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Abstract

We present a novel Bayesian method for the challenging task
of estimating causal effects from passively observed data when
the underlying causal DAG structure is unknown. To rigor-
ously capture the inherent uncertainty associated with the
estimate, our method builds a Bayesian posterior distribution
of the linear causal effect, by integrating Bayesian linear re-
gression and averaging over DAGs. For computing the exact
posterior for all cause-effect variable pairs, we give an algo-
rithm that runs in time O(3dd) for d variables, being feasible
up to 20 variables. We also give a variant that computes the
posterior probabilities of all pairwise ancestor relations within
the same time complexity, significantly improving the fastest
previous algorithm. In simulations, our Bayesian method out-
performs previous methods in estimation accuracy, especially
for small sample sizes. We further show that our method for
effect estimation is well-adapted for detecting strong causal
effects markedly deviating from zero, while our variant for
computing posteriors of ancestor relations is the method of
choice for detecting the mere existence of a causal relation.
Finally, we apply our method on observational flow cytom-
etry data, detecting several causal relations that concur with
previous findings from experimental data.

Introduction

Understanding the behaviour of a system under the influence
of interventions is the ultimate goal of many scientific studies.
As a result, the problem of estimating causal effects from
empirical data has received a lot of attention in a wide variety
of fields. In the most basic setting, we only have a passively
observed set of measurements over the variables of interest.
In this article, we propose a Bayesian method for estimating
causal effects from such data alone, that is, without the often
unavailable knowledge of the causal structure of the system.

If the causal structure is known, then do-calculus and
the ID algorithm can identify the causal effect whenever
it can be (non-parametrically) identified, even in the presence
of latent confounders (Shpitser and Pearl 2006; Tian and
Pearl 2002). When causal relations are restricted to be lin-
ear, more effects can be identified through more complicated
criteria (Tian 2004; van der Zander and Liskiewicz 2016;
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Chen, Kumor, and Bareinboim 2017). Moreover, under
the assumption of causal sufficiency (i.e., absence of la-
tent confounders), all causal effects can be identified by
back-door adjustment according to the known causal struc-
ture (Spirtes, Glymour, and Scheines 1993; Pearl 2009;
Greenland, Robins, and Pearl 1999).

However, when we do not have extensive knowledge about
the system under investigation in form of a causal graph, we
also have to make inferences on this graph structure from
the available data. From observational data alone, the causal
graph can in general only be identified up to its Markov
equivalence class. Several works study causal effects in the
light of the limited identifiability of causal structures (Entner,
Hoyer, and Spirtes 2013; Hyttinen, Eberhardt, and Järvisalo
2015; Perković et al. 2018; Jaber, Zhang, and Bareinboim
2018a; 2018b; Malinsky and Spirtes 2017).

More practical estimation methods are also available, when
causal sufficiency can be assumed. Specifically, the IDA al-
gorithm estimates causal effects from linear Gaussian data
by backdoor adjustment over the graphs in the equivalence
class returned by the PC algorithm (Maathuis, Kalisch, and
Bühlmann 2009; Spirtes, Glymour, and Scheines 1993). For
a given graph, the causal effect between two variables is
estimated by linear regression, where the set of covariates
depends on the parents of the cause variable. Consequently,
since the parent set of a node typically varies within an equiv-
alence class, a (multi)set of coefficients is returned as the
causal effect estimate.

Although a set of coefficients captures some of the un-
certainty in the estimated effect, a lot of uncertainty re-
mains unaccounted for. In particular, the accuracy hinges
on the structure learning step. In addition to the unoriented
edges within a Markov equivalence class, there may be sev-
eral non-equivalent graphs that fit the finite data set (al-
most) equally well, yet still yield very different causal ef-
fects estimates. Attempting to account for this uncertainty,
the original IDA method has been combined with various
resampling strategies, which associate the estimates with
frequentist measures of confidence (Stekhoven et al. 2012;
Taruttis, Spang, and Engelmann 2015).

Here, we introduce a Bayesian approach for causal effect
estimation, which employs Bayesian model averaging to fully
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account for our lack of knowledge of the underlying causal
structure. By integrating averaging over graphs and Bayesian
linear regression, we produce a Bayesian posterior, which
explicitly describes the knowledge and the uncertainty on
the causal effect, given the available data. For the compu-
tationally heavy averaging over graphs, we give an exact
algorithm that runs in time O(3dd), where d is the number
of variables; thus the algorithm scales to moderately high
dimensions, without resorting to approximations with uncon-
trolled accuracy. We show that on realistic-size data sets our
approach yields estimates that are more accurate than those
produced by previous methods.

When the interest is in the existence of a causal relation,
rather than in the magnitude of the causal effect, there is a
more direct Bayesian solution: compute the posterior proba-
bility that the variable of interest is an ancestor of the target
variable in the unknown graph. To compute these probabili-
ties for all pairs of variables, Chen, Meng, and Tian (2015)
recently gave an algorithm whose running time scales as
O(5dd2). We give a novel algorithm that improves the run-
ning time to O(3dd); we obtain this algorithm as a variant of
our method for averaging over graphs. Armed with our faster
algorithm, we also compare empirically this direct approach
to that of inferring whether the causal effect is nonzero.

While we in this work focus on exact exponential algo-
rithms, we believe our techniques could be useful also in
designing efficient approximate methods. We defer a more
thorough discussion of the tradeoff between scalability and
controlled error in computations to the end of this paper.

Preliminaries

A directed acyclic graph (DAG) G = (V,E) consists of a
node set V and an edge set E ⊆ V × V that contains no
directed cycles. If (i, j) is an edge from i to j in G, then i is
called a parent of j. We denote by Gj the set of parents of
node j in G. If there is a directed path from i to j, then i is
called an ancestor of j and j a descendant of i.

In a (probabilistic) DAG model, we take V as an index
set {1, . . . , d} and associate each node i ∈ V with a ran-
dom variable xi. The model asserts that each variable xi is
conditionally independent of its non-descendants given its
parental variables xGi

, enabling a factorization of the joint
distribution over the variables:

f(x1, . . . , xd) =

d∏
i=1

f(xi |xGi
).

We assume here that the conditional distributions are linear
Gaussians (Geiger and Heckerman 1994):

f(xi |xGi) = N(β0 + β�xGi ;σ
2
i ) . (1)

As a result, the joint distribution of (x1, . . . , xd) is a d-
dimensional normal distribution. Without loss of general-
ity, we assume that the distribution is zero-centered, that is,
β0 = 0 in (1).

In this work, we assume that the DAG has a causal in-
terpretation, and we are interested in estimating the causal
(intervention) effect of a variable xi on another variable xj

for any i, j ∈ V . In the considered model space, the causal

effect can be estimated from the intervention distribution
f
(
xj | do(xi = u)

)
, where the do-operator represents that xi

is set to the value u ∈ R by an external intervention, such
that the rest of the system is left unaltered (Pearl 2009).

For a given DAG, the intervention distribution can be
calculated using a technique known as back-door adjust-
ment (Spirtes, Glymour, and Scheines 1993; Pearl 2009;
Greenland, Robins, and Pearl 1999). In particular, if j �∈ Gi,
then Gi satisfies the back-door criterion for the above case
and the intervention distribution can be calculated from the
pre-intervention (i.e. observational) distribution:

f
(
xj | do(xi = u)

)
=

∫
f(xj | xi = u, xGi)f(xGi) dxGi .

If j ∈ Gi, this is simply reduced to the marginal distribution:

f
(
xj | do(xi = u)

)
= f(xj).

Furthermore, the causal relationship can be quantified by

θij =
∂

∂x
E
(
xj | do(xi = x)

) |x=u . (2)

While the function in (2) in general depends on the value u,
it turns out to be a constant single value for Gaussian DAG
models (Pearl 2009). For a given Gaussian DAG model, θij
can be calculated either from the joint distribution or from
the edge weights in (1) using the method of path coefficients
(Wright 1934).

The problem considered in this work is estimating the
causal effect parameter θij in (2) from a set of data, D, with-
out any prior knowledge about the causal DAG. Moreover, we
assume that the data set is observational (non-interventional)
and has been generated from an underlying Gaussian DAG
model. We also consider the related problem of computing
the posterior probability of an ancestral relation, that is, the
existence of any directed path from a node to another.

A Bayesian Posterior for Causal Effects

In the absence of a known causal structure, a causal effect
estimator involves a considerable amount of uncertainty. This
uncertainty is primarily related to the unknown DAG, but also
to the estimated effect for a given DAG (Maathuis, Kalisch,
and Bühlmann 2009). In this section, we present a Bayesian
approach which explicitly accounts for all the uncertainty
involved in the estimation procedure.

A Bayesian Posterior When the DAG Is Known

For a given DAG, a consistent estimator for the causal effect
θij is obtained by solving the linear model

xj = βixi + β�
Gi
xGi

+ ε , ε ∼ N(0, σ2
j ) , (3)

and reading off the estimate of regression coefficient βi. Us-
ing this technique, the causal effect estimator is

θ̂ij :=

{
β̂i if j �∈ Gi ,

0 if j ∈ Gi ,
(4)

where β̂i is the estimated regression coefficient in the parent-
adjusted linear model (3). Note that the estimator only re-
quires local information about the DAG: the parents of node
i (Maathuis, Kalisch, and Bühlmann 2009).
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We assume here a specific form of prior distribution over
the model parameters, and derive the Bayesian posterior dis-
tribution analytically. More specifically, for the parameters in
the linear model in (3), here denoted by β = (βi, βGi

) and
σ2 = σ2

j , we assume a prior distribution

f(β, σ2) = f(β | σ2)f(σ2)

where
β | σ2 ∼ N(m0, σ

2Λ−1
0 ) ,

σ2 ∼ Inv-Gamma(a0, b0) ,
(5)

with hyperparameters m0, Λ0, a0 and b0. Under this so-called
conjugate prior, the posterior distribution will be of the same
form, and the hyperparameters are updated according to:

mn = (X�X+ Λ0)
−1(X�y + Λ0m0) ,

Λn = X�X+ Λ0 ,

an = a0 + n/2 ,

bn = b0 + (y�y +m�
0 Λ0m0 −m�

nΛnmn)/2 ,

where X represents a matrix of n observations over variables
(xi, xGi

), and y denotes a corresponding vector of observa-
tions of variable xj . Moreover, after marginalizing out σ2,
the joint distribution over the regression coefficients follow a
multivariate t-distribution:

β | D ∼ t2an
(mn,

bn
an

Λ−1
n ) .

As a result, a Bayesian estimator of θij under a given DAG
is conveniently given by

f(θij | D,Gi) =

{
t2an

(μi,Σi,i) if j �∈ Gi ,

0 if j ∈ Gi ,
(6)

where μi is the location parameter corresponding to node i,
and Σi,i is the diagonal value in the shape matrix correspond-
ing to node i.

A Bayesian Posterior When the DAG Is Unknown

The estimators in (4) and (6) assume that the causal structure,
or DAG, is known. This is usually not the case in practice,
and the DAG needs to be inferred from the data. However,
as a DAG can be inferred only up to its equivalence class
from observational data, one can only hope to identify a
collection of causal effect estimates, one for each DAG in
the equivalence class. The IDA algorithm straightforwardly
implements this inference by learning a CPDAG from the
data, under which a (multi)set Θij of possible values of θij
is estimated (Maathuis, Kalisch, and Bühlmann 2009).

In general, and especially for small data sets, it is diffi-
cult to single out one specific CPDAG with high confidence.
Therefore, rather than fixing a single CPDAG, we employ
Bayesian model averaging (BMA) over the set of DAGs.
BMA provides a principled mechanism for converting uncer-
tainty about the model, in our case the causal DAG, into un-
certainty about a parameter of interest (Hoeting et al. 1999).

Using BMA, we thus obtain a general posterior causal
effect distribution that is not tied down to a specific causal
structure. Since the estimator in (6) is the same for all graphs

that agree with Gi (parents of node i), averaging over graphs
boils down to averaging over the parent sets of node i:

f(θij |D) =
∑

Gi⊆V \{i}
f(θij |D,Gi)p(Gi |D) , (7)

where f(θij |D,Gi) is the posterior of the causal effect θij
for a given parent set Gi, as defined in (6), and p(Gi |D)
is the posterior probability of the parent set.1 This key ob-
servation renders the posterior computationally feasible for
moderately large d, as shown in the following section. The
posterior distribution (7) is a mixture distribution, where each
parent-specific component is either a t-distribution or a point
mass at zero, and its corresponding weight is the posterior
probability of that particular parent set.

In terms of asymptotic properties, the estimator in (7) is
clearly consistent in the following sense: Let G∗ be a DAG
and F a faithful linear Gaussian distribution, i.e., F has no
other independencies than those entailed by G∗. Then, as the
size of the data drawn from F tends to infinity, the posterior
of θij converges to a discrete distribution whose support is
precisely the set of possible values for the true causal effect,
Θij . The mild assumptions we need for this convergence
result are that the structure prior p(G) is everywhere posi-
tive and that the marginal likelihood p(D |G) is consistent,
i.e., maximized by G∗ with probability that tends to 1. The
latter property holds under standard proper parameter priors
(Geiger and Heckerman 2002), but also under the objective
Bayesian scheme (Consonni and Rocca 2012).

Moreover, we have that the multiplicities in Θij match
the corresponding (limiting) posterior probabilities, provided
that the posterior is score equivalent, i.e., assigns the same
probability for equivalent DAGs. Again, this holds under the
mentioned parameters priors if we additionally use a structure
prior p(G) that assigns the same probability for equivalent
DAGs (e.g., a uniform prior over DAGs).

Exact Computation of the Parent Set and

Ancestor Relation Probabilities
The main computational challenge related to the posterior
(7) is the calculation of the parent set posterior probabilities.
To formulate the problem more precisely, we assume that
the prior p(G) is modular, i.e., it is a product of node-wise
weights qv(Gv) (which are generally not proportional to the
priors p(Gv) they imply), and the parameters associated with
each node (and incoming edges) are independent given the
graph G. Under these standard assumptions (Koller and Fried-
man 2009, pp. 804–806), the posterior probability that Gi is
the parent set of i can be written as

p(Gi |D) = p(D)−1
∑
G:Gi

∏
v∈V

wv(Gv) , (8)

with wv(Gv) := p(Dv |DGv , Gv)qv(Gv) ,

where the sum is over all DAGs G on V with Gi as the parents
of i. If one wants to ensure score equivalence of the posterior,

1When the value of Gi is unspecified, Gi denotes the random
variable that corresponds to the parent set of i; however, when Gi

is given a value, like in the summation (7), Gi is interpreted as the
value of the random variable, whose identity is clear in the context.
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the local marginal likelihood terms p(Dv |DGv , Gv) need
to be specified under a particular class of parameter priors
(Geiger and Heckerman 2002).

We emphasize that the results of this section hold with any
priors that admit modularity and parameter independence and
yield local weights wv(Gv) that can be efficiently computed,
e.g., using a closed-form expression. Thus we also cover
common settings where some or all variables are discrete.

We will give an algorithm that, when slightly modified,
also computes the ancestor posterior probabilities between
all pairs of distinct nodes i, j, given by

p(i� j|D) = p(D)−1
∑

G:i� j

∏
v∈V

wv(Gv) , (9)

where G runs over all DAGs on V such that there is a directed
path from i to j in G.

Theorem 1. The 2d−1d parent set probabilities and the
d(d− 1) ancestor relation probabilities can be computed
in time O(3dd) and space O(2dd), given the 2d−1d weights
wv(Gv) as input.

The algorithm, given in the next subsection, is inspired
by an algorithm of Tian and He (2009), which computes the
posterior probability of any fixed subgraph in time O(3d).
Running it for all possible parent sets would be expensive,
however. Tian and He also gave a variant that computes all
edge posterior probabilities in time O(3dd) by reusing in-
termediate results. We observe that a similar trick enables
handling all the exponentially many parent sets with essen-
tially no computational overhead. We will also see that adding
the constraint i� j does not lead to computational complica-
tions; our algorithm substantially improves upon a previous,
O(5dd2)-time algorithm (Chen, Meng, and Tian 2015).

We note that related dynamic programming algorithms
have been given for finding a maximum-a-posteriori DAG
(Silander and Myllymäki 2006; Yuan and Malone 2013) and
for Bayesian model averaging under so-called order-modular
priors (Koivisto and Sood 2004; Koivisto 2006). The modular
prior is often preferred as it supports, e.g., the uniform distri-
bution over DAGs, whereas the order-modular prior favors
DAGs that admit a larger number of topological sorts.

The Algorithm—Proof of Theorem 1

For convenience, for two distinct nodes i, j ∈ V and a node
set S ⊆ V \{i} denote the unnormalized posteriors by

Wi(S) :=
∑

G:Gi=S

∏
v∈V

wv(Gv) and

Wi,j :=
∑

G:i� j

∏
v∈V

wv(Gv) ,

where G runs over all DAGs on V under the shown con-
straints. To prove Theorem 1, we show that these numbers
can be computed within the claimed resources; specifically,
the normalizing constant p(D) is obtained by summing up
the total weights Wi(S) over S ⊆ V \{i} for any fixed i.

We present our forward–backward algorithm first for the
parent set probabilities. The term “forward–backward” was

i

V \ {i} \ UU

descendants

s2

s1

j

non-descendants

Figure 1: The forward–backward decomposition with a node
i and a set of its non-descendants U . Shown is also an exam-
ple of a DAG that is compatible with the decomposition and
the constraints for Wi

({s1, s2}) and Wi,j .

used in a similar context by Koivisto (2006) and it origi-
nates from a popular algorithm for computing the posterior
marginals of all hidden state variables in a hidden Markov
model. We use a similar idea: we obtain each quantity Wi(S)
by combining some “forward weights” of DAGs on non-
descendants of i and some “backward weights” of DAGs on
descendants of i. To enable such a decomposition, we need
to fix the set of non-descendants U of node i by summing
over all possibilities:

Wi(S) =
∑

S⊆U⊆V \{i}
f(U) wi(S) bi(V \{i}\U) , (10)

where f(U) is the total weight of all DAGs on U and bi(T )
is the total weight of all combinations of parents sets Gv ⊆
V \{v} for the remaining nodes v ∈ T such that there are no
directed cycles and each v ∈ T is a descendant of i. More
formally,

f(U) :=
∑

G∈G(U)

∏
v∈U

wv(Gv) and

bi(T ) :=
∑

G∈G(i,T,V )

∏
v∈T

wv(Gv) ,

where G(U) is the set of all DAGs on U and G(i, T, V ) is the
set of tuples (Gv)v∈T such that

• Gv ⊆ V \{v} for each v ∈ T ,

• the directed graph
(
T,

⋃
v∈T {uv :u ∈ Gv∩T}) is acyclic,

• every Gv intersects T ∪ {i};

by the last condition and acyclicity, each v ∈ T is a descen-
dant of i. To justify the product rule in Eq. (10), observe
that combining Gi = S with any members of G(U) and
G(i, V \{i}\U, V ) results in a DAG on V with U as the set
of non-descendants of i. See Fig. 1 for an illustration.

Equation (10) gives us a way to compute all Wi(S) in
time O(3dd), provided that the functions f and bi have been
precomputed. Indeed, for each i, exactly 3d−1 pairs S,U
satisfy S ⊆ U ⊆ V \{i}.

Before addressing the precomputation, let us consider the
unnormalized ancestor relation probabilities Wi,j . Again, we
partition the DAGs according to the set U of non-descendants
of node i. However, instead of having a fixed parent set
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S ⊆ U , we now sum over all possible parent sets S ⊆ U and
require that node j is a descendant of i, i.e., j is not among
the non-descendants of i. We get that

Wi,j =
∑

j �∈U⊆V \{i}
f(U) ŵi(U) bi(V \{i}\U) , (11)

with ŵi(U) :=
∑
S⊆U

wi(S) .

For each i, the function ŵi is called the zeta transform of
wi and is straightforward to compute with O(3d) additions,
or faster, in time O(2dd), using fast zeta transform (e.g.,
Koivisto 2006). Thus, once the functions f and bi have been
precomputed, all Wi,j can be computed in time O(2dd2).

The following recurrence equations are the key for efficient
computation of the functions f and bi; for proofs see the
Supplement and also Tian and He (2009).

Lemma 2. We have that f(∅) = 1 and for any nonempty U ,

f(U) =
∑

∅⊂I⊆U

(−1)|I|−1f(U \I)
∏
v∈I

ŵv(U \I) . (12)

Lemma 3. We have that for all i ∈ V and T ⊆ V \{i},

bi(T ) =
∑
I⊆T

(−1)|I|g(T \I)
∏
v∈I

ŵv(V \{i}\T ) , (13)

where g(∅) = 1 and for any nonempty T ,

g(T ) =
∑

∅⊂I⊆T

(−1)|I|−1g(T \I)
∏
v∈I

ŵv(V \T ) . (14)

The computational steps are summarized in Algorithm 1.
Each of the five steps in Algorithm 1 requires O(3dd) addi-
tions and multiplications with a storage for O(2dd) numbers.
The least straightforward is perhaps step 3, which can be im-
plemented, e.g., as follows: for each i ∈ V and T ⊆ V \{i},
visit the subsets I of T in non-decreasing order by size, stor-
ing the product

∏
v∈I ŵv(V \{i}\T ) for each visited I (but

reusing the memory for different i and T ). We remark that,
like step 1, also step 4 can in fact be implemented in O(2dd2)
time using fast (upward) zeta transform (Koivisto 2006).

Algorithm 1 Computing the unnormalized parent set and
ancestor relation probabilities.

1: Compute the zeta transform ŵv of the local weight func-
tion wv for each v ∈ V .

2: Compute the forward function f and the auxilliary func-
tion g using Eqs. (12) and (14).

3: Compute the backward function bi for each i ∈ V using
Eq. (13).

4: Compute the weight Wi(S) for each i ∈ V and S ⊆
V \{i} using Eq. (10).

5: Compute the weight Wi,j for each pair i, j ∈ V using
Eq. (11).

0

5

0

5

-1 0 1 
0

5

-1 0 1 -1 0 1 

Figure 2: Posterior densities for three selected cause–effect
pairs: the relative height of the bar located at zero represents
the probability mass of the zero component and the true
effects are shown by the vertical dotted lines.

Experiments

We have implemented Algorithm 1 in C++ and the rest of the
method in R.2 For a data set on 20 variables, the computations
take about 25 minutes on a modern laptop computer (single
thread, Intel Core i7-6600U, 2.60 GHz).

For calculating the parent set and ancestor relation prob-
abilities, we limited the parent set size to 6 and used the
fractional marginal likelihood (Consonni and Rocca 2012),
with αΩ = d− 1 and n0 = 1, together with a uniform graph
prior. The hyperparameters in the prior for the linear model
(5) were set as follows: m0 = 0, Λ0 = I , and a0 = b0 = 1.

We evaluated the performance of our method by three em-
pirical studies. The first study uses simulated data to examine
the behaviour of our posterior and, in particular, the accuracy
of the resulting estimates as compared to those of different
IDA variants. In the second study, we assess the accuracy of
our method as well as ancestor relation probabilities in terms
of causal effect discovery. The third study demonstrates the
applicability of our approach to real-world data.

Accuracy of the Causal Effect Estimates

We generated 50 random DAGs over d = 20 nodes with
an expected neighbourhood size of four. The edge weights
were sampled uniformly from [−2, 2] and the the error terms
variances were sampled uniformly from [0.5, 1.5]. For each
model, we generated three data sets with increasing sam-
ple size, n = 50, 200, 800. The data were standardized to
zero mean and unit variance (cf. Maathuis, Kalisch, and
Bühlmann 2009, Assump. B). Analogously, the true causal
effects were calculated from the corresponding standardized
models.

2The code package and the supplementary material are available
at https://github.com/jopensar/BIDA.
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Figure 3: MSE of the different estimators in the simulation
study.

In Figure 2, the posteriors are shown for three different
cases in which the true effect is non-zero.In each case, we
see that the posterior density mass converges around certain
values as the sample size is increased. As explained earlier,
these points will equal the true support, Θij , as n → ∞. In
case 1, the causal effect is identifiable (unimodal density).
In cases 2–3, the causal effect is non-identifiable (bimodal
density). Still, in case 2, most of the density mass is shifted
away from the immediate region around zero, indicating that
the causal effect is non-zero.

We compared the accuracy of BIDA against several vari-
ants of the original IDA method. These variants differ by the
way the CPDAG is obtained: IDApc uses a CPDAG estimated
by the PC algorithm (the original method), IDAmap uses a
maximum-a-posteriori CPDAG, and IDAoracle uses the true
CPDAG (which is usually unavailable). In addition to these
three IDA variants, we also included aIDA (Taruttis, Spang,
and Engelmann 2015), which uses the PC-based IDA in com-
bination with a resampling strategy to build a density over
the causal effect. For implementation details and parameter
settings, see the supplement.

We measured the accuracy of the methods by the mean
squared error (MSE) between the true causal effects and the
corresponding point estimates provided by the methods. To
summarize the output of each method into a single point esti-
mate, we calculated the mean of the output. Figure 3 shows
that BIDA clearly outperformed its competitors in accuracy,
especially for small sample sizes. As the sample size was
increased, IDAmap and IDAoracle approached a similar level of
accuracy as BIDA. The PC-based IDA methods were clearly
struggling in this experiment.

Discovering Non-zero Causal Effects

In previous works, the main target of the competing IDA-
based methods has been to rank the causal effects in
a system (Maathuis et al. 2010; Stekhoven et al. 2012;
Taruttis, Spang, and Engelmann 2015). In line with this, we
also compared how well the methods performed in terms of
discovering non-zero causal effects, using the same experi-
mental setup as in the previous section and ranking the effects
by the mean (or minimum) absolute value. Since the interest
in this experiment was solely the existence of a causal effect,
we included our variant method for calculating ancestor rela-
tion probabilities (ARP), for which the effects were ranked

by probability in a descending order. The performance was
evaluated by the area under the precision-recall curve (AUC).

Again, BIDA outperformed the IDA-based methods (Fig. 2
in the supplement). Therefore, we focus our attention on com-
paring BIDA against ARP. Figure 4 (left) shows the results
when a true positive was defined as a non-zero true effect, i.e.,
the existence of an ancestral path in the true model. In this
setup, ARP is clearly more accurate than BIDA. However,
when confining the set of true positives to only strong causal
effects, here defined as |θij | ≥ 0.2, BIDA outperformed ARP
for the larger sample sizes (Fig. 4, right).

In summary, our variant for computing ancestor relation
posteriors (ARP) is better at discovering non-zero causal
relations (no matter the magnitude of the effect), while BIDA
is better at discovering strong causal relations where the
magnitude of the effect deviates markedly from zero and
there is an evident response to the intervention.

Sachs Data

As an example of a possible application for our method,
we consider the flow cytometry data (Sachs et al. 2005).
The data collection contains abundance measurements of
11 biomolecules under various perturbation conditions. We
focused on a data set of 853 observations, obtained under gen-
eral stimulatory conditions (anti-CD3/CD28) and considered
as passively observed. After log-transformation and standard-
ization, we let BIDA rank the causal effects by their mean
absolute value (Fig. S3). We examined the 13 highest ranked
cause-effect pairs further (Table 1), as these were shown to
deviate significantly from the rest using Tukey’s outlier test
(Fig. 3 in the supplement).

To assess the inferred cause–effect pairs, we first compared
our results to the consensus network (Sachs et al. 2005). In
total, 7 of the inferred pairs are supported by the consensus
network. However, since there is much uncertainty about
the true nature of consensus network, we also compared
our results with those of a recent causal discovery method,
called invariant causal prediction (ICP) (Peters, Bühlmann,
and Meinshausen 2016; Meinshausen et al. 2016). In contrast
to BIDA, ICP and hiddenICP (allows for hidden variables)
are designed for interventional data and were given 7 inter-
ventional data sets from the Sachs collection, in addition to
the observational data set. In total, 5/7 and 9/15 of the ef-
fects discovered by ICP and hiddenICP, respectively, were
included among the discovered cause-effect pairs (Table 1),
suggesting that many of the effects inferred by BIDA are
supported by the interventional data.

Concluding Remarks

We presented a new, Bayesian method for estimating causal
effects from passively observed data. To fully account for
the uncertainty due to limited data, we integrated Bayesian
linear regression and Bayesian model averaging (BMA) over
graph structures. Our empirical results confirmed our hy-
pothesis that the full Bayesian approach is superior to its
rivals: the resulting posterior distributions of causal effects
yield more accurate point estimates and improved accuracy
in detecting causal relations, as compared to the state of the
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Figure 4: AUC for BIDA and our variant (ARP) in the sim-
ulation study when non-zero (left) and strong causal effects
(right) in the true model were defined as true positives.

Table 1: Top cause-effect pairs discovered by BIDA for the
Sachs data. A check mark means that the relation was in-
cluded in the Sachs consensus network, detected by ICP, or
detected by hiddenICP, respectively.

Cause Effect Mean abs. Sachs ICP hiddenICP

AKT ERK 0.54 � �
PKC P38 0.35 � �
RAF MEK 0.35 � �
MEK RAF 0.33 �
ERK AKT 0.28 � �
AKT PKA 0.25
P38 PKC 0.23 �
PIP3 PIP2 0.19 � � �
ERK PKA 0.16
PIP2 PIP3 0.15 �
PKA AKT 0.14 � �
PKA ERK 0.13 � �
PKC JNK 0.13 � � �

art. In particular, the comparison to estimates based on a
single structure—found by greedy (Spirtes, Glymour, and
Scheines 1993) or exact algorithms (Yuan and Malone 2013;
Silander and Myllymäki 2006; Barlett and Cussens 2013)—
showed that BMA is crucial for achieving the improved accu-
racy. The rankings of causal relations inferred from passively
observed flow cytometry data concur to those previously
inferred from experimental data, demonstrating the applica-
bility of the method to real data.

Admittedly, BMA presents a computational challenge. We
gave an exact algorithm that is able to compute the posterior
of causal effects for data sets of realistic size, with up to
around 20 variables. This scaling is similar to the scaling
of other exact exponential algorithms for BMA over struc-
tures in graphical models, a topic of active research (see,
e.g., Koivisto and Sood 2004; Tian and He 2009; Tian, He,
and Ram 2010; Parviainen and Koivisto 2011; Chen and
Tian 2014; Kangas, Niinimäki, and Koivisto 2015; Talvi-
tie and Koivisto 2019). With a small modification to our
approach for computing parent set posteriors, we obtained
a variant that is currently the fastest known algorithm for
computing ancestor relation posterior probabilities (Chen,
Meng, and Tian 2015). It is worth noting that these two new

algorithms apply to virtually any local model, e.g., to dis-
crete and nonlinear models. An open question is whether
approximate methods for BMA, e.g., based on Markov chain
Monte Carlo (see Niinimäki, Parviainen, and Koivisto 2016,
Kuipers and Moffa 2017, and references therein) or other ap-
proaches (Liao et al. 2019), can be employed to scale up the
Bayesian approach, yet preserving the statistical efficiency
now achieved with exact computation. Exact algorithms can
be indispensable, however, when it is important to know
whether the results of the computations are correct or within
some tolerated error at least.

Finally, our present study suggests that causal effect es-
timation over more general model spaces—e.g., cycles, la-
tent confounders, and nonlinear causal relations—would also
likely benefit from a similar Bayesian approach. In this di-
rection, Moffa et al. (2017) recently reported on a case study
with a psychiatric data set over nine binary variables (allow-
ing neither cycles nor latent confounders), demonstrating the
value of Bayesian analysis in applications. How the modeling
and computational issues are best addressed for such more
general model spaces, is an intriguing question for future
work.

Acknowledgements

This work was supported by the Academy of Finland, grants
295673 (A.H.) and 316771 (M.K.).

References

Barlett, M., and Cussens, J. 2013. Advances in Bayesian
network learning using integer programming. In Proc. UAI.
Chen, Y., and Tian, J. 2014. Finding the k-best equivalence
classes of Bayesian network structures for model averaging.
In Proc. AAAI, 2431–2438. AAAI Press.
Chen, B.; Kumor, D.; and Bareinboim, E. 2017. Identification
and model testing in linear structural equation models using
auxiliary variables. In Proc. ICML.
Chen, Y.; Meng, L.; and Tian, J. 2015. Exact Bayesian
learning of ancestor relations in Bayesian networks. In Proc.
AISTATS.
Consonni, G., and Rocca, L. L. 2012. Objective Bayes factor
for Gaussian directed acyclic graphical models. Scand. J.
Stat. 39(4):743–756.
Entner, D.; Hoyer, P.; and Spirtes, P. 2013. Data-driven
covariate selection for nonparametric estimation of causal
effects. In Proc. AISTATS.
Geiger, D., and Heckerman, D. 1994. Learning Gaussian
networks. In Proc. UAI.
Geiger, D., and Heckerman, D. 2002. Parameter priors for
directed acyclic graphical models and the characterization
of several probability distributions. Ann. Statist. 30(5):1412–
1440.
Greenland, S.; Robins, J. M.; and Pearl, J. 1999. Confounding
and collapsibility in causal inference. Statist. Sci. 14(1):29–
46.

5401



Hoeting, J. A.; Madigan, D.; Raftery, A. E.; and Volinsky,
C. T. 1999. Bayesian model averaging: A tutorial. Statist.
Sci. 14(4):382–417.
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2015. Do-
calculus when the true graph is unknown. In Proc. UAI.
Jaber, A.; Zhang, J.; and Bareinboim, E. 2018a. Causal
identification under Markov equivalence. In Proc. UAI, 978–
987.
Jaber, A.; Zhang, J.; and Bareinboim, E. 2018b. A graphical
criterion for effect identification in equivalence classes of
causal diagrams. In Proc. IJCAI.
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