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Abstract

Data dependent regularization is known to benefit a wide vari-
ety of problems in machine learning. Often, these regularizers
cannot be easily decomposed into a sum over a finite number
of terms, e.g., a sum over individual example-wise terms. The
Fβ measure, Area under the ROC curve (AUCROC) and Preci-
sion at a fixed recall (P@R) are some prominent examples that
are used in many applications. We find that for most medium to
large sized datasets, scalability issues severely limit our ability
in leveraging the benefits of such regularizers. Importantly, the
key technical impediment despite some recent progress is that,
such objectives remain difficult to optimize via backpropapa-
gation procedures. While an efficient general-purpose strategy
for this problem still remains elusive, in this paper, we show
that for many data-dependent nondecomposable regularizers
that are relevant in applications, sizable gains in efficiency
are possible with minimal code-level changes; in other words,
no specialized tools or numerical schemes are needed. Our
procedure involves a reparameterization followed by a partial
dualization – this leads to a formulation that has provably
cheap projection operators. We present a detailed analysis of
runtime and convergence properties of our algorithm. On the
experimental side, we show that a direct use of our scheme sig-
nificantly improves the state of the art IOU measures reported
for MSCOCO Stuff segmentation dataset.

1 Introduction

Data dependent regularization is a mature and effective
strategy for many problems in machine learning. In semi-
supervised learning (Corduneanu and Jaakkola 2006), the
marginal distribution of the examples may serve to in-
fluence the estimation of the conditional distribution and
in SVMs, one could optimize the maximum relative mar-
gin based on the data distribution, rather than the ab-
solute margin. In modern deep learning, data-dependent
regularization is routinely used in both explicit and im-
plict ways. A regularizer can take the form of certain ge-
ometric or clustering-type constraints (Lezama et al. 2018;
Zhu et al. 2018) on the representations that are learned by the
network – using the distribution overlap between different
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classes (Rippel et al. 2015) or seeking decorrelated autoen-
coder latent codes (Cheung et al. 2014). On the other hand,
artificial data corruption is also a form of regularization –
dropout induces a regularization on the Fisher information
matrix of the samples (Wager, Wang, and Liang 2013). More
recently, the results in (Mou et al. 2018) offer a nice treatment
of the form of data-dependent regularization that emerges
from popular methods such as batch norm and AdaGrad.

From Decomposable to Nondecomposable data-
dependent regularizers. A number of data-dependent
regularizers described above can be written as a sum
of individual example-wise estimates of the regularizer.
This setting is desirable because in order to run a SGD
type algorithm, we simply pick a random sample to get
an unbiased estimate of the gradient. But a number of
application domains often necessitate a regularization criteria
that may not decompose in this manner. In such settings, a
random sample (minibatch) of the dataset does not provide
us an unbiased gradient – biased gradients are known
to adversely impact both the qualitative and quantitative
performance of the training procedure, see (Chen and Luss ).

Why are Nondecomposable regularizers relevant?
Consider the situation where we would like to ensure that
the performance of a statistical model is uniformly good
over groups induced via certain protected attributes (such
as race or gender), see Figure 1. Or alternatively, we want
that when updating an algorithm in a manufacturing pro-
cess, the new system’s behavior should mostly remain similar
with respect to some global measures such as makespan
(Limentani et al. 2005). (Cotter et al. 2019) shows applica-
tions of various shape constraints that are associated with
set functions. And finally, when pooling datasets from mul-
tiple sites, global characteristics of Precision-Recall should
be (approximately) preserved across sites (Zhou et al. 2017).
Essentially, these applications suggest that the performane of
a model in expectation (on the entire population), does not
automatically guarantee that the model will perform well on
specific subgroups. Motivated by these issues encountered
in various real world problems, recently (Cotter et al. 2018)
presents a comprehensive study of the computational aspects
of learning problems with rate constraints – there, the con-
strained setting is preferred (over penalized setting) due to
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Figure 1: We illustrate the need for data dependent regularization. The performance of an image classifier (left) and face detector
(right) can vary significantly depending on the size (small objects get misclassified) and skin tone (weak or no detection power
for darker skin) of the data. A data dependent term can explicitly make the classifier/detector to behave similarly for various
subgroups in the population.

several reasons including its ease of use for a practitioner.
The authors show that for a general class of constraints, a
proxy-Lagrangian based method must be used because the
Lagrangian is not optimal. This raises the question whether
there exist a broad class of data-dependent nondecomposable
functions for which the regularized/penalized formulation
based on standard Lagrangian schemes may, in fact, be effec-
tive and sufficient. In this paper, we will address this question
with simple examples shortly.

Examples in statistics. Nondecomposable regularization,
in the most general sense, has also been studied from the
statistical perspective, and is often referred to as shape con-
straints (Groeneboom and Jongbloed 2014). The need for
shape constraints arise in clinical trials and cohort studies of
various forms in the competing risk model, formalized using
local smooth function theory, see Chapter 5 in (Daimon, Hi-
rakawa, and Matsui 2018) and (Chenxi and Fine 2012). While
several authors have studied specific forms of this problem,
the literature addressing the computational aspects of estima-
tion schemes involving such regularizers is sparse, and even
for simple objectives such as a sparse additive model, we find
that results have appeared only recently (Yin and Yu 2018).
Leveraging these ideas to train richer models of the forms
that we often use in modern machine learning, establishing
their convergence properties, and demonstrating their utility
in real world applications is still an open problem.

Our Contributions. We first reparameterize a broad class
of nondecomposable data-dependent regularizers into a form
that can be efficiently optimized using first order methods.
Interestingly, this reparameterization naturally leads to a La-
grangian based procedure where existing SGD based methods
can be employed with little to no change, see Figure 2. While
recent results suggest that optimizing nondecomposable data-
dependent regularizers may be challenging (Cotter et al.
2018), our development shows that a sizable subclass of such
regularizers indeed admit simple solution schemes. Our over-
all procedure comes with convergence rate guarantees and

optimal per-iteration complexity. On the MSCOCO stuff seg-
mentation dataset, we show that a direct use of this technique
yields significant improvements to the state of the art, yield-
ing a mean IoU of 0.32. Pytorch code for our experiments, the
extended version of the paper containing proofs and results
can be found in https://github.com/abhay-venkatesh/f1-cv.

2 Preliminaries

Basic notations. We assume that the training data is given as
pairs of (x, y) ∼ D where the joint distributionD is unknown.
Here, x, y are random variables that represent examples (e.g.,
images) and labels respectively. We make no assumptions
on x and y in that the marginal distributions of x and y can
be discrete or continuous. Our goal is to estimate a function
f : x �→ y that achieves the minimum error measured using
a specified loss function on the empirical/observed samples.
We will use W = {w1, w2, . . . , wl+1} to represent the train-
able parameters of a feedforward neural network with l + 1
layers, with nonlinear activation functions. The output W (x)
of the function computed by the neural network W may be
used to construct the classification or regression function f .

Nondecomposability. Now, suppose there exists a func-
tion ϕ such that ϕ ◦ D =: s is a random variable called
“shape” in a similar sense as described above (Groeneboom
and Jongbloed 2014). Our notation is suggestive of the fact
that s is nondecomposable, i.e., the value si for individ-
ual datapoint/example i may depend on the entire (empir-
ical) distribution of D. Moreover, this implies that with-
out any further assumptions, any loss function R(·) on
W (x) used to learn a model g to predict s cannot be rep-
resented as a decomposable function with respect to the train-
ing data x, y, see (Narasimhan, Vaish, and Agarwal 2014;
Sanyal et al. 2018).

As briefly noted in Section 1, nondecomposability poses
unique challenges in designing algorithms for learning mod-
els with a large number of parameters. In most cases, exist-
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Figure 2: Our proposed training pipeline for optimizing nondecomposable S−Measures.

ing backpropagation based techniques may not be directly
applicable and require careful modifications (Zhang et al.
2018). In other cases, they may require significant computa-
tional overhead due to expensive projection operations (Kar,
Narasimhan, and Jain 2014) or likelihood computations (Ye
et al. 2012). Before we present our model, we now briefly
describe two fundamental tasks that are, by and large, the
most frequently used modules in vision based pipelines to
see the benefits of nondecomposability.

Example 1. Object Detection seeks to simultaneously lo-
calize and classify objects in an image using a bounding box
for each object (Zhao et al. 2019). Naturally, since the bound-
ing boxes are rectangular, the data-dependent regularizer s
is fully determined by the size of the objects. In other words,
s here becomes the area of the bounding box of the object.
Here, we may use the knowledge of s to learn f that can
perform equally well over all sizes present in the training
data. But even though we may simply use class activation
maps to compute the empirical distribution of s (Zhou et al.
2016), the loss functions R(s) that are commonly used are
nondecomposable as we will see shortly.

Example 2. Semantic Segmentation seeks to assign each
pixel of an image to a class (Chen et al. 2018). Recent works
suggest that in order to train a model f , we may choose a
model whose complexity strongly depends on the number
of pixels in the images, see (Liu, Deng, and Yang ) for a
recent survey. Unfortunately, these methods use up/down-
sampling and so the learned representations do not directly
offer immunity to variations in how much of the image is
occupied by each class (i.e., size).
Remark 1. We use these two examples to illustrate the appli-
cability of our developments – since the use case corresponds
to size, we may assume that the “shape” random variable is

discrete. To that end, we will use S to denote the countable
scoring set or the support of s with |S| <∞.

2.1 Incorporating S−measures for Optimization

Let us write down a formulation which incorporates our shape
regularizer. The objective function is a sum of two terms: (1) a
decomposable Empirical Risk Minimization (ERM) term
to learn the optimal function which maps x to y and (2) a
nondecomposable, data dependent S−measure regularizer
term for s from x. In particular, for a fixed α > 0, we seek to
solve the following optimization problem,

min
W

ERM︷ ︸︸ ︷
1

N

N∑
i=1

loss (W ;xi, yi) + α

S−Measure︷ ︸︸ ︷
R
(
W ;ϕ ◦ D̂

)
, (1)

where D̂ represents the empirical distribution, xi ∈ R
d and

yi ∈ R
k with i = 1, . . . , N denoting training data examples.

We let loss(·) to be any standard loss function such as a cross
entropy loss, hinge loss and so on. To keep the presentation
and notations simple but nonetheless illustrate our main algo-
rithmic developments, we will assume that the S−Measure
is given by Fβ metric (Lipton, Elkan, and Naryanaswamy )
while noting that the results apply directly to other measures
such as R@P, P@R and can be easily generalized to other
nondecomposable metrics such as AUCROC, AUCPR, us-
ing the Nyström method with no additional computational
overhead (Eban et al. 2016).

Remark 2. For simplicity, we will suppress the dependence
of f computed by the parameters W in our objective function
(1). For example, if f is represented using a deep neural
network with weights W , then both terms in (1) may be
nonconvex.
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3 Reparameterizing S−Measures

Since any backpropagation based procedure can easily handle
decomposable terms, let us ignore the ERM term in our ob-
jective function (1) for the moment, and focus on the second
term. Specifically, in this section, we will focus on the Fβ

metric as a placeholder for S−measures. and show that there
is a reformulation which will enable a backpropagation based
procedure to solve our problem (1). For simplicity, let us
assume that s ∈ {+1,−1} and β = 1. The appendix shows
how to extend our approach to any finite |S| and β ∈ (0, 1]
noting that in various applications in Section 4, |S| = 2 suf-
fices and is already quite effective (e.g., the learned model
works whether si is +1 or −1).

The starting point of our technical development is the
following result,

Observation 1 (Restated from (Eban et al. 2016)). If f is
linear, i.e., y = W · x, we can represent the S−measure
term as a Linear Program (LP) as shown in equation (13) in
(Eban et al. 2016).

Moving forward from Observation 1. In principle, one
could use standard LP solvers to solve the LP in (Eban et al.
2016). But this requires instantiating the constraint matrix
(linear in the number of samples). This is impractical – the
alternative in (Eban et al. 2016) is to use an iterative ascent
method. In general this will also require a projection scheme,
e.g., solving a QP. While more attractive than using an off-
the-shelf method, both options may need cubic time.

min
φ,τ,w,ε

nε+
∑

i∈S+

τi +
∑

i∈S−
φi (2a)

s.t. τi ≤ ε, τi ≤ wl+1 · al(xi); ∀ i ∈ S+ (2b)

φi ≥ 0 , φi ≥ ε+ wl+1 · al(xi); ∀i ∈ S− (2c)
∑

i∈S+

τi = 1 ε ≥ 0 . (2d)

Problem (2): Slightly adapted form of LP in (Eban et al. 2016)

Further, this discussion of the computational issues only
pertains to a linear objective – the setting expectedly becomes
much more challenging for non-convex objectives common
in deep learning architectures.

3.1 Simplify and Reparameterize

We will first generalize the construction in (Eban et al. 2016)
to be more amenable to non-linear functions that one of-
ten estimates with DNN architectures. Note that since our
data-dependent S−measures are specified on the input dis-
tribution of examples or representations derived from the
transformations induced by the network W , we may denote
representations in general as al(xi): in other words, the l−th
layer provides us a representation of example i. We define
S+ := {i : si = +1} (and similarly S−) with |S+| = n,
and n + |S−| = N , calculated using only the training data
samples X := {xi}, Y := {yi}, i = 1, ..., N . We will still
focus on the nondecomposable term but bring in the DNN
loss when we describe the full algorithm.

min
τ,w,ε

nε+
∑

i∈S−
max(0, ε+ wl+1 · al(xi)) (3a)

s.t. τi ≤ ε, τi ≤ wl+1 · al(xi); ∀ i ∈ S+ (3b)
∑

i∈S+

τi = 1 ε ≥ 0 . (3c)

Problem 3: a simplified LP

Eliminating redundancy in Problem (2). First, notice
that we can eliminate the

∑
i∈S+ τi term from the objective

function in (2a) since any feasible solution has to satisfy the
first constraint in (2d). Second, using the definition of hinge
loss, we can eliminate the φi terms in the objective by replac-
ing φi with max(0, ε + wl+1 · al(xi)). This rearrangement
leads to a LP in Problem (3).
Remark 3. The choice of φ to be the hinge loss is natural
in the formulation of Fβ metric. Our Algorithm 1 can easily
handle other commonly used loss functions such as Square,
Cross Entropy, and Margin.

Reparameterization via Partial Dualization. Problem
(3) has a objective which is expressed as a sum over finite
number of terms. But overall, the problem remains difficult
because the constraints (3b) are nonlinear and problematic. It
turns out that a partial dualization – for only the problematic
constraints – leads to a model with desirable properties. Let
us dualize only the τi ≤ wl+1 · al(xi) constraints in (3b)
using λi, and the equality constraint in (3c) using μ, where
λi and μ are the dual variables. This yields the Lagrangian,

L := nε+
∑
i∈S−

max(0, ε+ wl+1 · al(xi))

+ μ

(∑
i∈S+

τi − 1

)
+
∑
i∈S+

λi (τi − wl+1 · al(xi)) . (4)

We can denote the set C := {(τ1, τ2, ..., τn, ε) : τi ≤ ε, ε ≥
0, i = 1, ..., n}. With this notation, our final optimization
problem for the S−measure can be equivalently written as,

max
λ≥0,μ

min
(τ,ε)∈C,W

L(τ, w, ε, λ, μ). (5)

We will shortly describe some nice properties of this model.
Relation to “Disintegration”. While procedurally the

derivation above is based on numerical optimization, the form
in (5) is related to disintegration. Disintegration is a measure
theoretic tool that allows us to rigorously define conditional
probabilities (Faden and others 1985). As an application,
using this technique, we can represent any (also, nondecom-
posable) measure defined over the graph of a convex function
using (conditional) measures over its faces (Caravenna and
Daneri 2010). Intuitively, at the optimal solution of (5), the
dual multipliers λi can be thought of a representation of the
“disintegrated” S−measure, as seen in the last term in (4). In
words, if we can successfully disintegrate the S−measure,
then there exists a loss function that can be written in the
weighted ERM form such that the optimal solutions of the re-
sulting ERM and that of the nondecomposable loss coincide.
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Algorithm 1 Reparameterized Dual Ascent for solving (5)

1: Input: X,Y, S, c ∈ (0, 1) trainable parameters: W, τ
2: Initialize variables W, τ, T,Epochs, ηd = c/e
3: for e = 1, . . . ,Epochs do
4: for t = 1, . . . , T do
5: SGD on ERM in (1) + Lagrangian (4)
6: end for
7: τ← ΠC(τ) using Algorithm 2
8: λ← λ+ ηd(τ − wl+1 · al(xi))
9: μ← μ+ ηd(1

T τ − 1)
10: end for
11: Output

But in general, Lagrangians are difficult to use for disintegra-
tion because λ′

is need not sum to one; and more importantly,
when the optimal solution is in the interior of the feasible set
in Prob. (3), then λi = 0 ∀i by complementarity slackness.
This means that the decomposition provided by the λ′

is need
not be a nontrivial (probability) measure in a rigorous sense.

3.2 Core benefit of Reparameterization: Efficient
Projections will become possible

The previous section omitted description of any real benefits
of our reparameterization. We now describe the key compu-
tational benefits.

Can we perform fast Projections? Yes, via Adaptive
Thresholding. Observe that for the formulation in (5) to
offer any meaningful advantage, we should be able to show
that the Lagrangian can indeed be efficiently minimized with
respect to τ, ε,W . This will crucially depend on whether we
can project on to the set C defined above. We now discuss
that this holds for different batch sizes.

Fast projections when batch size, B is 2. Let us denote
by B, the minibatch size used to solve (5) and consider the
setting where we have S+ and S− as used in Probs. (2)-(3).
In this case, we can randomly draw a sample i from S+ and
another i′ from S−. Observe that only one coordinate of
τ , namely τi, changes after the primal update. Hence, the
projection ΠC is given by the following simple rule: after
the primal update, if ε < 0, we simply set ε = 0 leaving τi
unchanged; on the other hand if ε > 0, then we have two
cases: Case (1) If τi ≤ ε, then do nothing, and Case (2) If
τi ≥ ε, then set τi = ε = (τi + ε) /2. In other words, the
projection is extremely easy.
Remark 4. We can indeed use multiple samples (and take
the average) to compute gradients of weights W, ε, but only
update one τi with this scheme.

Generalizing the projection algorithm to larger batch
sizes: B > 2. Note that projections onto sets defined by
linear inequality constraints can be performed using standard
(convex) quadratic programming solvers (Amos and Kolter
2017). But in the worst case, such solvers use Primal-Dual
methods that have a time complexity of O(n3). It is not

Algorithm 2 Projection operator: ΠC(τ)

1: Input: τ, B > 2
2: Output: ΠC(τ)
3: If τ1 < 0, set τ1 = 0.
4: Compute largest k∗ such that τk∗+1 ≤ 1

k∗
∑k∗

i=1 τi by
sorting {τi : i > 1}.

5: Output: Set ō = 1
k∗
∑k∗

i=0 τi,
6: Return ΠC(τi) where

ΠC(τi) = ō for i ≤ k∗ or (6a)
ΠC(τi) = τi for i > k∗. (6b)

practical to use such solvers efficiently in end-to-end training
of widely used neural network architectures. It turns out that
a much simpler scheme will work well. Define projection
variables τ := [ε; τ ] ∈ C, and γ := [δ; γ] ∈ R

n+1. The
Euclidean projection amounts to solving the following QP:

ΠC(γ) = argmin
τ
‖τ− γ‖22 s.t. τ ∈ C. (7)

Our projection algorithm to solve (7) is given in Algorithm 2
which requires only a sorting oracle. The following lemma
shows the correctness of Algorithm 2.

Lemma 1. There exists an O(B logB) algorithm to solve
(7) that requires only sorting and thresholding operations.

3.3 Obtaining a numerical optimization scheme

With the results in the preceding section, we now describe
below an efficient approach to solve (1).

Reparameterized Dual Ascent. Using the projection
operator above (Alg. 2), our final algorithm to solve
S−Measures regularized problem (1) is given in Algorithm
1 where we use ηd to denote the dual step size. The following
theorem characterizes the convergence rate of Algorithm 1.

Theorem 2. Assume that ‖∇W loss(W ;xi, yi)‖2 ≤ G1, and
Vari (‖∇W loss(W ;xi, yi)‖2) ≤ σ in the ERM term in Prob.
(1). Then, Alg. 1 converges to a ε−approximate (local) solu-
tion of Prob. (1) in O(1/

√
T ) iterations.

Remark 5. (Implementation details of Alg. 2.) In the ap-
pendix, based on Lemma 1, we describe a one pass scheme
to compute k∗ in Step 4 of Alg. 2. So, the time complexity of
Alg. 2 is O(B logB).

Computational Complexity. Assume that each gradient
computation is O(1), Alg. 1 requires T = O(1/ε2) iterations
to compute a local ε-optimal solution (inner loop). We use a
constant number of epochs E (outer loop), so the total cost is
O(E(1/ε2 + n log n)). Please see appendix for more details.

Discussion. The reader will notice that the projection step
in Algorithm 1 is outside the inner loop, whereas classical
Lagrangian based methods guarantee convergence when the
projection is performed in the inner loop. One advantage of
having the projection outside the inner for loop is that
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Figure 3: (From Left) Performance of our Reparameterization on S−MNIST (Cols. 1&2) and MS-COCO class “Sky” (Cols.
3&4) datasets: x-axis denotes the Epoch in all the plots. Observe that across both the datasets, Reparameterized Dual Ascent
Algorithm (red) 1: (i) (Cols. 1&3) obtains high quality solutions than the Baseline (blue) (Long, Shelhamer, and Darrell 2015);
(Cols. 2&4) and requires significantly less projections (once every epoch from Theorem 2).

SGD type methods allow for faster optimization of the La-
grangian with respect to the primal variables W . That is, it is
now known that constant step size policies guarantee faster
convergence of the inner for loop under some structural
assumptions (Dieuleveut, Durmus, and Bach 2017). In any
case, we give a detailed description of our Algorithm 1 in the
appendix with a discussion of the trade-off between using
projections in the inner for loop versus the outer for
loop in Algorithm 1.

3.4 Approximating ΠC for Backpropagation

Recall that our primary goal is to solve our problem (5) using
backpropagation based methods. In the previous sections,
we argued that SGD can be used to solve (5). In particular,
we showed in Theorem 2 that Algorithm 1 requires fewer
projections compared to the classical PGD algorithm. It turns
out that the simplicity of the projection operator ΠC can be
exploited to avoid the double for loops in Algorithm 1,
thus enabling backpropagation based training algorithms to
be effectively deployed. Details are in the appendix.

4 Experimental Evaluations

Overview. We show experiments on three different tasks:
S−Measures defined using the F1 metric can be efficiently
optimized using our Reparameterized Dual Ascent Algorithm
1 in large scale vision problems while strongly improving
the empirical performance. The first set of experiments is
designed to show that the F1 metric based objectives may
benefit existing classification models using convex classifiers.
The second set of experiments further evaluates the perfor-
mance of Alg. 1 for nonconvex models. Our goal here is to
show that nondecomposable regularizers can be used to sta-
bilize models without sacrificing the overall accuracy. In the
third set of experiments, we show that architectures used for
Semantic Segmentation can be trained using Alg. 1. In all our
experiments, we used ADAM optimizer (with default parame-
ters) to train with primal step sizes of ητ = ηε = ηW = 10−2,
and dual step sizes of ηλ = 10−3, and ημ = 10−5. We re-
port the results for the regularization parameter taking values
α = {10−2, 10−3, 10−4}. Baseline corresponds to α = 0.

Experiment 1) Improving Linear Classifiers using
S−Measures Dataset. Consider a dataset with distinct

classes: MNIST with 10 classes (digits). In MNIST, the size
of the foreground (pixels with nonzero intensities) is about
the same for all images (and each class) in MNIST – the
distribution of foreground size s′ is unimodal (see appendix).
To see the benefits of S−measures, we create an augmented
dataset called S−MNIST. We added a set of images in which
the foreground is double the original size in MNIST simply
by rescaling the foreground to get a two mode s′.

How to obtain size s? To get s ∈ {0, 1}, we can simply
threshold s′ using the empirical mean.

Model and Training. We used a single layer neural net-
work f to predict y from x but added an extra node to ac-
count for the S−Measure term in (1). That is, our total loss
is the sum of the softmax cross-entropy ERM loss and the
S−Measure (using F1 metric). We trained using Alg. 1 for
40 epochs with a minibatch size of 100.

Results. We see the benefits provided by the F1 metric
as a data-dependent regularizer in Fig. 3. Column 1 shows
that our model is uniformly more accurate than the base-
line throughout the training process. Moreover, Column 2
compares Alg. 1 with classical dual ascent procedures from
(Cotter et al. 2018). Here, full projections refers to computing
ΠC(·) after every inner iteration in Alg. 1. Clearly, we can
see that Algorithm 1 obtains high quality solutions but needs
one projection operation every epoch.

Takeaway #1. Models obtained using Alg. 1 are more
accurate and stable for linear classifiers.

Experiment 2) Improving one class Segmentation using
S−Measures. We consider the task of the pixel-wise con-
textual labeling of an image. We found that the “sky” category
in the MSCOCO stuff (2017) dataset (Caesar, Uijlings, and
Ferrari 2018) has a high variance over the samples in terms
of size: so, taking this property into account seems sensible.
So, we use only the images in the “sky” category (Caesar,
Uijlings, and Ferrari 2018).

How to obtain size s? We first computed the empirical
distribution of number of pixels s′ that are labeled as sky
in the training set. We then pick the mean of s′ to be the
threshold to obtain a binary s.

Model and Training. We utilize SegNet (Badrinarayanan,
Kendall, and Cipolla 2017; Shah 2017), a deep encoder-
decoder architecture for semantic segmentation for its simple
design and ease of use. As before, we add a fully-connected
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Figure 4: Qualitative results on MSCOCO stuff segmentation benchmark. Colors (except black) indicate different “stuff”
categories in an image. From left to right: original image, baseline, our result and ground truth.

layer at the end of the model to incorporate the S−Measure
specified by F1 metric. We trained our models for 40 epochs
with a learning rate of 0.01 and batch size 7.

Results. Figure 3 Column 3 shows our results averaged
over the thresholds {0.55, 0.6, 0.65}. We can see that our
models uniformly outperforms the baseline with a 80% mean
IOU (over 77.6% baseline). Furthermore, observe that our
Alg. 1 is much more stable than the baseline throughout the
training process even in nonconvex settings while requiring
the fewest projection steps.

Takeaway #2. Performance boosts from the F1-regularizer
carries over from the simple convex classification task to the
pixel-wise classification task with a deep neural network.

Experiment 3) Improving Semantic Segmentation with
Nondecomposable Regularizers Dataset. We are now
ready to consider semantic segmentation with multiple
classes in each image. Our dataset consists of 164K images
that belong to any of the “stuff” classes in the MSCOCO
“Stuff” dataset (Caesar, Uijlings, and Ferrari 2018). We down-
sampled the training images to 106 × 160 size to reduce
training time.

How to obtain size s? The volume of stuff c denoted by
s′c is measured by the number of pixels that belong to c.
We observed that s′c is close to 0% for most c (see ap-
pendix). So, we picked a threshold of ≈ 0.05 to obtain a
binary sc ∈ {0, 1} for each class c. Then, we use the major-
ity vote provided by all classes present in an image to obtain
s ∈ {0, 1} for individual images – corresponding to “big/s-
mall”. That is, if the majority of the classes present inside the
image are “big” (as determined by the threshold s = 0.05),
then we assigned the image to be “big” and vice-versa.

Model and Training. We use DeepLabV3+ (Chen et al.
2018) for training. DeepLabV3+ is a popular model for se-
mantic segmentation (needs no CRF post-processing) and
can be trained end-to-end. We used a minibatch size of 144
for baseline and 120 for our F1 regularized models.

Results. Figure 4 Column 1 shows the quantitative
results of our experiment averaged over the thresholds
{0.01, 0.03, 0.05, 0.07, 0.09}. Columns 2-4 shows some of
our qualitative results. See appendix for quantitative results
on MSCOCO stuff segmentation benchmark. Our mean IOU
improves upon the state of the art reported in (Chen et al.
2018) by ≈ 10% on MSCOCO 164K while being stable.

Takeaway #3. On the MS COCO 164K Stuff dataset, we
achieve state of the art results with 0.32 Mean IOU (vs. 0.30
current state of the art mean IOU in (Chen et al. 2018)).

5 Conclusions

While nondecomposable data-dependent regularizers are vari-
ously beneficial and needed in a number of applications, their
benefits cannot often be leveraged in large scale settings due
to computational challenges. Further, the literature provides
little guidance on mechanisms to utilize such regularizers
within the deep neural network architectures that are com-
monly used in the community. In this paper, we showed how
various nondecomposable regularizers may indeed permit
highly efficient optimization schemes that can also directly
benefit from the optimization routines implemented in ma-
ture software libraries used in vision and machine learning.
We provide a technical analysis of the algorithm and show
that the procedure yields state of the art performance for a
semantic segmentation task, with only minimal changes in
the optimization routine.
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