
{
i ∈ [k]

∣∣ ri ·T −α < 8 lnT

Δ
2
i

}
. In particular

for large enough T , Rr
FAIR-UCB(T ) ≤

(
1 + π

2

3

)
·∑i∈[k] Δi.

Theorem 2 is proved in Section 5. Observe that if S(T ) 
=
∅ the r-Regret of FAIR-UCB is sub-logarithmic and if S(T )
= ∅ then the r-Regret is constant. We prove the distribution-
free regret of FAIR-UCB in Theorem 3 5.

Theorem 3. The distribution-free r-Regret of FAIR-UCB is
O(

√
T lnT ).

We conclude this section by observing that as the fair-
ness guarantees of FAIR-LEARN hold without any loss in
LEARN(·), this framework can easily be made operational
in practice.

4 Cost of Fairness

Our regret guarantees until now have been in terms of
r-Regret, but now we evaluate the cost of fairness in terms
of the conventional notion of regret. In particular, we show
the trade-off between the conventional regret and fairness in
terms of the unfairness tolerance .

5The proofs of Theorems 3 and 4 can be found in the extended
version of this paper.

Theorem 4. The expected regret of FAIR-UCB is given by

R(T ) ≤
∑

i∈S(T )

(ri · T − α) ·Δi +
∑

i∈S(T )
i �=1

8 lnT/Δi

+
∑
i∈[k]

(1 + π2/3) ·Δi

(where S(T ) = {i | (ri · T − α) < 8 lnT/Δ2
i }.)

Theorem 4 captures the explicit trade-off between regret
and fairness in terms of the unfairness tolerance parameter
α. If S(T ) = ∅ we have that the regret is O(lnT ). This
implies that if α > riT − 8 lnT/Δ2

i for all i 
= 1, then
the regret is O(lnT ). However, if S(T ) 
= ∅ then for each
i ∈ S(T ), an additional regret equal to riT−α is incurred in
which case the regret is O(T ). We complement these results
with simulations in Section 6.

5 Proof of Theoretical Results

Proof of Theorem 1
After each round t (and before round t+1), we consider the
k + 1 sets, M1,t,M2,t, . . . ,Mk,t, and St, as defined below:

• arm i ∈ Mj,t ⇐⇒ α + (k−j)
k ≤ rit − Ni,t < α +

(k−j+1)
k , ∀j ∈ [k]

• arm i ∈ St ⇐⇒ rit−Ni,t < α

α

α+ 1
k

α+ 2
k

α+ k−1
k

α+ 1

Mk,t

Mk−1,t

M1,t

Mk,t

Mk−1,t

M1,t

St

Figure 1: Partition of the arms

Let Vj,t = �j
�=1M�,t, for all j ∈ [k]. Then the following

lemma guarantees the fairness of the algorithm and is at the
heart of the proof. The proof of the theorem is immediate
from the proof of the lemma.
Lemma 1. For t ≥ 1, we have

1. Vk,t � St = [k]

2. |Vj,t| ≤ j, for all j ∈ [k]

Condition 1 in Lemma 1 ensures that at any time t ≥ 1, the
k + 1 sets M1,t,M2,t, . . . ,Mk,t, St form a partition of the
set [k] of arms. Hence the arm pulled at the (t+ 1)-th round
by the algorithm is from one of these k + 1 sets. As a part
of the proof of Lemma 1, in Observation 2 we show that if
it+1 is the arm pulled at the (t+1)-th round then after t+1
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rounds it+1 ∈ Mk,t+1 � St+1. Also in Observation 3 we
show that if an arm i ∈ Mj,t is not pulled in the (t + 1)-th
round then after t + 1 rounds arm i ∈ Mj−1,t+1 � Mj,t+1

for all j ∈ [2, k]. We note that the two conditions in Lemma
1 are true after the first round, and then the Observations 2
and 3 together ensure that these conditions remain true for
all t > 1. Hence, all arms i ∈ [k] satisfy rit−Ni,t < α+ 1
for all t ≥ 1, which implies �rit� −Ni,t ≤ α. In particular,
we have �rit�−Ni,t ≤ α, for all t ≥ 1, for all i ∈ [k], which
by Definition 2 proves that FAIR-LEARN is α-fair . �

Proof of Lemma 1: We begin with two complementary
observations and then prove the lemma by induction.

Observation 2. Let i be the arm pulled by FAIR-LEARN in
round t+ 1.

1. if i ∈ St, then i ∈ St+1

2. if i ∈ Mj,t for some j ∈ [k], then i ∈ Mk,t+1 � St+1

Proof. Case 1: i ∈ St =⇒ rit − Ni,t < α. Then after
round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit+ ri −Ni,t − 1

< α− (1− ri)

< α (Since 1− ri > 0)

=⇒ i ∈ St+1

Case 2: i ∈ Mj,t for some j ∈ [k] =⇒ rit − Ni,t <

α+ (k−j+1)
k . Then after round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit+ ri −Ni,t − 1

< α+
(k − j + 1)

k
− (1− ri)

< α− j

k
+

1

k
+ ri

< α+ ri < α+
1

k
(Since ri <

1
k )

=⇒ i ∈ Mk.t+1 � St+1

Observation 3. Let i ∈ [k] be any arm not pulled at time
t+ 1.

1. If i ∈ St, then i ∈ St+1 �Mk,t+1

2. If i ∈ Mj,t for j ∈ [2, k], then i ∈ Mj−1,t+1 �Mj,t+1

Proof. Case 1: i ∈ St =⇒ rit − Ni,t < α. Then after
round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit−Ni,t + ri (Ni,t+1 = Ni,t)

< α+ ri < α+
1

k
(Since ri <

1
k )

=⇒ i ∈ St+1 �Mk,t+1

Case 2: i ∈ Mj,t for some j ∈ [2, k] =⇒ α + k−j
k ≤

rit−Ni,t < α+ (k−j+1)
k . Then after round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit−Ni,t + ri

< α+
(k − j + 1)

k
+ ri

< α+
(k − j + 1)

k
+

1

k

= α+
(k − (j − 1) + 1)

k

and rit−Ni,t + ri ≥ α+ k−j
k + ri ≥ α+ k−j

k

0 =⇒ i ∈ Mj−1,t+1 �Mj,t+1

With the above observation we complete the proof of the
lemma using induction.

Induction base case (t = 1): Let i1 be the arm pulled at t =
1. Then

ri1t−Ni1,1
= ri1 − 1 < 0 ≤ α

=⇒ i1 ∈ S1

For all i 
= i1, we have rit−Ni,1 = ri <
1
k ≤ α + 1

k =⇒
i ∈ S1 �Mk,1. Hence, Vk,1 � S1 = [k], |Vk,1| ≤ k − 1, and
|Vj,1| = 0 for all j ∈ [k− 1]. Thus, conditions (1) and (2) of
the lemma hold.

Inductive Step: Assuming the conditions in the lemma hold
after round t, we show that they hold after round t+ 1.

Case 1: it+1 ∈ St. From Observation 2, we know it+1 ∈
St+1. From Observation 3, we know that for any arm i 
=
it+1, i ∈ St+1 � Mk,t+1. Hence, Vk,t+1 � St+1 = [k],
|Vj,t+1| = 0 for all j ∈ [k − 1], and |Vk,t+1| ≤ k − 1.
Thus, Conditions (1) and (2) in the lemma hold after round
t+ 1.
Case 2: it+1 ∈ Ma,t, for some a ∈ [k].

it+1 ∈ Ma,t =⇒ it+1 ∈ Va,t

=⇒ |Vj,t| = 0 for all j ∈ [1, a− 1] if a > 1

From Observation 2, we know it+1 ∈ St+1 � Mk,t+1, and
from Observation 3, we infer that Vj−1,t+1 = Vj,t \ {it+1}
for all j ∈ [2, k]. Also,

|Vj,t \ {it+1}| ≤ j − 1 for all j ∈ [a, k]

=⇒ |Vj,t+1| ≤ j for all j ∈ [k]

Also, Vk,t+1 �St+1 = [k]. Hence, Conditions (1) and (2) of
the lemma hold after round t+ 1. �
Proof of Theorem 2
The regret analysis of FAIR-UCB builds on the regret anal-
ysis of UCB1 which we give in the Appendix of the ex-
tended version. In Appendix A we also introduce the nota-
tions used in this proof. The UCB1 estimate of the mean
of arm i denoted as μ̄i(t) = μ̂i,Ni,t−1

(t − 1) + ct,Ni,t−1
,

where μ̂i,Ni,t−1
(t− 1) is the empirical estimate of the mean

of arm i when it is pulled Ni,t−1 times in t − 1 rounds and

ct,Ni,t−1
=

√
2 ln t

Ni,t−1
is the confidence interval of the arm i

at round t. Similar to the analysis of the UCB1 algorithm,

5383



Figure 2: Cost of Fairness

Figure 3: r-Regret Guarantee

we upper bound the expected number of times a sub-optimal
arm is pulled. We do this by considering two cases depen-
dent on the number of times the sub-optimal arm is required
to be pulled for satisfying its fairness constraint.

Case 1: Let i 
= 1 and ri · T − α ≥ 8 lnT

Δ
2
i

. Then

E[Ni,T ] ≤(
ri · T − α

)
+

T∑
t=1

{it = i, Ni,t−1 ≥ ri · T − α}

≤(
ri · T − α

)

+

∞∑
t=1

t∑
s1=1

t∑
si=ri·T−α

{
μ̂1,s1

(t) + ct,s1 ≤ μ̂1,si
(t) + ct,si

}

(Follows from Appendix A, Theorem 6)

Since ri · T −α ≥ 8 lnT

Δ
2
i

, it follows from the proof of Theo-

rem 6 in Appendix A that E[Ni,T ] ≤ ri ·T −α+
(
1+ π

2

3

)
.

Hence, E[Ni,T ]−
(
ri · T − α

) ≤ (
1 + π

2

3

)
.

Case 2: Let i 
= 1 and ri · T < 8 lnT

Δ
2
i

Then the proof of Theorem 6 in Appendix A can be appro-
priately adapted to show that E[Ni,T ] ≤ 8 lnT

Δ
2
i

+
(
1 + π

2

3

)
.

Hence

E[Ni,T ]−
(
ri ·T −α

) ≤ 8 lnT

Δ2
i

+
(
1+

π2

3

)
− (

ri ·T −α
)

Figure 4: Fairness Guarantee

Suppose S(T ) =
{
i ∈ [k]

∣∣ ri ·T −α < 8 lnT

Δ
2
i

}
. Then from

the two cases discussed above, we can conclude that

Rr
FAIR-UCB(T ) ≤

(
1 +

π
2

3

)
·
∑
i∈[k]

Δi

+
∑

i∈S(T ),i �=1

Δi ·
(
8 lnT

Δ
2
i

− (
ri · T − α

))

Hence, Rr
FAIR-UCB(T ) = O(

∑
i �=1

lnT
Δi

). �

6 Experimental Results

In this section we show the results of simulations that vali-
date our theoretical findings. First, we represent the cost of
fairness by showing the trade-off between regret and fair-
ness with respect to the unfairness tolerance α. Second,
we evaluate the performance of our algorithms in terms of
r-Regret and fairness guarantee by comparing them with the
algorithm by (Li, Liu, and Ji 2019), called Learning with
Fairness Guarantee(LFG), as a baseline. Note that in Figure
3, cumulative regret is plotted on a logarithmic scale. The ra-
tionale behind the choice of instance parameters is discussed
in the extended version of the paper.

Trade-off: Fairness vs. Regret
We consider the following FAIR-MAB instance: k = 10,
μ1 = 0.8, and μi = μ1 − Δi, where Δi = 0.01i, and
r = (0.05, 0.05, . . . , 0.05) ∈ [0, 1]k. We show the results
for T = 106. Figure 2 shows the trade-off between regret in
terms of the conventional regret and maximum fairness vio-
lation equal to maxi∈[k]rit−Ni,t, with respect to α, and this
in particular captures the cost of fairness. As can be seen, the
regret decreases, and maximum fairness violation increases
respectively as α increases till a threshold for α is reached.
For values of α less than this threshold the fairness con-
straints cause some sub-optimal arms to be pulled more than
the number of times required to determine its mean reward
with sufficient confidence. On the other hand, for values of α
more than this threshold, the regret reduces drastically, and
we recover logarithmic regret as could be expected from the
classical UCB1 algorithm. Note that the threshold for α in
this case is problem-dependent.
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Comparison: FAIR-UCB vs. LFG: The work closest to
ours is the one by (Li, Liu, and Ji 2019) and their algorithm,
which is called Learning with Fairness Guarantee (LFG),
is used as a baseline in the following simulation results.
The simulation parameters that we consider for comparing
r-Regret are the same as in the previous instance. Figure 3
shows the plot of time vs. r-Regret for FAIR-UCB and LFG.
Note that FAIR-UCB and LFG perform comparably in terms
of the r-Regret suffered by the algorithm. Also, the simu-
lation results validate our theoretical result of logarithmic
r-Regret bound.

We next compare fairness guarantee of FAIR-UCB with
that of LFG. We consider an instance with k = 3, μ =
(0.7, 0.5, 0.4), r = (0.2, 0.3, 0.25) and, α = 0. Figure
4 shows the plot of time vs. maximum fairness violation.
Observe that the fairness guarantee of FAIR-UCB holds uni-
formly over the time horizon T . Note that, though the fair-
ness violation for LFG appears to be increasing, it does re-
duce at some point and go to zero which guarantees asymp-
totic fairness. To summarize, the simulation result reaffirm
our theoretical guarantees for both fairness and r-Regret of
FAIR-LEARN in general, and FAIR-UCB in particular.

7 Related Work

There has been a surge in research efforts aimed at ensuring
fairness in decision making by machine learning algorithms
such as classification algorithms (Agarwal et al. 2018;
Narasimhan 2018; Zafar et al. 2017a; 2017b), regression al-
gorithms (Berk et al. 2017; Rezaei et al. 2019), ranking and
recommendation systems (Singh and Joachims 2019; Beu-
tel et al. 2019; Singh and Joachims 2018; Celis, Straszak,
and Vishnoi 2017; Zehlike et al. 2017), etc. This is true even
in the context of online learning, particularly in the MAB
setting. We state these relevant works below.

(Joseph et al. 2016) propose a variant of the UCB algo-
rithm that ensures what they call meritocratic fairness i.e. an
arm is never preferred over a better arm irrespective of the
algorithm’s confidence over the mean reward of each arm.
This guarantees individual fairness (see (Dwork et al. 2012))
for each arm while achieving efficiency in terms of sub-
linear regret. The work by (Liu et al. 2017) aims at ensuring
“treatment equality”, wherein similar individuals are treated
similarly. (Gillen et al. 2018) consider individual fairness
guarantees with respect to an unknown fairness metric.

The papers discussed above combine the conventional
goal of maximizing cumulative reward with that of simulta-
neously satisfying some additional constraints. MAB prob-
lem with other added constraints have been considered.
For example, (Badanidiyuru, Kleinberg, and Slivkins 2013;
Immorlica et al. 2018) study the MAB with knapsack con-
straints, where the number of times that a particular arm can
be pulled is limited by some budget. The works of (Xia et al.
2015; Amin et al. 2012; Tran-Thanh et al. 2014) consider the
MAB problem in which there is some cost associated with
pulling each arm, and the learner has a fixed budget. The
work by (Lattimore, Crammer, and Szepesvári 2014; 2015;

Talebi and Proutiere 2018) investigates bandit optimization
problems with resource allocation constraints.

Comparison with (Li, Liu, and Ji 2019): In addition to
proving a O(

√
T lnT ) distribution-free r-Regret bound as

in (Li, Liu, and Ji 2019), we show a O(lnT ) r-Regret bound
with finer dependence on the instance parameters. Our fair-
ness guarantee holds uniformly over time and hence is much
stronger than the asymptotic fairness guarantee of LFG.
Moreover, as our fairness guarantee is independent of the
learning algorithm used in FAIR-LEARN, it holds for the set-
ting considered in (Li, Liu, and Ji 2019).

Comparison with (Celis et al. 2018): A recent work by
(Celis et al. 2018) considers a personalized news feed set-
ting, where at any time t, for a given context (user), the
arm (i.e. ad to be displayed) is sampled from a distribution
pt over the set [k] of arms (ads) and fairness is achieved
by ensuring a pre-specified probability mass on each arm
which restricts the allowable set of distributions to a subset
of the simplex. The algorithm in (Celis et al. 2018) when
applied to the classical stochastic multi-armed bandit setting
considered by us, ensures any-time fairness only in expec-
tation over the random pulls of arms by the algorithm. In
contrast, our algorithm (Theorem 1) provides much stronger
deterministic any-time fairness guarantee. Further, we also
provide an explicit trade-off (in terms of the unfairness tol-
erance α), between fairness and regret. Also, the computa-
tional overhead of our algorithm is just O(1), whereas the
algorithms in (Celis et al. 2018) need to solve LPs in each
round. We also note that our model can directly be adapted
to capture the setting in (Celis et al. 2018).

8 Discussion and Future Work

The constraints considered in this paper capture fairness
by guaranteeing a minimum fraction of pulls to each arm
at all times. There are many situations where such fair-
ness constraints are indispensable, and in such cases the
r-Regret notion compares the expected loss of any online al-
gorithm with the expected loss of an optimal algorithm that
also satisfies such fairness constraints. An important feature
of our proposed meta algorithm FAIR-LEARN is the uniform
time fairness guarantee that it provides independent of the
learning algorithm used. We also elucidate the cost of sat-
isfying such fairness constraints by evaluating the trade-off
between the conventional regret and fairness in terms of an
unfairness tolerance parameter. Several notions of fairness
such as disparate impact, statistical parity, equalized odds,
etc. (Barocas, Hardt, and Narayanan 2018) are extensively
studied in literature. Incorporating such fairness notions in
online learning framework, as done by (Blum et al. 2018;
Blum and Lykouris 2019; Bechavod et al. 2019), is an excit-
ing future direction.

Acknowledgement

We thank Prof. Siddharth Barman for useful insights and
helping us improve the presentation of the paper. We also

5385



thank Prof. Krishna Gummadi for pointing us to the Face-
book lawsuit. Ganesh Ghalme gratefully acknowledges the
travel support by Tata Trusts. Finally, we thank the anony-
mous reviewers for their helpful comments.

References

Agarwal, A.; Beygelzimer, A.; Dudı́k, M.; Langford, J.; and Wal-
lach, H. 2018. A reductions approach to fair classification. arXiv
preprint arXiv:1803.02453.
Agrawal, S., and Goyal, N. 2012. Analysis of thompson sampling
for the multi-armed bandit problem. In Conference on Learning
Theory, 39–1.
Amin, K.; Kearns, M.; Key, P.; and Schwaighofer, A. 2012. Bud-
get optimization for sponsored search: Censored learning in mdps.
arXiv preprint arXiv:1210.4847.
Badanidiyuru, A.; Kleinberg, R.; and Slivkins, A. 2013. Bandits
with knapsacks. In Annual Symposium on Foundations of Com-
puter Science, 207–216.
Barocas, S.; Hardt, M.; and Narayanan, A. 2018. Fairness and
Machine Learning. fairmlbook.org.
Bechavod, Y.; Ligett, K.; Roth, A.; Waggoner, B.; and Wu, Z. S.
2019. Equal opportunity in online classification with partial feed-
back. arXiv preprint arXiv:1902.02242.
Berk, R.; Heidari, H.; Jabbari, S.; Joseph, M.; Kearns, M.; Morgen-
stern, J.; Neel, S.; and Roth, A. 2017. A convex framework for fair
regression. arXiv preprint arXiv:1706.02409.
Beutel, A.; Chen, J.; Doshi, T.; Qian, H.; Wei, L.; Wu, Y.; Heldt,
L.; Zhao, Z.; Hong, L.; Chi, E. H.; et al. 2019. Fairness in recom-
mendation ranking through pairwise comparisons. arXiv preprint
arXiv:1903.00780.
Blum, A., and Lykouris, T. 2019. Advancing subgroup fairness via
sleeping experts. arXiv preprint arXiv:1909.08375.
Blum, A.; Gunasekar, S.; Lykouris, T.; and Srebro, N. 2018. On
preserving non-discrimination when combining expert advice. In
Advances in Neural Information Processing Systems, 8376–8387.
Bubeck, S., and Cesa-Bianchi, N. 2012. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foundations
and Trends R© in Machine Learning 5(1):1–122.
Celis, L. E.; Kapoor, S.; Salehi, F.; and Vishnoi, N. K. 2018. An
algorithmic framework to control bias in bandit-based personaliza-
tion. arXiv preprint arXiv:1802.08674.
Celis, L. E.; Straszak, D.; and Vishnoi, N. K. 2017. Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840.
Chatterjee, A.; Ghalme, G.; Jain, S.; Vaish, R.; and Narahari, Y.
2017. Analysis of thompson sampling for stochastic sleeping ban-
dits. In Uncertainty in Artificial Intelligence.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R.
2012. Fairness through awareness. In Theoretical Computer Sci-
ence Conference, 214–226.
Freeman, S. 2019. Original position. In Zalta, E. N., ed., The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University.
Gillen, S.; Jung, C.; Kearns, M.; and Roth, A. 2018. Online learn-
ing with an unknown fairness metric. In Advances in Neural Infor-
mation Processing Systems.
Heidari, H.; Ferrari, C.; Gummadi, K.; and Krause, A. 2018. Fair-
ness behind a veil of ignorance: A welfare analysis for automated
decision making. In Advances in Neural Information Processing
Systems. 1265–1276.

Immorlica, N.; Sankararaman, K. A.; Schapire, R.; and Slivkins,
A. 2018. Adversarial bandits with knapsacks. arXiv preprint
arXiv:1811.11881.
Joseph, M.; Kearns, M.; Morgenstern, J. H.; and Roth, A. 2016.
Fairness in learning: Classic and contextual bandits. In Advances
in Neural Information Processing Systems.
Kleinberg, R.; Niculescu-Mizil, A.; and Sharma, Y. 2010. Regret
bounds for sleeping experts and bandits. Machine learning 80(2-
3):245–272.
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