
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Abstract Interpretation of Decision Tree Ensemble Classifiers

Francesco Ranzato, Marco Zanella
Dipartimento di Matematica, University of Padova, Italy

{ranzato, mzanella}@math.unipd.it

Abstract

We study the problem of formally and automatically veri-
fying robustness properties of decision tree ensemble clas-
sifiers such as random forests and gradient boosted deci-
sion tree models. A recent stream of works showed how ab-
stract interpretation, which is ubiquitously used in static pro-
gram analysis, can be successfully deployed to formally ver-
ify (deep) neural networks. In this work we push forward
this line of research by designing a general and principled
abstract interpretation-based framework for the formal verifi-
cation of robustness and stability properties of decision tree
ensemble models. Our abstract interpretation-based method
may induce complete robustness checks of standard adver-
sarial perturbations and output concrete adversarial attacks.
We implemented our abstract verification technique in a tool
called silva, which leverages an abstract domain of not neces-
sarily closed real hyperrectangles and is instantiated to verify
random forests and gradient boosted decision trees. Our ex-
perimental evaluation on the MNIST dataset shows that silva
provides a precise and efficient tool which advances the cur-
rent state of the art in tree ensembles verification.

1 Introduction

Adversarial machine learning (Goodfellow, McDaniel, and
Papernot 2018; Kurakin, Goodfellow, and Bengio 2017) is a
hot topic studying vulnerabilities of machine learning (ML)
in adversarial scenarios. Adversarial examples have been
found in diverse application fields of ML such as image clas-
sification, spam filtering, malware detection, and the current
defense techniques include adversarial model training, input
validation, testing and automatic verification of learning al-
gorithms (Goodfellow, McDaniel, and Papernot 2018). For-
mal verification of ML classifiers started to be an active field
of investigation, in particular for robustness properties of
(deep) neural networks. A classifier is stable for some (typ-
ically very small) perturbation of its input samples which
represents an adversarial attack when it assigns the same
class to all the samples within that perturbation, so that im-
percetible malicious alterations of input objects should not
deceive a stable classifier. Formal verification methods for

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural networks may rely on a number of different tech-
niques: linear approximation of functions (Weng et al. 2018;
Zhang et al. 2018), semidefinite relaxations (Raghunathan,
Steinhardt, and Liang 2018), logical SMT solvers (Huang
et al. 2017; Katz et al. 2017), symbolic interval propagation
(Wang et al. 2018a), abstract interpretation (Gehr et al. 2018;
Singh et al. 2018; 2019) or hybrid synergistic approaches
(Anderson et al. 2019; Wang et al. 2018b). Abstract interpre-
tation (Cousot and Cousot 1977) is a de facto standard tech-
nique used since forty years for designing static analysers
and verifiers of programming languages. Recently, abstract
interpretation has been successfully applied for designing
precise and scalable robustness verification tools of (deep)
neural network models (Gehr et al. 2018; Singh et al. 2018;
2019). While all these verification techniques consider neu-
ral networks as ML model, in this work we focus on decision
tree ensemble methods, such as random forests and gradi-
ent boosted decision tree models, which are widely applied
in different fields having sensible adversarial scenarios, no-
tably image classification, malware detection, intrusion de-
tection and spam filtering.

Contributions. Following the aforementioned stream of
works applying abstract interpretation for certifying ML
models, we design a general abstract interpretation-based
framework for the formal verification of stability properties
of decision tree ensemble models. Our verification algorithm
of ensembles of decision trees: (1) is domain agnostic, since
it can be instantiated to any abstract domain which repre-
sents properties of real vectors, such as simple hyperrectan-
gles of real intervals or more involved linear relations; (2) is
firmly based on the basic soundness principle of abstract
interpretation and correspondingly rely on sound approxi-
mations of split functions used in decision tree classifiers;
(3) under certain assumptions may induce complete robust-
ness checks against adversarial perturbations; (4) is able to
output concrete adversarial samples. Our formal verification
methodology has been implemented in C in a tool called
silva (Latin for forest and acronym of Silvarum Interpreta-
tione Lator Valens Analysis) which leverages an abstract do-
main of possibly open real hyperrectangles and has been ap-
plied to random forests and gradient boosted decision trees.
Our experimental evaluation on the standard MNIST dataset

5478

and on the Sensorless dataset used by (Chen et al. 2019a)
shows that silva provides a precise and efficient tool both for
deriving the robustness metrics of forest classifiers and for
performing a complete check of the robustness to adversar-
ial perturbations of input samples. Our evaluation also com-
pared the performance of silva against a recent robustness
verification tool of tree ensembles (Törnblom and Nadjm-
Tehrani 2019b), and this showed that silva improves on the
current state of the art. The following three images display:

on the left, an original image O from the test set of MNIST,
correctly classified as 7 by a random forest using 100 deci-
sion trees with maximum depth 100; in the middle, an image
A which is automatically generated by silva as adversarial
attack of O for a perturbation ±1 of the brightness values
of its pixels; on the right, a gray/black/white image show-
ing which pixels change from O to A where gray means un-
changed, black +1, white−1. The image A is an adversarial
example because it is classified as either 2 or 7 (i.e., there is
a tie between the scores of 2 and 7) by the same 100×100
random forest which classifies O as 7. When silva infers that
an input sample O is not robust for a given input perturba-
tion P(O), it also outputs a symbolic representation in its
underlying abstract domain of a whole set of adversarial at-
tacks in P(O), so that the above attack image A has been
randomly selected in P(O).

Related Work. It is only recently that adversarial at-
tacks and robustness of tree ensemble classifiers started to
be a subject of investigation (Andriushchenko and Hein
2019; Calzavara et al. 2019; Calzavara, Lucchese, and
Tolomei 2019; Chen et al. 2019a; 2019b; Einziger et al.
2019; Kantchelian, Tygar, and Joseph 2016; Törnblom and
Nadjm-Tehrani 2018; Törnblom and Nadjm-Tehrani 2019b;
Törnblom and Nadjm-Tehrani 2019a). The most related
work is the robustness verification tool of tree ensembles
by Törnblom and Nadjm-Tehrani (2019b) called VoTE. This
is an abstraction-refinement procedure which iteratively re-
fines a partition of the input space where each block of the
partition is an hyperrectangle. The main differences between
silva and VoTE can be summarized as follows: (i) VoTE is
not designed as a principled abstract interpretation of deci-
sion tree ensembles, in particular it is not parametric on a
generic abstract domain but it is specifically tailored for par-
titions whose blocks are hyperrectangles; (ii) the soundness
and completeness properties of the verification algorithm of
VoTE are not formally proved; (iii) VoTE does not output
counterexamples to the robustness of some input sample. By
contrast, silva is a robustness verification algorithm firmly
based on the principles of abstract interpretation (Cousot and
Cousot 1977) which: (1) is fully parametric on a given ab-
stract domain (thus generalizing to so-called relational ab-
stract domains) and its abstract elements and operations (in
particular, bottom and meet); (2) is endowed with a formal
soundness and completeness proof, in particular the condi-
tions guaranteeing a sound/complete verification check are
explicitly given; (3) outputs counterexamples to robustness

when they exist; (4) can therefore benefit of all the well-
established methods of abstract interpretation used in static
program analysis, e.g., advanced relational abstract domains
and completeness reasoning (Rival and Yi 2020).

2 Background

Classifiers. Given an input space X ⊆ Rd of feature vec-
tors and a finite set of classification labels L = {�1, ..., �m},
a classifier is a (total) function C : X → ℘+(L), where
℘+(L) denotes the set of nonempty subsets of L, which as-
signs at least one label to every input in X . The application
of C on a set Y ⊆ X of inputs is simply denoted by C(Y) �⋃

x∈Y C(x). ML classifiers typically output the set of labels
having maximal score for some function score : X → R|L|,
i.e. C(x) = {�i ∈ L | ∀j. score(x)i ≥ score(x)j}. Score
functions are the output of a learning algorithm on some
training dataset D ⊆ X × L which explores a hypothesis
space of functions and returns a best fit for the training set
D according to some learning principle.

Decision Trees and Tree Ensembles. Decision trees are
used both for classification and regression tasks. A decision
tree t is a finite branching structure where: (i) each internal
node n (including a unique root) has a finite set of succes-
sor nodes Succt(n) and is endowed with a decision rule,
also called split condition, splitn : X → Succt(n) on input
vectors, so that the branches outgoing from n represent the
possible outputs of splitn; (ii) the set of leaves of t is de-
noted by LEAVES(t) and each leaf stores some information
on labels which is used for a final decision/classification, so
that a path from the root to a leaf represents a classifica-
tion rule. Although decision rules in general can be of any
type, the most common decision trees (Breiman et al. 1984)
use Boolean conditions which are univariate hard splits of
the form xi ≤ k for some attribute xi of its input vector x,
hence defining binary decision trees. Leaves typically store
tuples in R|L| which play the role of output for a decision
tree, which therefore induces a score function t : X → R|L|
for input samples in X , also denoted by scoret(x). In a deci-
sion tree application t(x), by following the path π of nodes
in t from the root to a leaf denoted by l = leaf (t(x)), one
may collect the constraints which satisfy the split conditions
encountered in every internal node of π and decorate the
leaf l with the conjunction of these constraints, denoted by
constr t(l), which is assumed to be logically consistent. For
univariate hard splits, where the possible constraints of inter-
nal nodes are xi ≤ k or xi > k, constr t(l) therefore deter-
mines a not necessarily closed hyperrectangle (also called
box), i.e., box t(l) � {x ∈ Rd | constr t(l) |= x}. Also,
the leaves of a decision tree t induce a partition of the in-
put space X , where each l ∈ LEAVES(t) induces a block
block t(l) � {x ∈ X | leaf (t(x)) = l}, so that the number
of these nonempty blocks is less than or equal to the number
of leaves of t and block t(l) ⊆ box t(l).

Ensemble methods allow to combine several constituent
learning models to improve their accuracy and generalizabil-
ity. For score-based classifiers, every classifier is fed with
the same input and computes its own score function, so that

5479

scores from multiple classifiers are then combined into a sin-
gle score typically by applying some voting mechanism. The
two most common voting schemes are: (Max): each con-
stituent classifier contributes with a label-indexed tuple of
either 1 (for labels with maximal score) or 0 (non maxi-
mal scores), and then votes are added; (Average): each con-
stituent classifier computes a label-indexed tuple of scores in
[0, 1], and then the average score for each label is computed.

Tree ensembles or forests are ensemble methods for de-
cision tree classifiers. Several ways of training a forest have
been designed and investigated, where random forests (RFs)
(Breiman 2001) and gradient boosted decision trees (GB-
DTs) (Friedman 2001) are the most successful. The experi-
ment evaluation of our tool silva will focus on RFs and GB-
DTs, although our verification technique is directly applica-
ble to any type of decision tree ensembles.

Abstract Interpretation. A numerical abstract domain is
a tuple 〈A,	A, γ〉 where 〈A,	A〉 is at least a pre-
ordered set of abstract values and the concretization func-
tion γA : A → ℘(Rd) monotonically preserves the ordering
relation, namely, a1 	A a2 implies γA(a1) ⊆ γA(a2).
The intuition is that an abstract domain A defines a sym-
bolic abstract representation of sets ranging in the concrete
domain ℘(Rd): well-known examples of numerical abstract
domains include intervals, zonotopes, octagons, octahedra
and polyhedra (see the survey (Miné 2017) and the book
(Rival and Yi 2020)). Sometimes we denote an abstract do-
main by Ad to highlight the dimension d ∈ N in the con-
crete domain ℘(Rd). Given a concrete k-ary operation on
vectors f : (Rd)k → Rd, for some k ∈ N, an abstract
function fA : Ak → A is called a sound (or correct)
(over-)approximation of f when for all (a1, ..., ak) ∈ Ak,
{f(x1, ...,xk) | ∀i. xi ∈ γA(ai)} ⊆ γA(fA(a1, ..., ak))
holds, while fA is defined to be complete (or exact) when
an equality holds. In words, this means that soundness holds
when fA(a1, ..., ak) never misses a concrete computation
of f on some input (x1, ...,xk) which is abstractly repre-
sented by (a1, ..., ak), while completeness implies that each
abstract computation fA(a1, ..., ak) is precisely a symbolic
abstract representation of the set of concrete computations
of f on all the concrete inputs that are abstractly represented
by (a1, ..., ak).

We will use an abstract domain of not necessarily closed
real hyperrectangles H, which is commonly called inter-
val or box abstraction in abstract interpretation. The do-
main of closed/open bounded/unbounded real intervals is
denoted by I and �l, u� denotes an interval in I where
the lower and upper bounds l, u ∈ R ∪ {+∞,−∞} are
such that l ≤ u and � may be either (or [and analo-
gously for �, e.g. (−∞, k], (k,+∞) ∈ I. The concretiza-
tion map γI : I → ℘(R) for intervals has an obvious defi-
nition. An abstract element of H � Id is a d-dimensional
vector of components in I and γH : H → ℘(Rd) is sim-
ply the d-th product of γI , that is, γH(I1, ..., Id) � {x ∈
Rd | ∀j. xj ∈ γI(Ij)}. Let us also recall that 〈H,	H〉 is
a complete lattice for the standard componentwise ordering:
(I1, ..., Id) 	H (I ′1, ..., I

′
d) iff for all j, γI(Ij) ⊆ γI(I ′j).

3 Stability of Classifiers

Accuracy on a test set T is the de facto standard metric for
assessing a classification model C, that is, the ratio between
the number of correctly classified samples and the size of
T . However, it is a growing and widely held belief (Good-
fellow, McDaniel, and Papernot 2018) that accuracy is not
enough in ML, because the robustness properties of C may
well affect its safety and generalizability. Robustness is here
generalized to a notion of stability of C on a given input.
Definition 3.1 (Stability). A classifier C is stable on a
neighborhood N ⊆ X of an input sample x ∈ N , denoted
by ISSTABLE(C,N,x), when C(N) = C(x).

Thus, adversarial regions or perturbations of an input
sample play the role of neighborhoods. The standard ap-
proach to robustness consists in using a distance function
δ : X ×X → [0,+∞) and a threshold ε ∈ [0,+∞) which
define a perturbation Pδ,ε(x) � {x′ ∈ X | δ(x,x′) ≤ ε}.
Lp norms on Rd have been investigated and in particular the
most common distance function is induced by the L∞ max-
imum norm (Carlini and Wagner 2017): P∞,ε(x) � {x′ ∈
X | max(|x1 − x′

1|, ..., |xd − x′
d|) ≤ ε}.

Stability of a classifier C on a test set T ⊆ X for a pertur-
bation P is defined by the ratio |{x∈T | ISSTABLE(C,P(x),x)}|

|T | .
If ISCORRECT(C,x) denotes that C predicts the correct la-
bel �x of a labeled input sample (x, �x), then the following
metrics combine stability with accuracy w.r.t. a perturbation
P:

robustness:
|{x ∈ T | ISCORRECT(C,x) ∧ ISSTABLE(C,P(x),x)}|

|T |

fragility:
|{x ∈ T | ISCORRECT(C,x) ∧ ¬ ISSTABLE(C,P(x),x)}|

|T |

vulnerability:
|{x ∈ T | ¬ ISCORRECT(C,x) ∧ ISSTABLE(C,P(x),x)}|

|T |

breakage:
|{x ∈ T | ¬ ISCORRECT(C,x) ∧ ¬ ISSTABLE(C,P(x),x)}|

|T |

Of course, a direct verification of stability is not feasi-
ble, as this would require to apply the classifier to an infinite
number of vectors, and even by restricting to finite samples,
let us say, in {0, 1}d, this number is exponential in d.

4 Stability Verification Framework

Abstract Interpretation of Classifiers. Given a classifier
C : X → ℘+(L) for an input space X ∈ ℘(Rd), the
concretization function γA : A → ℘(Rd) of an abstract
domain A is specialized to the space X simply by defin-
ing γAX : A → ℘(X) as γAX (a) � γA(a) ∩ X . In or-
der to simplify the notation, in the following γAX will be
simply denoted by γA, which is therefore meant as a func-
tion in A → ℘(X). A sound abstract interpretation of C
on a numerical abstract domain A is a computable function
CA : A → ℘+(L) which over-approximates the labels pre-
dicted by C, i.e., for all a ∈ A, C(γA(a)) ⊆ CA(a) holds.
An abstract classifier CA is designed by relying on a sound
abstract score function scoreA : Ad → A|L|, where sound-
ness here means that for all a ∈ Ad,

{score(x) ∈ R|L| | x ∈ γAd(a)} ⊆ γA|L|(scoreA(a)).

5480

A simple method for defining a sound CA by leveraging a
sound scoreA is:

CA(a) �
{
�i ∈ L | ∀j �= i. sup{si | s ∈ γA|L|(scoreA(a))}

≥ inf{sj | s ∈ γA|L|(scoreA(a))}} (1)

Hence, a label �i is not included in CA(a) when
there exists a different label �j dominating �i, namely,
the minimum abstract score of �j is strictly greater
than the maximum abstract score of �i. For exam-
ple, for |L| = 4 and the domain of boxes H, if
scoreH(a) = (�1/[4, 6], �2/[0, 2], �3/[5, 7], �4/[1, 4]) then
CA(a) = {�1, �3}.
Lemma 4.1. CA(a) defined by (1) is sound.

Sound abstract classifiers induce a correct stability check
as follows.
Theorem 4.2. Let CA be a sound abstraction of C on A.
If x ∈ X , a ∈ A and P(x) ⊆ X is a perturbation
of x such that P(x) ⊆ γA(a) then CA(a) = C(x) ⇒
ISSTABLE(C,P(x),x).

Of course, the converse in general does not hold, since
CA(a) may well include spurious labels introduced by the
approximation of A, so that it may happen that CA(a) �
C(x) although ISSTABLE(C,P(x),x) still holds. We will
show that under certain conditions it is possible to achieve
a complete stability verification method: CA(a) = C(x)⇔
ISSTABLE(C,P(x),x).
Abstraction of Scores for Tree Ensembles. Let us now
consider a forest classifier F : X → ℘+(L) which combines
a set of decision trees and where, by an abuse of notation, F
also denotes this set of trees. For the sake of clarity, in the
following we focus on the average score function Avg, al-
though our method can be easily adapated to the Max score
and to different voting schemes. Given an abstract domain
A, for all t ∈ F we assume that each leaf l ∈ LEAVES(t)
stores a triple 〈scoret(l), constr t(l), constrAt (l)〉 where:
(i) scoret(l) ∈ R|L| is the score of l in t; (ii) constr t(l)
is the logical constraint of l; (iii) constrAt (l) ∈ A is a
sound abstract constraint such that for all samples x ∈ X ,
constr t(l) |= x⇒ x ∈ γA(constrAt (l)). For example, with
the abstract domain H, a leaf could store the following in-
formation:

〈(�1/0.3, �2/0.5),
x1 > 4.1 ∧ x3 ≤ 2.02,

x1 ∈ [0,+∞),x2 ∈ (−∞,+∞),x3 ∈ (0, 3]〉.
As recalled in Section 2, the average score function for a

forest F is SCOREF (x) � 1
|F | ·

∑
t∈F scoret(x) ∈ R|L|. We

then define an abstract average score SCOREA
F : Ad → A|L|

for the forest F as follows:

SCOREA
F (a) � 1

|F | ·A
∑A

t∈F scoreAt (a) (2)

where: (i) for all t ∈ F , scoreAt : Ad → A|L| is required
to be a sound abstraction of scoret : X → R|L|; (ii) ·A and∑A are, resp., sound approximations of the standard scalar
multiplication and vector sum in R|L|.

Theorem 4.3. SCOREA
F is a sound abstraction of SCOREF .

The general definition (1) of abstract classifier is instanti-
ated to the abstract score function SCOREA

F defined by (2),
thus obtaining, by Lemma 4.1, a sound abstract forest clas-
sifier:

FA : A → ℘+(L) (3)

Abstraction of Reachable Leaves. We assume that the ab-
stract domain A is endowed with a bottom ⊥A ∈ A and
with a sound approximation �A : A×A → A of set inter-
section such that: (i) γA(⊥A) = ∅; (ii) for all a, a′ ∈ A,
γA(a) ∩ γA(a′) ⊆ γ(a �A a′).

Given a tree t ∈ F and a set of input samples Y ⊆ X ,
let REACHt(Y) denote the set of leaves of t reached by
some sample in Y , i.e., REACHt(Y) � {leaf (t(x)) ∈
LEAVES(t) | x ∈ Y }. Our stability verification algo-
rithm needs to approximate REACHt by an abstract function
REACHA

t : A → ℘(LEAVES(t)) which is defined by relying
on the abstract intersection and bottom inA and the abstract
logical constraint stored by leaves:

REACHA
t (a) � {l ∈ LEAVES(t) | a �A constrAt (l) �= ⊥A} (4)

Lemma 4.4. REACHA
t is a sound abstraction of REACHt.

Let us notice that if REACHA
t (a) = {l}, for some leaf l,

then all the input samples represented by the abstract value a
follow the same path in t, meaning that we have a complete
reachability information with no loss of precision.

Completeness of Tree Decision Rules. Our verification al-
gorithm relies on an abstract domain A which is required
to be complete for the tree decision rules of internal nodes.
For simplicity, let us consider the most common case of a
Boolean decision rule split : X → {tt ,ff } (a generaliza-
tion to decision rules with multiple outputs in {o1, ..., ok}
is straightforward). In this case, completeness means that
A provides a complete abstraction of split for both true
and false outputs, namely, we assume two abstract func-
tions splitAtt , split

A
ff : A → A such that for all a ∈ A,

{x ∈ γA(a) | split(x) = tt} = γA(splitAtt (a)) and
{x ∈ γA(a) | split(x) = ff } = γA(splitAff (a)).

It turns out that the abstract domain of hyperrectanglesH
is complete for all the univariate hard splits which are most
commonly used in RFs and GBDTs. This is a consequence
of the fact that a univariate split such as xi ≤ k or xi > k
exactly defines a hyperrectangle in H, the domain H is a
complete lattice and its meet �H corresponds to intersect-
ing hyperrectangles, meaning that �H is complete for the
intersection: for all h, h′ ∈ H, γH(h �H h′) = γH(h) ∩
γH(h′). Thus, for a decision rule such as xi ≤ k, the
corresponding complete abstract functions splitHtt , split

H
ff :

H → H are simply given by splitHtt (I1, ..., Ii, ..., Id) �
(I1, ..., Ii�I (−∞, k], ..., Id) and splitHff (I1, ..., Ii, ..., Id) �
(I1, ..., Ii �I (k,+∞), ..., Id), where �I is the meet of in-
tervals.

It is worth remarking that abstract interpretation includes
a very wide range of abstract domains to be used for different
purposes (Miné 2017; Rival and Yi 2020). This allows us
to satisfy the above completeness assumption for different

5481

types of decision rules by using suitable abstract domains.
For example, the use of more general omnivariate decision
trees has been investigated by (Yildiz and Alpaydin 2001),
where decision rules are given by a linear combination of
attributes of an input vector x. Then, in omnivariate trees,
for decision rules of type ±xi ± xj ≤ k, involving at most
two features, it turns out that the octagon abstract domain is
complete for them, while for more general decision rules of
type

∑
i xi ≤ k, possibly involving all the components of

x, one may resort to the octahedron abstract domain, which
is complete.

Stability Verification Algorithm. We design a complete
verification algorithm for the stability of a forest F by re-
lying on the completeness of A for the decision rules of
the trees in F . We assume that A is endowed with a top
�A ∈ A representing the lack of information, namely,
γA(�A) = Rd. For all t ∈ F and l ∈ LEAVES(t),
the abstract constraint constrAt (l) is obtained by compos-
ing the abstract decision rules splitAni

along the nodes ni

of the path π from the root of t to the leaf l, i.e., if π =
n1 � ... � nk � l and splitAn1

, ..., splitAnk
are the abstract

split conditions for the internal nodes n1, ..., nk of π then
constrAt (l) � splitAnk

(... splitAn1
(�A)). By the complete-

ness assumption on the split conditions, it turns out that for
all t ∈ F , l ∈ LEAVES(t) and x ∈ X , constr t(l) |= x ⇔
x ∈ γA(constrAt (l)) holds. This means that the logical con-
straint of the leaf l representing the conjunction of all the
split conditions along the path π is symbolically represented
by an abstract value in A with no loss of precision.

Given an abstract value a ∈ A, an abstract partition P of
a, denoted by P ∈ ParA(a), is defined to be a nonempty
set P ∈ ℘(A) such that {γA(b) | b ∈ P} is a standard
partition of the set γA(a) (i.e., a set of nonempty subsets
of γA(a) which are pairwise disjoint and whose union is
γA(a)). The notion of partition refinement is standard: given
P, P ′ ∈ ParA(a), P is a refinement of P ′, denoted by
P � P ′, when the standard partition {γA(b) | b ∈ P} is
a refinement of {γA(b′) | b′ ∈ P ′}, i.e., for all b ∈ P , there
exists b′ ∈ P ′ such that γA(b) ⊆ γA(b′).

Algorithm 1 describes in pseudocode our stability veri-
fication methodology. The procedure ISSTABLEA takes as
input a forest F , an abstract value a ∈ A and a sample
x ∈ X such that a abstracts a perturbation P(x) of x, i.e.,
P(x) ⊆ γA(a). The possible outputs are TRUE and FALSE,
where FALSE means instability and this is output together
with an abstract representation of a set of input counterex-
amples in P(x) to the stability of F on x.

The procedure ISSTABLEA maintains a set L ∈ ℘(L)
(line 15), which is an over-approximation of the labels com-
puted by F (γA(a)), and a partition P ∈ ParA(a) (line 16)
of the input abstract value a ∈ A. The set of labels L is itera-
tively refined by removing from L the labels that are inferred
to be outside of F (γA(a)), while the partition P is refined
by using the abstract constraints constrAt (l) of the reachable
leaves l of some t ∈ F . Each tree t ∈ F may contribute to
refine both L and P and the procedure ISSTABLEA will scan
(for-loop at lines 17-23) the trees in F until a TRUE/FALSE

Algorithm 1 Stability Verification of Forests

1: function REFINE(t ∈ F, P ∈ ParA(a))
2: ℘(L) � L′ ← ∅
3: ℘(A) � P ′ ← ∅
4: for all b ∈ P do
5: ℘(L) � Lb ← FA(b)
6: if Lb ∩ Lx = ∅ then output FALSE
7: � Invariant: ∀x′ ∈ γA(b). F (x′) �= F (x)
8: else
9: L′ ← L′ ∪ Lb

10: if Lb = Lx then P ′ ← P ′ ∪ {b}
11: else P ′ ← P ′ ∪ {constrAt (l) ∈ A | l ∈

REACHA
t (b)}

12: return 〈L′, P ′〉
13: procedure ISSTABLEA(F ∈ Forest , a ∈ A, x ∈ X)
14: ℘(L) � Lx ← F (x)
15: ℘(L) � L← L
16: ParA(a) � P ← {a}
17: for all t ∈ F do � Invariant: L ⊇ F (γA(a))
18: if L = Lx then output TRUE
19: � Invariant:
∀b ∈ P.∀x′ ∈ γA(b). F (x′) ⊆ F (x)

20: else
21: 〈L′, P ′〉 ← REFINE(t, P)

22: � Invariant: L′ ⊆ L ∧ P ′ ∈ ParA(a) ∧ P ′ � P
23: L← L′; P ← P ′

24: if L = Lx then output TRUE else output FALSE

is eventually output (in the worst case, at line 24, all the
trees of F will be processed). The current tree t ∈ F of the
for-loop is explored by the function REFINE which may ei-
ther infer instability or refine both L and P . At the exit of a
call REFINE(t, P), L′ ∈ ℘(L) and P ′ ∈ ℘(A) will satisfy
the invariant conditions at lines 17 and 22: L′ will be a re-
finement of L and still an over-approximation of F (γA(a)),
while P ′ will be a refinement of the partition P . In a func-
tion call REFINE(t, P), the abstract elements b of the par-
tition P are iteratively processed in order to compute the
set of labels Lb = FA(b) as defined by the abstract clas-
sifier in (3), which is an over-approximation of F (γA(b)).
If Lb is disjoint with F (x) (line 6) then F surely classi-
fies all the samples in γA(b) differently from x, meaning
that F is unstable on the whole set γA(b). In this case, the
procedure ISSTABLE outputs b, which is a symbolic repre-
sentation of these counterexamples (the adversarial image
depicted in Section 1 has been obtained from one such out-
put). If, instead, FA(b) = F (x) holds (line 10) then no
sample in γA(b) can be currently inferred to be a counterex-
ample to the stability of F , meaning that the abstract ele-
ment b does not need to be refined, so that b is just added
to P ′ at line 10. Finally, in the remaining case (line 11) we
have that FA(b) ∩ F (x) �= ∅ and FA(b) �= F (x), mean-
ing that no conclusion on the stability on γA(b) can be cor-
rectly inferred. In this case, REFINE computes REACHA

t (b)
which provides an over-approximation of the leaves reach-
able by γA(b) and then refines (the block represented by)

5482

b by adding to P ′ the corresponding set of abstract val-
ues constrAt (l) ∈ A for all the leaves l ∈ REACHA

t (b). If
REFINE(t, P) does not output FALSE then the set L′ is filled
at line 9 with all the labels in FA(b): at the exit, this L′
is a refinement of the previous set L, because it has been
computed by using the blocks of a refined partition. Hence,
a function call REFINE(t, P) either proves instability or re-
fines both L and P .

Theorem 4.5. Let us assume that A is complete for all the
decision rules of trees in F . Then, for all x ∈ X and a ∈ A,
ISSTABLEA(F, a,x)⇔ ISSTABLE(F, γA(a),x).

Thus, if the abstract value a represents precisely an adver-
sarial perturbation P(x) then ISSTABLEA(F, a,x) provides
a verification algorithm for the robustness of a correctly clas-
sified sample x under adversarial attacks in P(x). Let us
also mention that when Algorithm 1 is used to derive the
stability metrics defined in Section 2 to assess the robust-
ness properties of some classifier F on some test set T , if
T is large then it makes sense to set a timeout mechanism
in ISSTABLEA for the verification of a single test sample
x ∈ T for efficiency reasons: in this case, the stability met-
rics will be given within a small approximation interval.

5 Experimental Evaluation

We implemented Algorithm 1 in a tool called silva whose
source code in C (about 5K LOC) is available on GitHub
(Ranzato and Zanella 2019).

The function REFINE of Algorithm 1 is independent of
any criteria for selecting at line 4 the next abstract value
b ∈ P to be used as input for the abstract forest classi-
fier FA(b) and then possibly to be refined at line 11. If
the forest F is actually stable then in each function call
REFINE(t, P) at line 21 all the abstract values of the par-
tition P will be eventually processed, meaning that the or-
dering used for scanning P ultimately does not affect the
efficiency of REFINE. However, if the forest F is instead un-
stable then it would be more efficient to detect a counterex-
ample to its stability as soon as possible. Thus, our actual
implementation of REFINE(t, P) relies on a best-first search
of the tree t, where the next abstract value b ∈ P is chosen
by maximizing a heuristic function which estimates the like-
lihood for an abstract value b to represent a counterexample
(due to lack of space the details are here omitted and can be
retrieved from the source code of silva).

We used silva for inferring stability, robustness, fragility,
vulnerability and breakage (as defined in Section 3) of ran-
dom forest classifiers on MNIST, which have been trained
with different combinations of number of trees, maximum
tree depth, splitting criteria (Gini and entropy impurity mea-
sures) and voting schemes (average and max). We compared
the performance of silva against the robustness verification
tool called VoTE (Törnblom and Nadjm-Tehrani 2019b), al-
ready discussed in Section 1, both for random forests and
gradient boosted decision trees. In our experiments RFs have
been trained by scikit-learn while CatBoost has been used
for GBDTs. Let us recall that CatBoost uses complete obliv-
ious decision trees, where the same splitting criterion is used

RF Gini, max Gini, average
B d acc.% stab.% time(s) acc.% stab.% time(s)
5 5 66.7 14.3 0.6 76.4 18.1 0.5
5 25 90.5 21.4 0.9 90.6 21.4 0.9
5 50 90.5 19.5 1.0 90.5 19.5 1.0

25 5 82.8 12.1 3.0 85.7 16.8 3.6
25 25 96.0 31.7 22.5 96.1 31.8 24.4
25 50 96.0 26.5 30.2 96.0 26.5 30.0
50 5 84.0 12.7 40.8 85.8 18.3 662.9
50 25 96.6 35.1 ±1.7 965.4 96.6 35.2 ±1.7 970.8
50 50 96.5 35.3 ±2.1 1126.2 96.5 35.3 ±2.1 1136.8

RF entropy, max entropy, average
B d acc.% stab.% time(s) acc.% stab.% time(s)
5 5 67.5 9.6 0.5 76.1 20.2 0.5
5 25 91.3 28.4 0.8 91.3 28.4 0.8
5 50 91.3 22.8 0.9 91.3 22.8 0.9

25 5 81.3 16.5 3.7 85.6 19.7 6.9
25 25 96.2 39.4 28.7 96.2 39.4 28.8
25 50 96.2 36.4 36.7 96.2 36.4 34.9
50 5 83.4 20.8 67.4 85.4 24.2 811.9
50 25 96.5 43.1 ±1.5 863.9 96.5 43.1 ±1.5 874.1
50 50 96.6 41.3 ±1.4 824.5 96.6 41.3 ±1.4 826.1

Table 1: Stability of different RFs on MNIST.

across an entire level of a tree. Since all these forest clas-
sifiers rely on univariate hard splits of type xi ≤ k, silva
has been instantiated to the hyperrectangle abstract domain
H. Our experiments were run on a AMD Ryzen 7 1700X
3.0GHz CPU.

Setup. An automatic verifier Ver of robustness properties
of a ML classifier C could be used for two main purposes:

P1: to assess the robustness properties of C by inferring
some stability metrics on a large test set T .

P2: to check the robustness of C on an input sample x ∈
X against some adversarial perturbation P(x); when Ver
infers that C is not robust on x then Ver should also output
a (set of) counterexample(s) in P(x);

A complete verifier such as silva always outputs a
TRUE/FALSE answer for each input sample, provided that
computational time and memory constraints are met. When
a complete verifier Ver is used for reaching a purpose of
type P1, it makes sense to add a timeout option to Ver to
set a time limit for verifying the stability of a single sample
x ∈ T , so that if the timeout applies then the stability check
on x is considered to be inconclusive. In our experiments
using silva for evaluating the robustness properties of tree
ensemble classifiers, we utilized a timeout per sample, so
that the stability metrics may be given by a percentage rang-
ing within an interval, thus taking into account inconclusive
stability checks.

Let us recall that MNIST consists of 70000 gray scale
pictures of hand-written digits (with L = {0, ..., 9}), where
each image of 28×28 pixels is encoded as a vector of 784 in-
teger values in [0, 255] representing the brightness of a pixel
(0 black, 255 white). The standard training set of MNIST
consists of 60000 samples, while its test set T includes the
remaining 10000 samples. We considered the standard per-
turbation P∞,ε (Carlini and Wagner 2017) with ε = 1,
meaning that adversarial attacks may brighten/darken each
pixel up to a 0.5% magnitude. Hence, for each input image
x, its perturbation P∞,1(x) includes 3784 potential attacks.

5483

Stability of RFs. Table 1 shows the accuracy and stability
percentages and the total verification time on the whole test
set of MNIST for different random forest classifiers trained
by combining 4 parameters: number B of decision trees,
maximum tree depth d, training criterion (Gini and entropy)
and voting scheme (max and average). In this experiment
of type P1 we set in silva a low timeout of 1 second per
sample, so that the percentage of stability of some RFs with
B = 50 is given as an interval which includes inconclusive
stability checks. We first observe that as the forest grows in
size, the difference between voting schemes becomes negli-
gible, both in terms of time and stability. For smaller forests
the average vote yields a slightly better stability. We also
observe that forests trained using the entropy criterion are
more stable than those trained using the Gini index. As ex-
pected, stability grows with the number B of trees. It is also
worth noticing that for a given B, training criterion and vot-
ing scheme, the stability increases with the depth d up to a
maximum d = 25 and then slowly starts to decrease. This
is likely due to overfitting, so that deeper trees may improve
the accuracy of a RF but, on the other hand, tend to reduce its
generalizability. Based on this assessment, for the successive
experiments we considered random forests trained with the
entropy criterion and using the average score, which appears
to be an optimal configuration for the stability metric.

���
���
���
���
���
���
���
���
���
���
�	�

�
� ��� ��� ��� ��� ����

�
��
����
��
�

����������

���������������������������

 �!�"#$�%
�
��
��
��
��

The chart above depicts the relationship between sta-
bility and accuracy, where darker points represent ran-
dom forests with lower depth d. The number B of trees
of these RFs is not depicted in the chart and ranges in
{5, 10, 15, 25, 50, 75}. The vertical bars represent intervals
of stability due to inconclusive checks within the 1 second
per sample timeout. We observe that RFs having the same
maximum depth d tend to cluster together and that for RFs
with d ≤ 10 no clear interpretation of their stability can be
derived, thus suggesting that RFs with d ≤ 10 should not
be considered for assessing the stability on MNIST. On the
other hand, deeper forests with d ≥ 15 tend to a vertical
alignment, thus revealing a growing stability with compa-
rable accuracy. Fixed a depth d, we may observe that both
accuracy and stability grow with B. It is worth remarking
that for a given accuracy, the highest stability is achieved by
RFs with depth d = 25 rather than d = 50, thus hinting
that to increase d beyond some threshold may not positively
affect the accuracy while reducing the stability. This finding
shows that by taking into account both accuracy and stability
the overall effectiveness of a random forest model does not

necessarily increases with its size. In particular, the 75× 25
random forest turns out to be the most accurate and stable.
The following table also displays the stability metrics de-
fined in Section 3.

RF
B d acc. % stab. % rob. % frag. % vuln. % break. %
5 5 76.1 20.2 18.0 58.1 2.2 21.7
5 25 91.3 28.4 27.9 63.5 0.5 8.1
5 50 91.3 22.8 22.4 68.9 0.4 8.3

25 5 85.6 19.7 19.2 66.4 0.5 13.9
25 25 96.2 39.4 39.3 56.8 0.1 3.7
25 50 96.2 36.4 36.2 60.0 0.1 3.6
50 5 85.4 24.2 23.6 61.7 0.6 14.0
50 25 96.5 43.1 ±1.5 43.0 ±1.5 53.5 ±1.5 0.1 3.4
50 50 96.6 41.3 ±1.4 41.2 ±1.4 55.4 ±1.4 0.1 3.3

Here, it is worth remarking that: (i) stability and robustness
are closely related; (ii) vulnerability decreases with the over-
all size B×d of the RF, and for RFs having size≤ 50×25 we
found a significant percentage of misclassified input samples
(≈ 0.4%) with adversarial attacks which are consistently
classified with the same wrong label; (iii) breakage appears
to converge towards ≈ 3.5% for larger forests.

Verification Time per Sample. In a context of using silva
as a complete verifier for checking whether a given input
sample x ∈ X is robust against the adversarial perturbation
P∞,1(x), the following table displays the average verifica-
tion Time per Sample (TpS), the average verification Time
for the Samples whose verification time is above the 90th
percentile of the distribution (TpS10), the Maximum ver-
ification Time per Sample (MTpS). It is worth observing
that the worst case verification time of silva never exceeds
1 minute and that the average verification time on the hardest
input samples is always less than 5 seconds.

RF GBDT
B d TpS(s) TpS10(s) MTpS B d TpS(s) TpS10(s) MTpS
25 5 0.00 0.00 0.04 50 10 0.00 0.00 0.01
25 10 0.00 0.01 0.60 75 5 0.00 0.00 0.02
50 5 0.07 0.66 34.69 75 10 0.00 0.01 0.32
50 10 0.44 4.36 42.25 100 10 0.01 0.15 32.99

Comparison with VoTE. The following table shows the re-
sults of the comparison of silva with VoTE, a recent robust-
ness verifier (Törnblom and Nadjm-Tehrani 2019b), already
discussed in Section 1. We replicated the experiments on
the MNIST dataset as described in (Törnblom and Nadjm-
Tehrani 2019b) and compared the results in terms of robust-
ness and verification time (on our machine). Each experi-
ment is run on RFs and GBDTs trained with the same param-
eters: RFs are trained using scikit-learn with Gini/average
parameters, while GBDTs are trained by CatBoost with de-
fault learning rate and softmax voting scheme. We followed
(Törnblom and Nadjm-Tehrani 2019b) by setting an overall
timeout of 7 hours for the verification time of the full test set
of MNIST.

RF silva VoTE
B d acc.% rob.% time(s) acc.% rob.% time(s)
25 5 85.7 16.3 4 84.5 13.6 8
25 10 94.1 24.2 20 94.1 25.7 11
50 5 85.8 17.8 576 86.1 14.2 833
50 10 94.4 30.2 4353 94.6 31.4 7704
75 5 86.2 19.8±0.4 8289 86.0 – timeout
GBDT silva VoTE
B d acc.% rob.% time(s) acc.% rob.% time(s)
50 10 95.6 94.0 1 95.3 92.4 5
75 5 94.8 91.3 1 94.7 89.6 4
75 10 96.0 93.4 6 96.0 91.9 116

100 10 96.2 93.0 147 96.4 91.9 974
150 10 96.7 92.2±0.4 9459 96.7 – timeout

5484

The difference between silva and VoTE on the accura-
cies of the input RFs and GBDTs is negligible and due to
the randomness of the learning algorithm. The difference on
the robustness ratios inferred by silva and VoTE may reach
3.6% (for the RF 50 × 5): the reasons why this happens are
not clear and would require an in-depth inspection of the
VoTE source code. Overall, it turns out that silva is faster
than VoTE: on the larger forests verified by VoTE within 7
hours, silva achieves a speedup factor of ≈ 1.7 on the RF
of size 50× 10 and of ≈ 6.6 on the GBDT of size 100× 10.
The table also shows that by applying a timeout of 60 sec-
onds per sample on the RF 75× 5 and the GBDT 150× 10,
silva is able to output in at most 2.5 hours a rather precise
estimate (±0.4%) of the robustness metric for these large RF
and GBDT models where VoTE exceeds the 7 hours limit.

5.1 Sensorless Dataset

We also used silva on RFs and GBDTs trained on the Sen-
sorless dataset from the UCI ML Repository, which has been
recently used by Chen et al. (2019a) to test a robust learn-
ing method for GBDTs. Sensorless consists of 58509 vectors
with 48 real features scaled in [0, 1] and with 11 possible
class labels, extracted as measures of electric current drive
signals. The training set of Sensorless includes 48509 sam-
ples, while its test set TS includes the remaining 10000 sam-
ples. We considered the perturbation P∞,ε with ε = 0.01,
meaning that each component of an input vector can be per-
turbed ±1%. We loosely followed GBDTs considered by
(Chen et al. 2019a), which have been trained by XGBoost
with B ∈ [3, 30] and d = 6. The following tables summa-
rize the results of our experiments obtained by running silva
on a range of RFs and GBDTs trained on Sensorless, whose
stability metrics and total verification times have been evalu-
ated on the whole test set TS (vulnerability is always≤ 0.8%
and therefore omitted).

RF
B d acc. % stab. % rob. % frag. % break. % time(s)
20 5 89.8 27.9 27.7 62.1 10.0 2.89
20 10 99.6 22.9 22.9 76.7 0.4 19.85
20 15 99.9 20.3 20.3 79.5 0.1 26.23
20 20 99.8 17.9 17.9 82.0 0.2 21.01
25 5 89.5 31.3 31.0 58.5 10.2 6.23
25 10 99.6 24.4 24.4 75.1 0.4 62.90
25 15 99.9 22.2 22.2 77.6 0.1 116.50
25 20 99.9 18.9 18.9 80.8 0.1 85.35
30 5 90.0 33.6 33.1 57.0 9.4 19.68
30 10 99.7 26.1 26.1 73.6 0.3 213.37
30 15 99.9 23.8 23.8 76.0 0.1 357.25
30 20 99.9 20.2 20.2 79.6 0.1 532.34
35 5 89.8 35.2 34.4 55.4 9.4 48.05
35 10 99.7 26.2 26.2 73.4 0.3 832.80
35 15 99.9 23.9 23.9 75.9 0.1 1517.18
35 20 99.9 21.4 21.4 78.4 0.1 1459.36
GBDT
15 5 97.0 19.4 18.9 78.0 2.6 6.57
15 6 98.0 29.8 29.5 68.5 1.7 8.77
15 7 98.1 17.4 17.3 80.8 1.8 12.58
20 5 97.7 15.6 15.3 82.5 2.0 36.01
20 6 98.5 29.3 29.0 69.5 1.2 109.04
20 7 98.5 14.5 14.4 84.1 1.5 108.14
25 5 98.1 15.1 14.9 83.3 1.6 142.14
25 6 98.8 22.8 22.6 76.1 1.0 835.84
25 7 98.9 14.8 14.7 84.1 1.1 8202.94
30 5 98.4 13.8 13.6 84.8 1.4 1031.43
30 6 98.9 20.2 20.1 78.8 0.9 6185.99
30 7 99.1 13.8 13.7 85.3 0.9 24699.30

RF GBDT
B d TpS(s) TpS10(s) MTpS B d TpS(s) TpS10(s) MTpS
30 15 0.04 0.34 6.61 25 6 0.08 0.77 12.72
30 20 0.05 0.51 65.73 25 7 0.82 8.12 1354.88
35 15 0.15 1.47 68.11 30 6 0.62 5.94 93.74
35 20 0.15 1.41 68.42 30 7 2.47 24.43 828.23

From this set of experiments for the ±1% perturbation,
the most significant observations are as follows: (i) RFs
are more accurate, stable and faster to verify than GBDTs;
(ii) stability of RFs decreases by increasing the depth d and
increases by increasing B; stability of GBDTs decreases by
increasing B and initially increases and reaches a maximum
for d = 6 then decreases by increasing d; (iii) by combining
accuracy and stability, the 35× 10 RF appears to be an opti-
mal model although the 20× 15 RF already provides a very
close performance, while the 20× 6 and 25× 6 GBDTs ap-
pears to be optimal; (iv) some input samples of GBDTs with
d = 7 may be harder to verify and may reach a verifica-
tion time of ≈ 23 minutes; it turned out that, resp., 99.79%
and 99.05% of the samples in TS for, resp., the 25 × 7 and
30×7 GBDTs are verified in less than 30s, while 0.08% and
0.26%, resp., required more than 300s (and less than, resp.,
23m and 14m); in complete oblivious trees used in GBDTs
trained by CatBoost the number of reachable leaves is signif-
icantly higher than in RFs and this could explain why some
sporadic input samples of GBDTs are harder to verify.

6 Future Work

We believe that this work represents a step forward in apply-
ing formal verification methods to machine learning models,
in particular a very well known program analysis technique
such as abstract interpretation. As a benefit of this principled
approach, we singled out the role of abstract interpretation
for designing a complete verifier of robustness properties of
decision tree classifiers. We envisage that more advanced
techniques could be used for abstracting combinations of
paths in different decision trees, as those successfully ap-
plied in static program analysis (e.g. trace partitioning (Rival
and Yi 2020, Section 5.1)). We also plan to resort to abstract
interpretation in order to train decision tree classifiers which
are provably robust, namely, to apply abstract interpretation
to training algorithms rather than to trained classification al-
gorithms, similarly to the approach of (Mirman, Gehr, and
Vechev 2018) for training provably robust neural networks.

Acknowledgments

The doctoral fellowship of Marco Zanella is funded by Fon-
dazione Bruno Kessler (FBK), Trento, Italy. This work has
been partially funded by the University of Padova, under
the SID2018 project “Analysis of STatic Analyses (ASTA)”
and by the Italian Ministry of Research MIUR, under the
PRIN2017 project no. 201784YSZ5 “AnalysiS of PRogram
Analyses (ASPRA)”.

References

Anderson, G.; Pailoor, S.; Dillig, I.; and Chaudhuri, S. 2019.
Optimization and abstraction: A synergistic approach for
analyzing neural network robustness. In Proc. 40th ACM
Conf. on Programming Language Design and Implementa-
tion (PLDI 2019), 731–744.

5485

Andriushchenko, M., and Hein, M. 2019. Provably ro-
bust boosted decision stumps and trees against adversarial
attacks. In Proc. 33rd Annual Conf. on Neural Information
Processing Systems (NeurIPS 2019).
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Calzavara, S.; Lucchese, C.; Tolomei, G.; Abebe, S. A.; and
Orlando, S. 2019. TREANT: Training evasion-aware deci-
sion trees. Preprint arXiv:1907.01197.
Calzavara, S.; Lucchese, C.; and Tolomei, G. 2019. Adver-
sarial training of gradient-boosted decision trees. In Proc.
28th ACM Int. Conf. on Information and Knowledge Man-
agement (CIKM 2019), 2429–2432.
Carlini, N., and Wagner, D. A. 2017. Towards evaluating
the robustness of neural networks. In Proc. of 2017 IEEE
Symposium on Security and Privacy, 39–57.
Chen, H.; Zhang, H.; Boning, D. S.; and Hsieh, C. 2019a.
Robust decision trees against adversarial examples. In Proc.
36th Int. Conf. on Machine Learning, (ICML 2019), 1122–
1131.
Chen, H.; Zhang, H.; Si, S.; Li, Y.; Boning, D. S.; and Hsieh,
C. 2019b. Robustness verification of tree-based models. In
Proc. 33rd Annual Conf. on Neural Information Processing
Systems (NeurIPS 2019).
Cousot, P., and Cousot, R. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proc. 4th ACM
Symp. on Principles of Programming Languages (POPL
1977), 238–252. ACM.
Einziger, G.; Goldstein, M.; Sa’ar, Y.; and Segall, I. 2019.
Verifying robustness of gradient boosted models. In Proc.
33rd AAAI Conf. on Artificial Intelligence, 2446–2453.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of Statistics 1189–1232.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. T. 2018. AI2: Safety and
robustness certification of neural networks with abstract in-
terpretation. In Proc. 2018 IEEE Symposium on Security
and Privacy, 3–18.
Goodfellow, I.; McDaniel, P.; and Papernot, N. 2018. Mak-
ing machine learning robust against adversarial inputs. Com-
mun. ACM 61(7):56–66.
Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety verification of deep neural networks. In Proc. Int.
Conf. on Computer Aided Verification (CAV 2017), 3–29.
Kantchelian, A.; Tygar, J. D.; and Joseph, A. D. 2016. Eva-
sion and hardening of tree ensemble classifiers. In Proc.
33rd Int. Conf. on Machine Learning (ICML 2016), 2387–
2396.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In Proc. Int. Conf. on Com-
puter Aided Verification (CAV 2017), 97–117.

Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Adver-
sarial machine learning at scale. In Proc. 5th Int. Conf. on
Learning Representations (ICLR 2017).
Miné, A. 2017. Tutorial on static inference of numeric in-
variants by abstract interpretation. Foundations and Trends
in Programming Languages 4(3-4):120–372.
Mirman, M.; Gehr, T.; and Vechev, M. 2018. Differen-
tiable abstract interpretation for provably robust neural net-
works. In Proc. Int. Conf. on Machine Learning (ICML
2018), 3575–3583.
Raghunathan, A.; Steinhardt, J.; and Liang, P. 2018.
Semidefinite relaxations for certifying robustness to adver-
sarial examples. In Proc. Annual Conf. on Neural Informa-
tion Processing Systems (NeurIPS 2018), 10900–10910.
Ranzato, F., and Zanella, M. 2019. silva GitHub Repository.
https://github.com/abstract-machine-learning/silva.
Rival, X., and Yi, K. 2020. Introduction to Static Analysis:
An Abstract Interpretation Perspective. The MIT Press.
Singh, G.; Gehr, T.; Mirman, M.; Püschel, M.; and Vechev,
M. T. 2018. Fast and effective robustness certification. In
Proc. Annual Conf. on Neural Information Processing Sys-
tems 2018 (NeurIPS 2018), 10825–10836.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019. An
abstract domain for certifying neural networks. Proc. ACM
Program. Lang. 3(POPL 2019):41:1–41:30.
Törnblom, J., and Nadjm-Tehrani, S. 2018. Formal verifi-
cation of random forests in safety-critical applications. In
Proc. 6th Int. Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2018), 55–71. Springer.
Törnblom, J., and Nadjm-Tehrani, S. 2019a. An abstraction-
refinement approach to formal verification of tree ensem-
bles. In Proc. 2nd Int. Workshop on Artificial Intelligence
Safety Engineering, held with SAFECOMP. Springer.
Törnblom, J., and Nadjm-Tehrani, S. 2019b. Formal verifi-
cation of input-output mappings of tree ensembles. Preprint
arXiv:1905.04194.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient formal safety analysis of neural networks.
In Proc. Annual Conference on Neural Information Process-
ing Systems (NeurIPS 2018), 6369–6379.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal security analysis of neural networks using
symbolic intervals. In Proc. 27th USENIX Security Sympo-
sium, 1599–1614.
Weng, T.; Zhang, H.; Chen, H.; Song, Z.; Hsieh, C.; Daniel,
L.; Boning, D. S.; and Dhillon, I. S. 2018. Towards fast
computation of certified robustness for ReLU networks. In
Proc. 35th Int. Conf. on Machine Learning, (ICML 2018),
5273–5282.
Yildiz, O. T., and Alpaydin, E. 2001. Omnivariate decision
trees. IEEE Trans. Neural Networks 12(6):1539–1546.
Zhang, H.; Weng, T.; Chen, P.; Hsieh, C.; and Daniel, L.
2018. Efficient neural network robustness certification with
general activation functions. In Proc. Annual Conference
on Neural Information Processing Systems (NeurIPS 2018),
4944–4953.

5486

