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Abstract

Temporal network embedding, which aims to learn the low-
dimensional representations of nodes in temporal networks
that can capture and preserve the network structure and evo-
lution pattern, has attracted much attention from the scien-
tific community. However, existing methods suffer from two
main disadvantages: 1) they cannot preserve the node tempo-
ral proximity that capture important properties of the network
structure; and 2) they cannot represent the nonlinear structure
of temporal networks. In this paper, we propose a high-order
nonlinear information preserving (HNIP) embedding method
to address these issues. Specifically, we define three orders
of temporal proximities by exploring network historical in-
formation with a time exponential decay model to quantify
the temporal proximity between nodes. Then, we propose a
novel deep guided auto-encoder to capture the highly nonlin-
ear structure. Meanwhile, the training set of the guide auto-
encoder is generated by the temporal random walk (TRW) al-
gorithm. By training the proposed deep guided auto-encoder
with a specific mini-batch stochastic gradient descent algo-
rithm, HNIP can efficiently preserves the temporal proximi-
ties and highly nonlinear structure of temporal networks. Ex-
perimental results on four real-world networks demonstrate
the effectiveness of the proposed method.

Introduction

Network embedding has attracted increasing attention in re-
cent years. The basic idea is to embed a network into a
low-dimensional vector space where the inherent structural
properties of the network are preserved so that the network
analysis and prediction tasks can be conducted in the vec-
tor space (Zhu et al. 2018). Recent work on network em-
bedding methods have been demonstrated to be effective in
a variety of applications such as link prediction (Yu et al.
2017), classification (Sun, Yuan, and Wang 2018), and clus-
tering (Xie et al. 2019; Peng et al. 2019). Generally, most of
the existing methods for network embedding focus on static
networks (Zhang, Lyu, and Zhang 2018; Wang et al. 2017;
Perozzi, Al-Rfou, and Skiena 2014). However, interactions
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in real-world networks are dynamic in nature (e.g., Twitter,
Facebook), where the edges evolve over time (Falzon et al.
2018). Static methods that ignore the temporal information
of a given network can hardly capture the actual network
properties (Zhu et al. 2018). Typically, a static network is
constructed by aggregating interactions between nodes over
a specific period of time while ignoring the time dimensional
information (Falzon et al. 2018). The ignore of the tempo-
ral interactions will make network embedding failing to pre-
serve temporal network structures.

In view of this, several temporal network embedding
methods have been proposed. For example, Zou et al. (Zuo
et al. 2018) adopted the Hawkes process to model the neigh-
borhood formation process. Zhou et al. (Zhou et al. 2018)
proposed a more fundamental mechanism, triadic closure
process, to model the formation and evolution of networks.
However, both methods focus on the modeling of network
evolution pattern, but limit the scope of structural properties
to low-order proximities. Zhu et al. (Zhu et al. 2018) pro-
posed DHPE (Zhu et al. 2018) to preserve the high-order
proximity, but it does so by applying a static model to each
snapshot and thus fails to capture temporal evolution. More-
over, the underlying structure of temporal network is highly
nonlinear (Luo et al. 2011), existing temporal network em-
bedding methods are not able to preserve the nonlinear struc-
ture.

There are three challenges to learn temporal network rep-
resentations:

• Temporal proximity definition (Challenge 1): Node
proximity is always the first and foremost property of a
network (Tang et al. 2015). Most temporal embedding
methods simply preserve the traditional static proximity
(Zhu et al. 2018) while ignoring the historical informa-
tion. In fact, temporal network structures could provide
more semantic meanings than static networks for node
proximity quantification. For example, a static network
simply counts the number of interactions between two
nodes as the first-order proximity between them. While,
it is generally accepted that the impact of an interaction
decreases with time, and an interaction is more impor-
tant if it happens in a closer proximity of time (Rümmele,
Ichise, and Werthner 2015). Thus, it is the first challenge
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in temporal network embedding to define the node tempo-
ral proximity based on the temporal interaction informa-
tion to capture the accurate relationship between nodes.

• Temporal proximity preserving (Challenge 2): Al-
though a number of static methods for node proximity
preserving have been proposed (Grover and Leskovec
2016), the temporal node proximity preserving is still
an open problem (especially for the high-order temporal
proximity) due to the heavy computational cost.

• Nonlinear structure preserving (Challenge 3):Temporal
network structure is highly nonlinear. It is a great chal-
lenge to preserve the highly nonlinear structure of tempo-
ral networks in temporal network embedding.

In this paper, we propose a high-order nonlinear infor-
mation preserving (HNIP) embedding method to tackle the
aforementioned challenges. We first define three orders of
temporal proximities based on a time exponential decay
model, namely, the first-, second-, and high-order tempo-
ral proximity. (Challenge #1). Then, we propose a tempo-
ral random walk (TRW) algorithm to preserve the temporal
proximity in the walk path (Challenge #2). Finally, we pro-
pose a novel deep guided auto-encoder to learn node rep-
resentations for networks. This auto-encoder has multiple
layers of nonlinear functions to capture the highly nonlin-
ear network structure (Challenge #3). In addition, the train-
ing process is guided by the temporal proximity preserved
in random walk paths generated by TRW. By training the
proposed auto-encoder with the walk path set generated by
TRW, our method can preserve the temporal proximity and
highly nonlinear structure of temporal networks.

The contributions of this paper can be summarized as the
following:

• We define three orders of temporal proximities for accu-
rate node temporal proximity quantification.

• We propose a TRW algorithm and a deep guided auto-
encoder for temporal proximity and highly nonlinear
structure preserving for temporal networks.

• We evaluate the effectiveness and efficiency of HNIP on
a variety of applications of real-world networks.

Related Work

Network embedding methods for static networks have been
widely studied in the past few years. Various methods such
as random walk based method (DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014), Node2vec (Grover and Leskovec
2016)), factorization based method (M-NMF (Wang et al.
2017)), and deep learning method (SDNE (Wang, Cui, and
Zhu 2016)) have demonstrated their effectiveness in preserv-
ing the structural properties of static networks.

Real-world networks are dynamic in nature. To capture
the dynamic properties of real-world networks, temporal
network embedding has drawn increasing interests. HTNE
(Zuo et al. 2018) adopt the Hawkes process to model the
neighborhood formation process for temporal network em-
bedding. DynamicTriad (Zhou et al. 2018) imposes triad
to model dynamic changes of network structure. CTDNE

(Nguyen et al. 2018) defines a valid walk sequence to cap-
ture the interaction sequence of temporal network. NetWalk
(Yu et al. 2018) learns representations based on deep neural
network embedding and reservoir sampling. Despite the suc-
cess of these methods, most of them can not tackle the three
challenges presented in the introduction. A method that can
meet these challenges is still lacking.

Problem Definition

In this section, we first provide the formal definition of the
temporal network and other necessary definitions used in
this paper. Then, we formally define the problem of tem-
poral network embedding.

We consider a temporal network where links evolve over
time instead of being static. By treating the added/deleted
nodes as isolated nodes, all the changes in the network can
be regarded as changes in the links (Chen and Tong 2015).
So we consider the number of nodes as constant. The defini-
tion of the temporal network is as follows:

Definition 1 (TEMPORAL NETWORK). A temporal net-
work is defined as G = (V,E), where V = {v1, v2, ..., vn}
is the node set and E = {ek} is the temporal link set. A
temporal link ek = (vi, vj , wk, tk) is a quadruple, which
represents that vi and vj interact with each other at time tk,
and wk is the link weight. The value of wk represents the
strength of the interaction at tk. There may be multiple links
with different timestamp between two nodes. By assigning
timestamp to each link, a temporal network can record the
evolution of relationships among nodes.

For each node pair (vi, vj), we can obtain a finite link
set ai,j = {ek} that consists of all the recorded timed links
with a specific weight between them in the designated time
period of interest. Similar to the static adjacency matrix, we
represent the temporal network by a time-stamped adjacency
matrix.

Definition 2 (TIME-STAMPED ADJACENCY MATRIX). A
temporal network G = (V,E) can be represented by a time-
stamped adjacency matrix A, in which each entry ai,j =
{ek} is a set of links between nodes vi and vj . If there are
no interactions between nodes vi and vj , we define ai,j = ∅.

In this paper, we focus on the problem of temporal net-
work embedding and aim to overcome the three challenges
presented in introduction. The formal problem definition is
as follows:

Definition 3 (TEMPORAL NETWORK EMBEDDING).
Given a temporal network G = (V,E) and the corre-
sponding time-stamped adjacency matrix A, temporal
network embedding aims to learn a mapping function
f : vi → yi ∈ R

d. The objective of the function is to make
the similarity between yi and yj preserve the temporal
proximity between vi and vj .

Node Temporal Proximity

The node proximity has been intensively studied in net-
work embedding (Goyal and Ferrara 2018). However, tra-
ditional node proximity without considering time informa-

5437



tion can hardly capture the rich semantic meanings of tem-
poral networks. By exploring the historical interaction be-
tween nodes, we define the first-, second-, and high-order
temporal proximity in this section to quantify the temporal
proximity between nodes.

First-order similarity is the most fundamental property of
the network, which is quantified by link weight in static net-
work embedding (Tang et al. 2015). In temporal network,
we define the first-order temporal proximity based on two
observations: 1) the influence of a interaction decreases with
time and the tie between two nodes becomes stronger if the
interaction between them happens in a more current time
(Munasinghe and Ichise 2012); and 2) the tie between two
nodes increases with the increase of interaction frequency
(Rümmele, Ichise, and Werthner 2015). Formally, the first-
order proximity is defined as follows:
Definition 4 (FIRST-ORDER TEMPORAL PROXIMITY).
Given a link set ai,j between nodes vi and vj , the first-order
temporal proximity pi,j between nodes vi and vj is defined
as:

pi,j =
∑

ek∈ai,j

wkexp(−λ(T − tk)), (1)

where λ is the decay constant, and T is the current time.
In Equation (1), we adopt an exponential decay function

to simulate the influence of interaction decay with time.
For a given temporal network G, the first-order temporal
proximity between nodes in G is represented by matrix
P ∈ R

n×n.
Since the real-world networks are usually sparse, many

nodes are similar with each other but are not linked (Wang,
Cui, and Zhu 2016). Following the second-order proximity
in static network embedding (Wang, Cui, and Zhu 2016), we
define the second-order temporal proximity based on P.
Definition 5 (SECOND-ORDER TEMPORAL PROXIMITY).
Given P, let pi = {pi,1, ...pi,n} denote the i-th row of P,
which represents the first-order temporal proximity between
node vi and other nodes.The second-order temporal prox-
imity between nodes vi and vj is defined to be the similarity
between pi and pj .

Intuitively, the second-order temporal proximity between
a pair of nodes describes the proximity of the pair’s neigh-
borhood structure. The definition of the second-order tempo-
ral proximity is based on a proven assumption that two nodes
are similar if they share many common neighbors (Wang,
Cui, and Zhu 2016).

The defined first- and second-order temporal proximity
can well preserve the local temporal network property. To
capture the network global structural property, we define the
high-order temporal proximity.

Inspired by (Cao, Lu, and Xu 2016), we adopt the s-hop
(s = 1, 2, 3, ...) transition probability matrix to describe the
high-order temporal proximity. Assume pi,j is proportional
to the transition probability from vi to vj , we can define the
one-hop transition probability matrix M = D−1P, where
D is a diagonal matrix, and di,i =

∑n
j=1 pi,j . Then the

s-hop transition probability matrix is
Ms = M · · ·M︸ ︷︷ ︸

s

. (2)

The value of ms
i,j represents the probability of node vi

reaching vj after s-hop random walk. It is reasonable to as-
sume that a higher value of ms

i,j indicates a closer relation-
ship between vi and vj . By integrating different hop transi-
tion probability metrics, we define the high-order temporal
proximity as follows.
Definition 6 (HIGH-ORDER TEMPORAL PROXIMITY).
Given M1,M2, ...,MS , the high-order temporal proximity
hi,j between nodes vi and vj is defined as:

hi,j =

S∑
s=1

αsm
s
i,j , (3)

where α1 > α2 > ... > αS .
The high-order temporal proximity describes the k-hop

(k > 2) relationships between nodes. For a given tempo-
ral network G, the high-order temporal proximity between
nodes in G is represented by matrix H ∈ R

n×n.

High-Order Nonlinear Information Preserving

Embedding

In order to capture the highly nonlinear structure of tempo-
ral networks, we propose a deep guided auto-encoder based
on the traditional auto-encoder (Peng et al. 2018), which has
demonstrated a strong ability to learn the complex structure
of data (Bengio 2009). Unlike SDNE (Wang, Cui, and Zhu
2016) that uses an adjacency matrix to train a deep architec-
ture for first- and second-order proximity preservation, we
construct the training set by the TRW algorithm. Along with
the TRW algorithm, the proposed deep guided auto-encoder
can successfully preserve the temporal proximity and non-
linear structure.

Temporal Random Walk (TRW)

The random walk technique has been widely used in net-
work embedding because the path it generated preserves the
high-order relationship between nodes (Perozzi, Al-Rfou,
and Skiena 2014; Grover and Leskovec 2016). Since there
may be multiple links between two nodes in a temporal net-
work, the traditional random walk algorithm is not applica-
ble. In order to tackle the multiple links problem and pre-
serve the high-order temporal proximity in the walk path,
we propose the TRW algorithm in this section.

TRW contains a link sample step to tackle the multiple
link problem. Given the current node vi linked by multiple
links to other nodes, we can get the link set Γi =

⋃n
j=1 ai,j

associate with vi. TRW first samples a link randomly from
Γi. Let ej be the selected link that links vi and vj , Then,
TRW moves the walker from vi to vj to complete one-hop
walk. The sample probability of ej is

p(ej) =
wjexp(−λ(T − tj))∑

ex∈Γi
wxexp(−λ(T − tx))

. (4)

In addition, to make sure the walk path Li that starts from
vi preserves the high-order temporal proximity between vi
and other nodes, we should to make the appearance proba-
bility of vj in Li equal to hi,j . For this purpose, we intro-
duce a restart step in TRW: in each step of a random walk,
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Algorithm 1 Temporal Random Walk
Input: network G, A, walk length S, walk times wt, and

restart ratio r.
Output: walk set Ω.

1: Initialize walk set Ω = ∅;
2: for each node vi in G do
3: for k = (i− 1)× wt+ 1 to i× wt do
4: initialize a walk path Lk = {vi}, the walker start

from vi;
5: for z = 1 to S − 1 do
6: if random(0, 1) < r then
7: let the walker move to vi, and add vi to Lk;
8: else
9: let vx be the current node, randomly select a

link ej from Γx, assume ej associate with vx
and vj ;

10: let the walker move to vj , and add vj to Lk;
11: end if
12: end for
13: add Lk into Ω
14: end for
15: end for
16: return Ω.

the walker can return to the starting node with a probability
r. Finally, the TRW algorithm is presented in Algorithm 1.

To show that the walk path generated by TRW can pre-
serve the high-order temporal proximity defined in this pa-
per, we prove the following lemmas.

Lemma 1 The one-hop transition probability p(vi → vj)
from vi to vj in TRW is mi,j .

Proof 1 The link set between vi and vj is ai,j , select a link
ex from Γi, and the probability that ez belongs to ai,j is

p(ez ∈ ai,j) =

∑
ey∈ai,j

wyexp(−λ(T − ty))∑
ex∈Γi

wxexp(−λ(T − tx))
. (5)

Thus, the one-hop transition probability p(vi → vj)1 is
equal to p(ez ∈ ai,j). Then, according to the definition of
pi,j and mi,j , we have

p(vi → vj)1 =
pi,j∑n
j=1 pi,j

= mi,j . (6)

Lemma 2 Let αs in Equation (3) be (1+r(S−s))(1−r)s

S , Li

be the walk path starting from vi, and the length of Li be S,
the appearance probability p(vi → vj)S of vj in Li is equal
to hi,j .

Proof 2 According to Lemma 1, the one-hop transition
probability matrix in TRW without a restart step is M; by
adding the restart step, the one-hop transition probability
matrix is

R = rI+ (1− r)M. (7)

and the s-hop transition probability matrix with restart is

Rs = rI+ (1− r)Rs−1M, (8)

Figure 1: The architecture of the deep guided auto-encoder.

where P0 = I. Then,

Rs = (1− r)sMs +

s∑
i=1

r(1− r)(s−i)As−i. (9)

Therefore,

p(vi → vj)S =
1

S

S∑
s=1

rsi,j

=

S∑
s=1

(1 + r(S − s))(1− r)s

S
ms

i,j = hi,j .

(10)

Deep Guided Auto-Encoder

The architecture of the proposed deep guided auto-encoder
is presented in Fig. 1. First, in order to capture the highly
nonlinear temporal network structure, this deep model uti-
lizes a deep auto-encoder to learn the vector representation
of nodes. As illustrated in Fig. 1, by inputting the corre-
sponding vector pi of each node vi to the deep auto-encoder
and minimizing the reconstruction error, we can preserve the
second-order temporal proximity of each node in the embed-
ding space. In addition, a walk path Li generated by TRW
has two characteristics: 1) in most cases, there exists a link
between two adjacent nodes in Li, and the probability that
vx is followed by vy is proportional to px,y; 2) let vi be the
first node and vx be any other node in Li; there must be a
path between vi and vx, and the appearance probability of
vx is equal to hi,x. Let Xi ∈ R

S×n be the matrix corre-
sponding to Li, where the j-th row xij is the corresponding
vector pj of the j-th node in Li, and S is the length of Li.
As illustrated in Fig. 1, we take the Xi as input and design
a supervised component to guide the training process to pre-
serve the first- and high-order temporal proximity.
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Loss Functions. In order to preserve the first-, second-,
and high-order temporal proximity, we formulate three loss
functions respectively, and then combine them to get the ob-
jective function. The main notations used in this section are
detailed in Table 1.

We first explain how to utilize the auto-encoder to pre-
serve the second-order temporal proximity in our model.
Just like a traditional deep auto-encoder, each layer of the
auto-encoder used in our deep model is a fully connected
layer, and a sigmoid function σ(x) = 1

1+exp(x) is adopted
as the activation function of the hidden layer. Therefore, the
hidden representations of each hidden layer are as follows:

Yk
i = σ(WkY

k−1
i + bk), k = 1, ...,K

Ŷk
i = σ(ŴkŶ

k−1
i + b̂k), k = 1, ...,K

, (11)

where Y0
i = Xi, ŶK

i = X̂i. Our goal is to minimize the
reconstruction error of the output and the input. Then, the
loss function is as follows:

Ł2 =

|Ω|∑
i=1

S∑
j=1

||xij − x̂ij ||22. (12)

Since xij = pj , and pj characterizes the temporal neigh-
borhood structure of node vj , the reconstruction process will
make the nodes with similar neighborhood structures to have
the similar representations (Wang et al. 2017). Therefore, the
second-order temporal proximity can be preserved by mini-
mizing Ł2.

In addition, to address the sparsity problem of real-world
networks, we impose more penalty to the reconstruction er-
ror of the non-zero elements than to that of zero elements.

Table 1: Notation Description
Notations Description

n number of nodes
2K number of hidden layers
Ω random walk set
Li the i-th wall path in Ω
S the lenght of walk path

Xi = {xij}Sj=1 the input matrix corresponding to Li

X̂i = {x̂ij}Sj=1 the reconstructed matrix of Xi

Yk
i = {yk

ij
}Sj=1 the k-th encoder layer representations

of Xi

Ŷk
i = {ŷij}Sj=1 the k-th decoder layer representations

of Xi

Wk the k-th layer weight matrix of the
encoder

Ŵk the k-th layer weight matrix of the
decoder

bk the k-th layer biases of the encoder
b̂k k-th layer biases of the decoder

Then, Ł2 is revised as follows:

Ł2 =

|Ω|∑
i=1

S∑
j=1

||(xij − x̂ij )� zij ||22

=

|Ω|∑
i=1

||(Xi − X̂i)� Zi||22,
(13)

where � is the Hadamard product, Zi ∈ R
S×n. If xki,j

= 0,
zki,j

= 1, else zki,j
= β > 1.

Because there exists a link between two adjacent nodes in
Li, and the probability that vx is followed by vy is propor-
tional to px,y , we also need to minimize the pairwise dis-
tance among all adjacency nodes of each network walk path
in the embedding space to preserve the first-order temporal
proximity, which can be formally described as follows:

Ł1 =

|Ω|∑
i=1

S−1∑
j=1

||yK
ij − yK

ij+1
||22

=

|Ω|∑
i=1

tr(YK
i

T
L1
iY

K
i ),

(14)

where L1
i = D1

i −O1
i is the Laplacian matrix. O1

i ∈ R
S×S ,

and o1
ij,j+1

= 1, j = 1, ..., S − 1, and the other elements of

O1
i is 0. D1

i is a diagonal matrix, and d1
ij,j

=
∑S

k=1 o
1
ij,k

.
Because the first node in Li has at least one path linked to

other nodes, we need to minimize the pairwise distance be-
tween the first node in Li and other nodes in the embedding
space to preserve the high-order temporal proximity, which
can be formally described as follows:

Łh =

|Ω|∑
i=1

S∑
j=2

||yK
i1 − yK

ij ||22

=

|Ω|∑
i=1

tr(YK
i

T
L2
iY

K
i ),

(15)

where L2
i = D2

i −O2
i is the Laplacian matrix. O2

i ∈ R
S×S ,

and o2
i1,j

= 1, j = 2, ..., S, and the other elements of O2
i is

0. D2
i is a diagonal matrix, and d2

ij,j
=

∑S
k=1 o

2
ij,k

.
Finally, to preserve the first-, second-, and high-order tem-

poral proximities simultaneously, we combine Ł1, Ł2, and
Łh and jointly minimize the following objective function:

Ł = Ł1+μŁ2+νŁh+ϕ
1

2

K∑
k=1

(||Wk||2F + ||Ŵk||2F ), (16)

where the last term in Ł is an Ł2-norm regularization term
to prevent overfitting.

Optimization. To minimize the objective function
Ł, we need to optimize the following parameters:
Wk,Ŵk,bk, b̂k, k = 1, ...,K. We use mini-batch
stochastic gradient descent is used to optimize these pa-
rameters. We use Xi as a mini training batch, and thus the
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Algorithm 2 Training Process
Input: the walk set Ω, the first-order temporal proximity

matrix P, the parameters μ, ν, ϕ, the learning rate ω.
Output: Network representations YK .

1: Pretrain the model by deep belief network to initial pa-
rameters Wk,Ŵk,bk, b̂k, k = 1, ...,K;

2: repeat
3: for each walk path Li in Ω do
4: construct Xi according to Li;
5: perform a feed-forward pass computer Łm;
6: for k = K,K − 1, ..., 1 do

7: update Ŵk = Ŵk − ω ∂Łm

∂Ŵk
;

8: update b̂k = b̂k − ω ∂Łm

∂b̂k
;

9: end for
10: for k = K,K − 1, ..., 1 do

11: update Wk = Wk − ω ∂Łm

∂Wk
;

12: update bk = bk − ω ∂Łm

bk
;

13: end for
14: end for
15: until converge
16: input P into the neural network to get YK ;
17: return YK as the embedding result.

objective function of one mini training batch is

Łm = ||(Xi − X̂i)� Zi||22 + μtr(YK
i

T
L1
iY

K
i )

+ νtr(YK
i

T
L2
iY

K
i ) + ϕ

1

2

K∑
k=1

(||Wk||2F + ||Ŵk||2F ).

(17)
The partial derivatives of the parameters in Łm are estimated
using the back-propagation algorithm. Similar to (Wang et
al. 2017), in order to find a good region of parameters space
and accelerate the training process, we adopt a deep belief
network (Hinton, Osindero, and Teh 2006) to pretrain the
parameters first. Finally, the training process of the deep
guided auto-encoder is presented in Algorithm 2. The train-
ing complexity of HNIP is O(nwtLdI), where n is the num-
ber of nodes, wt is the walk times, L is the length of each
path, d is the maximum dimension of the hidden layer, and
I is the iteration number.

Experimental Results
In this section, we employ four real-world networks to vali-
date the effectiveness of HNIP on four application scenarios.

Temporal Networks

• Leskovec-Ng (Chen and III 2017): This is a co-author
network containing the coauthors Prof. Jure Leskovec or
Prof. Andrew Ng at Stanford University from year 1995
to year 2014. It has 191 nodes, 1,930 temporal links, and
2 different labels.

• DBLP (Zuo et al. 2018): This is also a co-author network
derived from DBLP of ten research areas. It has 28,085
nodes, 236,894 temporal links, and 10 different labels.

• Facebook (Viswanath et al. 2009): This is a Facebook
friendship network where nodes are users and links repre-
sent friendship. It has 46,952 nodes and 177,661 temporal
links.

• Twitter (Conover et al. 2011): This is a retweet network
of Twitter, where nodes are Twitter uses and links repre-
sent whether the users have retweeted each other. It has
18,470 nodes and 211,022 temporal links.

Baseline Methods and Experimental Settings

We compare HNIP with the following five state-of-the-art
network embedding methods.

• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014): This is a
static embedding method that first applies random walks
to generate sequences of nodes from the networks, and
then uses these sequences as input to the Skip-gram model
to learn representations.

• Node2vec (Grover and Leskovec 2016): This is a static
embedding method that is generalized from DeepWalk by
introducing a biased random walk procedure to explore
the neighborhood of a node.

• SDNE (Wang, Cui, and Zhu 2016): This is a static em-
bedding method that uses deep auto-encoders to jointly
preserve first-order and second-order proximity.

• CTDNE (Nguyen et al. 2018): This is a dynamic em-
bedding method that learns representations from tempo-
ral random walks that represent actual temporally valid
sequences of node interactions.

• NetWalk (Yu et al. 2018): This is a dynamic embedding
method that learns representations based on deep neural
network embedding and reservoir sampling.

We propose a multi-layer deep neural network in this
HNIP, where the number of layers varies with different
datasets. The network structure corresponding to different
datasets is detailed in Table 2.

For HNIP, the walk length T is set to 40, the walk times
wt is set to 10, and the restart ratio r is set to 0.2. Other
hyper-parameters are tuned by using a grid search on the
validation set. For DeepWalk, CTDNE, and NetWalk, we set
the window size as 10, the walk length as 40, and the walks
times as 10. For SDNE, we set the neural network structure
according to Table 2. The embedding size is set to be 128
for all the methods. For the three static embedding methods
of DeepWalk, Node2vec, and SDNE, we first transform the
temporal networks into static networks, and then perform
network embedding.

Table 2: Neural Network Structures
Dataset #nodes in each layer

Leskovec-Ng 191-128-128
DBLP 28085-5000-1000-128

Facebook 46952-5000-1000-128
Twitter 18470-1000-128
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Table 3: precision@k on DBLP Network
Algorithm P@100 P@1000 P@5000 P@10000

DeepWalk 0.33 0.146 0.134 0.057
Node2vecE 0.25 0.122 0.103 0.062

SDNE 0.35 0.156 0.088 0.032
CTDNE 0.41 0.236 0.108 0.052
NetWalk 0.34 0.234 0.106 0.084

HNIP 0.43 0.242 0.159 0.106

Table 4: precision@k on Twitter Network
Algorithm P@100 P@1000 P@5000 P@10000

DeepWalk 0.17 0.152 0.034 0.045
Node2vec 0.17 0.102 0.105 0.112

SDNE 0.05 0.056 0.092 0.101
CTDNE 0.22 0.124 0.117 0.122
NetWalk 0.13 0.125 0.059 0.136

HNIP 0.27 0.190 0.081 0.147

Link Prediction

The aim of this task is to predict whether two nodes will in-
teract with each other in the future. In this section, we exper-
iment on the DBLP and Twitter networks. For each dataset,
we divide the dynamic network into two parts by an assigned
time point St. The first part is the training set and the latter
is the test set. We first learn the embedding using the training
set and predict the most likely links that exist in the test set
from the learned embedding. In this paper, we set St = 0.8,
where T = 1. The precision@k (Goyal and Ferrara 2018)
is adopted as the evaluation metric in this task. The results of
all embedding methods on DBLP and Twitter are presented
in Tables 3 and 4.

In Tables 3 and 4, the best performing algorithm is high-
lighted in bold. Obviously, HNIP outperforms all other al-
gorithm in both DBLP network and Twitter network, which
demonstrates that, by incorporating temporal proximity and
a highly nonlinear network structure, HNIP has strong pre-
dictive ability. In addtion, the performances of temporal
embedding methods (CTDNE, NetWalk, HNIP) are better
than those of static methods (DeepWalk, Node2Vec, SDNE),
which indicates that by modeling the network evolution pat-

Figure 2: Classification accuracy on Leskovec-Ng network
and DBLP network.

Table 5: precision@k on Facebook Network
Algorithm P@100 P@1000 P@5000 P@10000

DeepWalk 0.38 0.441 0.423 0.469
Node2vec 0.35 0.415 0.354 0.406

SDNE 0.45 0.432 0.375 0.464
CTDNE 0.24 0.265 0.287 0.256
NetWalk 0.31 0.237 0.156 0.154

HNIP 0.45 0.451 0.401 0.402

tern temporal, the temporal embedding method has stronger
predictive ability than the static embedding method.

Node Classification

Given the learned node representations as node features, in
this task we aim to train a classifier based on the node fea-
tures to predict node labels. Following (Wang et al. 2017),
we use the KNN algorithm to train the classifiers. When
training the classifier, we randomly sample 10% to 90% of
the nodes as the training set and use the left nodes as the
test set to test the performance. The prediction accuracy is
used as the evaluation metric. The results of all methods on
Leskovec-Ng and DBLP are presented in Fig. 2.

As illustrated in Fig. 2, in the Leskovec-Ng network and
DBLP network, the classification accuracy of all algorithms
increases with the increase of training set size. The curve of
HNIP is consistently above the curves of baselines, which
demonstrates that the learned network representations of
HNIP can better generalize to the classification task than
to the baselines. This is because HNIP considers the tem-
poral proximity of the nodes and can preserve the accurate
node relationships. The nonlinear structure preservation also
contributes to the performance of HNIP in the classification
task.

Network Reconstruction

In this section, we concentrate on the network reconstruction
task and experiment on a Facebook network. In this exper-
iment, we transfer the temporal Enron network to a static
network by simply setting the time stamp of each link to 1
and removing duplicate links. Then we randomly hide 20%
of the links and learn the embedding using the rest of the
80% links. The precision@k are adopted as the evaluation
metric. The results is detailed in Table 5.

The results for the Facebook network shows that static
embedding methods have stronger reconstructive ability
than temporal embedding methods (except HNIP). This is
not surprising because most temporal embedding methods
focus on the modeling of the evolution pattern, whereas the
reconstruction task requires a strong ability to preserve the
network structure. Fortunately, HNIP can achieve near opti-
mal performance, which indicates that HNIP can model the
evolution pattern, and has a strong ability to preserve the
temporal network structure.
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Conclusion

In this paper, we propose the embedding method HNIP
for temporal network embedding. Specifically, we first de-
fined three different order temporal proximities by explor-
ing the network historical information with a time expo-
nential decay model to quantify the temporal proximity
between nodes. Then, we proposed a deep guided auto-
encoder, which is able to capture the highly nonlinear struc-
ture. Meanwhile, the training set of the deep guided auto-
encoder is generated by the TRW algorithm. By training the
proposed auto-encoder with a specific mini-batch stochastic
gradient descent algorithm, HNIP can efficiently preserve
the temporal proximities and highly nonlinear structure of
temporal networks. Experimental results on four real-world
networks demonstrated the effectiveness of the proposed
method.
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