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Abstract

The rapidly growing parameter volume of deep neural net-
works (DNNs) hinders the artificial intelligence applications
on resource constrained devices, such as mobile and wearable
devices. Neural network pruning, as one of the mainstream
model compression techniques, is under extensive study to re-
duce the model size and thus the amount of computation. And
thereby, the state-of-the-art DNNs are able to be deployed on
those devices with high runtime energy efficiency. In con-
trast to irregular pruning that incurs high index storage and
decoding overhead, structured pruning techniques have been
proposed as the promising solutions. However, prior studies
on structured pruning tackle the problem mainly from the
perspective of facilitating hardware implementation, without
diving into the deep to analyze the characteristics of sparse
neural networks. The neglect on the study of sparse neu-
ral networks causes inefficient trade-off between regularity
and pruning ratio. Consequently, the potential of structurally
pruning neural networks is not sufficiently mined.
In this work, we examine the structural characteristics of the
irregularly pruned weight matrices, such as the diverse redun-
dancy of different rows, the sensitivity of different rows to
pruning, and the position characteristics of retained weights.
By leveraging the gained insights as a guidance, we first pro-
pose the novel block-max weight masking (BMWM) method,
which can effectively retain the salient weights while im-
posing high regularity to the weight matrix. As a further
optimization, we propose a density-adaptive regular-block
(DARB) pruning that can effectively take advantage of the
intrinsic characteristics of neural networks, and thereby out-
perform prior structured pruning work with high pruning ra-
tio and decoding efficiency. Our experimental results show
that DARB can achieve 13× to 25× pruning ratio, which are
2.8× to 4.3× improvements than the state-of-the-art counter-
parts on multiple neural network models and tasks. Moreover,
DARB can achieve 14.3× decoding efficiency than block
pruning with higher pruning ratio.

1 Introduction
With the rapid development of deep neural networks
(DNNs), artificial intelligence (AI) has penetrated into vari-
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Intelligence (www.aaai.org). All rights reserved.

ous application domains. The success of the state-of-the-art
deep learning models highly relies on the large number of
parameters and the resulting extensive computations. And
the trend of new models is to grow even larger and deeper.
However, the enormous number of parameters and compu-
tations prevents the models from being widely deployed in
the scenarios that have limited hardware resources, such as
running these models on mobile or edge devices. To address
this issue, a lot of research efforts have been paid to reduce
the model size and accelerate the inference process of DNNs
(Han, Mao, and Dally 2016; Park, Ahn, and Yoo 2017;
Zhou et al. 2017; Leng et al. 2017; Wang et al. 2018b;
Ren et al. 2019; Ye et al. 2019).

Neural network pruning is one of the major compression
techniques to reduce model size by removing the least im-
portant weights, i.e., the weights with small absolute value.
It has been empirically proved in prior works (Han, Mao,
and Dally 2016; Ren et al. 2019) that such irregular prun-
ing can achieve the highest compression ratio than all other
compression techniques for neural networks, such as struc-
tured pruning, feature/activation pruning, and weight quan-
tization. Nonetheless, irregular pruning is mostly opted out
in reality due to its notorious positional irregularity of re-
tained weights, which incurs inefficient index decoding and
high index storage overhead. Structured pruning techniques
are developed to address the drawbacks of irregular prun-
ing. They reduce indexing overhead and achieve accelera-
tion mainly through the trade-off among regularity, pruning
ratio, and model accuracy. That is, given the same accuracy,
the looser constraints on the regularity of the weights, the
higher pruning ratio can be achieved. However, little atten-
tion has been given to the intrinsic characteristics of neural
networks for efficient trade-off.

In this work, we endeavor to find a more effective struc-
tured pruning method by studying the structural character-
istics of the irregularly pruned weight matrix. In particular,
we investigate the distribution of row density in the matrix
and its correlation with the pruning ratio1. Our study fo-
cuses on recurrent neural networks (RNNs), such as long
short term memory (LSTM) and gated recurrent unit (GRU),

1Row density is defined as the percentage of retained weights
in a row after pruning, which is the compliment of sparsity.
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Figure 1: Neural network pruning.

and the fully-connected layers of convolutional neural net-
works (CNNs). Our study reveals that: (i) maintaining the
variety of row density helps sustain model accuracy; (ii)
the dense rows are more sensitive than the sparse rows to
further pruning; (iii) when dividing all rows into equally
sized blocks and selecting in each block one weight with the
largest magnitude, these locally salient weights have simi-
lar salience to the weights globally selected over the whole
weight matrix. Based on the gained insights, we innovatively
propose a block-max weight masking (BMWM) method and
a density-adaptive regular-block (DARB) pruning method
that can achieve high pruning ratio, low index storing cost,
efficient index decoding, and sustained accuracy, simulta-
neously. Our experimental results show that the proposed
DARB significantly outperforms the state-of-the-art coun-
terparts by up to 4.3× higher pruning ratio on various neu-
ral network models and tasks. Moreover, DARB can beat
block pruning by 14.3× higher index decoding efficiency
and meanwhile achieve higher pruning ratio.

In summary, the main contributions of this work are:
• We analyze the irregularly pruned weight matrices and

figure out that each row intrinsically has different den-
sity and denser rows are more sensitive to further prun-
ing, which requires attention to be paid when developing
pruning algorithms.

• We study the positional characteristic of weights, and pro-
pose the block-max weight masking (BMWM) method
that is more effective in retaining the salient weights than
prior structured pruning methods.

• We propose the density-adaptive regular-block (DARB)
pruning to achieve high regularity, high pruning ratio, and
sustained accuracy, simultaneously.

2 Background and Related Work

Neural networks are becoming larger and deeper to achieve
the state-of-the-art performance in many domains, such as
(Krizhevsky, Sutskever, and Hinton 2012a; Simonyan and
Zisserman 2014; He et al. 2016; Szegedy et al. 2017) in
computer vision (CV) and (Vaswani et al. 2017; Devlin et al.
2018; Yang et al. 2019; Simonyan and Zisserman 2014) in
natural language processing (NLP). Nonetheless, the large
number of parameters and the resulting computations im-
pede the deployment of the models on devices that have lim-
ited on-chip resources. Consequently, neural network com-
pression techniques have gained increasing attraction in both
industry and academia. There are two major compression
techniques, pruning and quantization, where the former is
mainly intended to reduce the redundancy existing in the
number of weights (Han, Mao, and Dally 2016; Frankle and
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Figure 2: Index encoding and decoding process.

Carbin 2019; Ren et al. 2019) while the latter is to reduce
the redundancy in the representation precision of each sin-
gle weight (Leng et al. 2017; Park, Ahn, and Yoo 2017;
Zhou et al. 2017). These two techniques are orthogonal to
each other and often combined to achieve the best compres-
sion ratio. This work only concentrates on the pruning tech-
nique, which solely can achieve higher compression ratio.

Irregular Pruning and Index Decoding As illustrated in
Figure 1, pruning refers to removing the connections be-
tween the neurons of two adjacent layers, which results in
a sparse weight matrix. Since the removed weights do not
need to be stored and involved in computation, pruning is
able to reduce storage and computation overhead, which is
critical for resource constrained devices.

Irregular pruning is the most straightforward pruning
technique. The idea behind is that the important weights
have larger magnitude (i.e., absolute value), so keeping only
the top-K weights in magnitude should have little impact on
accuracy. Although it can achieve impressive high pruning
ratio (Han, Mao, and Dally 2016; Frankle and Carbin 2019;
Ren et al. 2019), the positions of the pruned weights are
rather random, and consequently, a large number of indices
are required to record the positions of the retained weights.
To save the index storage, the relative compressed sparse
row (CSR) format (Han, Mao, and Dally 2016) is usually
adopted, which encodes each index by the relative distance
(i.e., the number of zeros) between two adjacent non-zero
weights. Besides, a decoding process is needed to select the
corresponding activations for the retained weights. Figure 2
illustrates the encoding and decoding process. The main
drawback of irregular pruning is that decoding one index re-
quires a search over the whole activation vector, and thus it
brings little acceleration and even speed degradation.

Structured Pruning and Related Work Structured prun-
ing techniques are proposed to address the drawbacks of ir-
regular pruning, and they can be categorized into two types.

The first type of structured pruning techniques requires no
index or decoding, such as matrix factorization-based meth-
ods (Thakker et al. 2019; Sainath et al. 2013; Kim, Khan,
and Kyung 2019), block-circulant algorithm (Wang et al.
2018a), and PermDNN (Deng et al. 2018). The low-rank
matrix factorization proposed in (Sainath et al. 2013) fac-
torizes the original high-rank weight matrix into low-rank
sub-matrices and thereby achieves 30%-50% parameter re-
duction. (Thakker et al. 2019) proposes to use Kronecker
Product to decompose the high-rank matrix. However, this
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Figure 3: Row density distribution of the four weight components of a medium LSTM with 90% sparsity: (a) embedding layer,
(b) input weight matrices, (c) hidden weight matrices, (d) decoder layer.
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Figure 4: Row density distribution of FC6-FC8 of AlexNet with 90% sparsity: (a) FC6, (b) FC7, (c) FC8.

method achieves only little computation reduction, because
the Kronecker Product computation to reconstruct a high-
rank matrix from the decomposed sub-matrices is not trivial.

Block-circulant pruning proposed in (Wang et al. 2018a)
divides the original weight matrix into sub-blocks and en-
forces each block to be a circulant matrix. Since this method
requires storing only the first row of each circulant block,
it can reduce the space complexity from O(n2) to O(n)
and the computation complexity from O(n2) to O(n log n).
However, the computation is mainly performed in the fre-
quency domain, which significantly diminishes the benefit
of computation reduction because of the Fast Fourier Trans-
formation and complex domain computation. PermDNN
(Deng et al. 2018) decomposes the weight matrix into blocks
and each block is a permuted diagonal matrix. Nevertheless,
this method considers only the simplification of hardware
implementation, resulting in limited pruning ratio.

The other type of structured pruning works in the way
of sharing index among multiple neighboring weights, so
that the index storage is reduced and the decoding efficiency2

can be improved. Column pruning removes one column of
the weight matrix (Wen et al. 2017). Although this method
is effective in convolutional layers, it fails to work in the
fully-connected layers, where removing one column can
cause significant information loss as it is equivalent to re-
moving one input activation. Prior work (Wen et al. 2017;
Wang et al. 2019) adopts this strategy in RNNs but only
achieves about 2× parameter reduction. Block pruning per-
forms pruning at the scale of blocks (Van Keirsbilck, Keller,
and Yang 2019), but grouping neighboring weights into a
specific structure is a strong constraint which is not an ef-
fective way to keep the salient weights. As a result, only

2Decoding efficiency is defined as the number of activations
selected per clock cycle for the corresponding retained weights.

limited pruning ratio can be achieved.

3 Methodology
Based on the survey of the related work, we can con-
clude that (i) irregular pruning can achieve the highest com-
pression ratio among all compression techniques mentioned
above; (ii) structured pruning works in the way of trading
off the regularity with pruning ratio at a given accuracy. In
order to make the pruned weight matrix structural, two types
of constraints are usually applied. One is to enforce all rows
in the weight matrix to have the same number of weights
retained, and the other is to group neighboring weights into
certain structures, such as the block pruning (Van Keirsbilck,
Keller, and Yang 2019) or block-circulant-based compres-
sion (Wang et al. 2018a).

Even though they can more or less achieve trade-off im-
provement, those previous studies have never discussed the
fundamental question: whether or not the the hardware-
friendly algorithm can lead to high pruning ratio, which is
another vital factor for achieving high performance and en-
ergy efficiency. To answer this question, it is favorable to
explore the intrinsic characteristics of the pruned neural net-
works to help us understand the essence of pruning. Since
irregular pruning can achieve the highest compression ratio,
in this work we study the structure characteristics of irregu-
larly pruned weight matrices. In addition, we ultimately pro-
pose a structured pruning method that can achieve both high
pruning ratio and decoding efficiency without accuracy loss.

Structure Characteristics of a Weight Matrix

In this work, we first obtain the pruning mask by apply-
ing the irregular pruning into the matrix. The pruning mask
is a bitmap where ‘0’ (‘1’) indicates if the weight needs
to be pruned (retained). We then examine the row den-
sity distribution and the position distribution of the weights
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Figure 5: Sensitivity study of sparse and dense rows. The
dense rows are more sensitive to further pruning as the solid
curves are always above the dashed curves.

within each row. For the study, two models are selected
and each is the representative of a specific domain. The
first model is a medium size LSTM for language mod-
eling (Zaremba, Sutskever, and Vinyals 2014), which has
the architecture of (embedding: 10k×650)–(LSTM: 650)–
(LSTM: 650)–(decoder: 650×10k). The second model is
AlexNet for image classifications (Krizhevsky, Sutskever,
and Hinton 2012b), and all of its fully-connected layers (i.e.,
FC6-FC8) are studied.

Figure 3 and 4 plots the row density distribution of the
LSTM model and AlexNet (FC6-FC8 only), respectively.
Both neural networks have been pruned irregularly to reach
90% sparsity. From the two figures, we can find that the
row density distributions vary significantly not only across
different neural networks, but also across different layers
within the same network, and even across different rows
within the same layer. For example, the densest rows can
have up to 14× more weights than the sparsest rows.

Nowadays, enforcing all rows in a layer to have the same
density is widely adopted to assure the regularity. Neverthe-
less, due to our observation on the wide variation in the row
density distribution, we question this as a reasonable strat-
egy. Therefore, we further investigate the sensitivity of a row
for further pruning. We have done the experiments by firstly
performing irregular pruning with an overall 70% pruning
ratio to obtain the pruning mask. The density of each row
is then calculated (i.e., counting 1s in the mask) and sorted.
We evenly divide the sorted rows into two segments, the first
half is denoted as sparse rows and the second half as dense
rows. Then, we anchor the pruning ratio of the dense rows
and increase the pruning ratio of the sparse rows. The model
is then retrained to recover the perplexity3. As a comparison,
we also anchor the pruning ratio of the sparse rows while in-
creasing the ratio of the dense rows. Please refer to Section 4
for the detail of experiment setup.

Figure 5 illustrates the sensitivity of the sparse and dense
rows to pruning ratio, respectively. The dashed curves show
the results when sweeping pruning ratio in the dense rows.
The solid curves show the results when sweeping pruning
ratio in the sparse rows. The validation and test perplexities
are plot separately. As shown, the dense rows are more sen-
sitive to further pruning than the sparse rows, as the solid

3Perplexity is the metric to evaluate a language model and it is
the lower the better.

Table 1: The portion of blocks that contain different number
of weights. Block size is ten.

Layer # of weights
=0

# of weights
=1

# of weights
> 1

Embedding 34.86% 38.79% 26.35%
LSTM1 34.85% 38.75% 26.40%
LSTM2 34.94% 38.63% 26.43%
Decoder 34.95% 38.66% 26.39%

curves are always above the dashed curves. Generally, the
sparse rows are resilient to further pruning. Thanks to the
regularization effect, the model performance can be even im-
proved with moderate pruning ratio (e.g., 70%-90%). How-
ever, as the pruning ratio goes high enough (e.g., ≥95%),
many rows are pruned entirely, which leads to a sharp per-
formance degradation.

In addition to the distribution of row density, we also con-
duct the characterization study on weight positions. In the
study, we first extract the pruning mask by performing ir-
regular pruning with 90% pruning ratio on the medium size
LSTM. Note that only the pruning mask is generated at this
step, while the matrix is not really pruned. According to
the pruning mask, we then measure the relative distance be-
tween two adjacent non-zero weights in the same row. We
figure out that the average relative distance in all layers is
ten, which corresponds to the sparsity (i.e., one out of ten
weights is retained for 90% pruning ratio). As summarized
in Table 1, when we divide each row into blocks whose sizes
are ten, about 26% blocks across all layers have more than
one non-zero weights, around 39% blocks have exactly one
non-zero weight, and the remaining 35% blocks are empty.

To determine if those empty blocks contain only in-salient
weights, we define a new metric relative difference to quan-
tify the significance of weights in the empty blocks. Firstly,
we pick the largest weight in each empty block and calcu-
late the arithmetic mean of their absolute values as W̄empty .
We then turn to the blocks that have more than one weights
and pick all retained weights but the largest one (all-but-
largest, or abl for short) to calculate their mean value as
W̄abl. Finally, we compare the two mean values and denote
the value |W̄abl−W̄empty|

W̄abl
as their relative difference. In this

way, a large relative difference indicates that empty blocks
only have in-salient weights while a small difference implies
that empty blocks also have salient weights, even though
they may be slightly less important than the retained weights
selected by irregular pruning.

In our experiment, the relative difference is about 27.6%
for both embedding and decoder layers, and 12.3% for the
LSTM layers. As the relative difference is small, it reveals
that these empty blocks also have salient weights. This find-
ing inspires us to reform the weight selection strategy by de-
vising the new block-max weight masking (BMWM) method.
In contrast to the irregular pruning, BMWM simply picks
the largest weight in magnitude from each block. Specifi-
cally, BMWM consists of three steps: (1) It first divides a
row into equally sized blocks. For instance, given a row that
has 1000 elements and the block size is 10, the row should
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Figure 6: The generation of a DARB pruning mask. Irregular
pruning mask is used as the starting point.

Table 2: The Comparison of Relative Difference of Retained
Weights between BMWM and Block Pruning

Layer BMWM
to Irregular Pruning

Block Pruning 4× 4
to Irregular Pruning

Embedding 8.8% 45.3%
LSTM1 4.3% 31.1%
LSTM2 4.3% 31.1%
Decoder 8.9% 45.2%

have 1000/10=100 blocks. (2) Within each block, it retains
the largest weight in magnitude. (3) It repeats (1) and (2) for
each row of the weight matrix.

To demonstrate the effectiveness of BMWM, we compare
the salience of the retained weights after BMWM with that
after irregular pruning. Specifically, the mean value of the
magnitude of the retained weights after BMWM is calcu-
lated as W̄bmwm, and that after irregular pruning is W̄irr,
their relative difference is calculated as |W̄irr−W̄bmwm|

W̄irr
. As

shown in Table 2, the relative difference for the embedding
layer and decoder layer is reduced to 8.8%, and that for the
LSTM layers drops to 4.3%. In other words, BMWM can
effectively sustain the salience of the weight matrix, similar
to irregular pruning. On the other hand, we also evaluate the
salience of the retained weights selected by the state-of-the-
art block pruning method with 4×4 block size. The relative
difference between block pruning and irregular pruning is
45% in the embedding and decoders layer, and that in the
LSTM layers is 31%, which is much larger than BMWM.
Therefore, we are confident that BMWM is simple yet ef-
fective in selecting the salient weights.

Density-Adaptive Regular-Block Pruning

As discussed above, maintaining the variety of row den-
sity helps sustain accuracy. Therefore, it is desirable to con-
sider this characteristic when designing a structured pruning
method. However, maintaining this variety incurs difficulty
in storing the retained weights in a compact and regular man-
ner. In addition, even though BMWM is effective to select
salient weights, the block size can be hardware unfriendly.
To fully exploit the discovered characteristics of neural net-
works, we propose a density-adaptive regular-block (DARB)
pruning method.
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Figure 7: Decoding efficiency for (a) block pruning, (b)
DARB pruning.

As illustrated in Figure 6, DARB first needs to obtain the
pruning mask generated in irregular pruning. Note that this
step is to calculate the row density, rather than perform real
pruning. Like BMWM, DARB then divides each row into
blocks and keeps only the weight that has the largest mag-
nitude in each block. Distinct from BMWM, DARB allows
different rows to adopt different block sizes so that the irreg-
ularity of row density can be maintained to some extent. To
make it hardware friendly, DARB intentionally constrains
the block size to be in power of two, such as 2, 4, ..., etc.

To obey the constraint on block size, the row density
sometimes needs to be adjusted. Given that dense rows are
more sensitive to further pruning, maintaining the density of
dense rows helps sustain the model accuracy better. Also, we
need to avoid the density from being rounded in the same
direction that can change the pruning ratio significantly.
Therefore, when the density of a row is greater (less) than
the matrix density, it is rounded up (down). For instance,
suppose the matrix density after irregular pruning is 21.88%,
if the density of a row is 37.5%, it is rounded up to 50% so
that the block size is two (=1/0.5). On the other hand, if the
density of a row is 18.75%, it needs to be rounded down to
12.5% and the resulting block size is eight (=1/0.125).

In this way, DARB can achieve excellent trade-off be-
tween regularity and pruning ratio with the following ben-
efits. Firstly, the block size is hardware friendly to facili-
tate index decoding. As illustrated in Figure 7(a), the con-
ventional CSR encoded indices need a big multiplexer to
accomplish the indexing, which makes the entire decoding
process quite slow since it can only be done in sequence.
Even though block pruning can share the index among mul-
tiple weights, it is still hard to significantly improve the de-
coding performance since the block size is substantially lim-
ited by the consideration of accuracy. In contrast, thanks to
the small equally-sized blocks, DARB supports highly effi-
cient decoding by leveraging multiple small multiplexers in
parallel, as shown in Figure 7(b). Suppose the row size is
1,024, and the block size is four, DARB can simply select
256 activations in parallel with similar area cost.

Secondly, the constraint on the block size enforces the row
density to be clustered into different groups, and the density
ratio between two groups is still in the power of two. Fig-
ure 6 explains the motivation. In the figure, the density of
row 0 and 1 is 25% and 50%, respectively. Therefore, the
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Table 3: Pruning Results and Comparison on Large Size
LSTM for PTB

Method Perplexity Para. No. Pruning
Ratio

baseline (82.20, 78.40) 66.00M 1.00×
Irregular (82.20, 78.40) 3.00M 20.00×

ISS (82.59, 78.65) 21.80M 3.03×
BBS (—, 79.20) — 4.00×

DARB-1 (ours) (82.15, 78.51) 5.02M 13.14×
DARB-2 (ours) (82.65, 79.17) 4.26M 15.48×

density of row 1 is 21 times of row 0. Such regularity among
row densities eventually facilitates the weights storing.

4 Evaluation

To evaluate the efficacy of DARB pruning, we test it on
five neural networks. The pruning ratio and the accuracy
of the pruned models are compared with the state-of-the-art
work, including both irregular pruning and structured prun-
ing methods. In addition, the efficiency of index decoding
is evaluated by counting the number of activations that can
be selected per clock cycle in an exemplary hardware imple-
mentation. In this work, we adopt the ADMM-NN pruning
framework (Ren et al. 2019), which has achieved the state-
of-the-art irregular pruning ratio. The ADMM-based prun-
ing framework decomposes the pruning problem into two
subproblems, one is to find a good pruning mask, and the
other is to train the model via this mask. By iteratively solv-
ing these two subproblems, the target pruning ratio can be
achieved.

Algorithm Evaluation

Language Modeling. For this task, a large size two-layer
LSTM (Zaremba, Sutskever, and Vinyals 2014) is built
to perform the word-level prediction for Penn Tree Bank
(PTB) dataset (Marcus, Marcinkiewicz, and Santorini 1993),
whose vocabulary size is 10k words. The training data, val-
idation data, and test data of PTB dataset has 929k, 73k,
and 82k words, respectively. The architecture of the model
is (embedding: 10k×1500)–(LSTM: 1500)–(LSTM: 1500)–
(decoder: 1500×10k). The model is trained with 20 batches
and 35 unrolling steps, which has the same configurations
as the prior arts (Zaremba, Sutskever, and Vinyals 2014;
Wen et al. 2017). The dropout configuration for DARB is
(0.35, 0.75) in the ADMM regularization step and (0.35, 0.7)
in the retrain step, where the former in the parentheses is the
dropout for LSTM layers, and the latter is for other layers.
For the sake of fair comparison, two pruning ratios are ap-
plied separately to make sure that each achieves the similar
perplexity to its counterpart.

Table 3 shows the comparison between DARB and the
state-of-the-art pruning methods on the LSTM model. The
first number in the perplexity tuple is the validation perplex-
ity, and the second is the test perplexity. Compared with
ISS (Wen et al. 2017) , which has similar perplexity with
DARB-1, DARB-1 achieves 13.14× pruning ratio and out-
performs ISS by 4.34×. In addition, DARB-2 can achieve

Table 4: Pruning Results ad Comparison on LSTMP for
TIMIT

Method PER
Degradation Para. No. Pruning

Ratio
baseline 20.70% → 20.70% 3.25M 1.0×
Irregular 20.70% → 20.90% 0.16M 20.0×
C-LSTM 24.15% → 24.57% 0.41M 8.0×
C-LSTM 24.15% → 25.48% 0.20M 16.0×

BBS 23.50% → 23.75% 0.41M 8.0×
DARB-a (ours) 20.70% → 20.80% 0.41M 8.0×
DARB-b (ours) 20.70% → 20.90% 0.20M 16.0×
DARB-c (ours) 20.70% → 21.00% 0.16M 20.0×

Table 5: Pruning Results and Comparison on GRU for
TIMIT

Method PER Para. No. Pruning Ratio
baseline 18.8% 12.7M 1.0×
Irregular 19.0% 0.40M 32.0×

Block-circulant-1 19.4% 1.59M 8.0×
Block-circulant-2 20.1% 0.79M 16.0×
DARB-A (ours) 18.8% 1.59M 8.0×
DARB-B (ours) 19.1% 0.40M 32.0×

15.48× pruning ratio, which is 3.78× higher than BBS (Cao
et al. 2019). Note that ISS can only prune the LSTM and de-
coder layers but leave the embedding layer untouched due
to the high sensitivity to accuracy loss4. Instead, DARB can
prune all four layers of the model by 13.14× and meanwhile
sustain the model accuracy. Despite the 20× pruning ratio,
the extremely low decoding efficiency makes irregular prun-
ing inapplicable in real applications. We will discuss the de-
coding efficiency at the end of this section.

Speech Recognition. This task is evaluated with TIMIT
(Garofolo et al. 1990), which is an acoustic-phonetic speech
corpus. It contains broadband recordings from 630 speak-
ers, and each speaker reads ten phonetically rich sentences
in eight major dialects of American English. We build two
models for the task. The first model is a projected LSTM
(LSTMP) (Zia and Zahid 2019), which has two LSTM lay-
ers with 1,024 hidden units and a projection layer with 512
hidden units. The second model is a two-layer gated recur-
rent unit (GRU) with 1,024 hidden units in each layer. For
this task, the evaluation metric is phone error rate (PER),
which is the smaller the better.

Table 4 shows the comparison results. Note that
DARB has three variants with different pruning ratios. For
this model, we prune only one layer of LSTMP, same as
the previous work. In addition, since those prior studies
have different baselines, we present PER degradation after
pruning. When pruning ratio is 8×, the best prior work is
BBS, which has 0.25% PER degradation. DARB-a instead
has only 0.1% degradation. Comparing to C-LSTM (Wang
et al. 2018a) that achieves 16× pruning ratio with 1.32%
PER degradation, DARB-b can achieve the same pruning

4It is unclear if BBS can prune the entire network.
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Table 6: Pruning Results and Comparison on FC6,FC7,FC8
of AlexNet for ImageNet

Method Top-5 Acc. Para. No. Pruning Ratio
AlexNet 80.2% 58.6M 1.0×

PermDNN on
AlexNet 80.0% 6.5M 9.0×

AlexNet-BN 83.4% 58.60M 1.0×
Irregular 83.4% 2.44M 24.0×

DARB-I on
AlexNet-BN

83.4% 2.75M 21.3×
DARB-II on
AlexNet-BN

83.2% 2.34M 25.0×

ratio with only 0.2% degradation. When the pruning ratio
increases to 20×, DARB has only 0.3% PER degradation,
which is 0.1% worse than irregular pruning. As a result, the
performance of DARB is close to irregular pruning.

Table 5 shows the pruning results on the GRU model, and
DARB is compared with the block-circulant algorithm. The
Block-circulant algorithm sees 0.6% and 1.3% PER degra-
dation with 8× and 16× pruning ratio, respectively. In con-
trast, DARB-A (8× pruning ratio) has no degradation and
DARB-B (32× pruning ratio) has only 0.3% degradation.
Furthermore, DARB-B even beats the block-circulant algo-
rithm with 8× pruning ratio. Again, DARB achieves similar
PER performance as irregular pruning.

Image Classification. To evaluate the feasibility of
DARB on non-NLP models, we train an AlexNet
(Krizhevsky, Sutskever, and Hinton 2012b) with ImageNet
(Deng et al. 2009). Table 6 gives the comparison between
DARB and PermDNN (Deng et al. 2018) when pruning
FC6-FC8 of AlexNet. Note that the baseline of PermDNN is
the vanilla AlexNet, while ours is AlexNet-BN that is trained
with batch-normalization. Although the baselines are differ-
ent, the original AlexNet-BN has higher accuracy, which is
intuitively more difficult to prune. To assure fair comparison,
we focus on the relative accuracy loss. As shown, DARB-I
achieves 21.3× pruning ratio with no accuracy loss, which
is remarkable because it is close to irregular pruning (24×),
while PermDNN has 0.2% accuracy loss with 9× pruning
ratio. If the same accuracy loss is allowed, DARB-II is able
to achieve 25× pruning.

Also, we evaluate DARB in the convolutional layers
of VGG-16 (Simonyan and Zisserman 2014) on CIFAR-
10 (Krizhevsky, Hinton, and others 2009). It achieves 18.7×
pruning ratio with only 0.6% accuracy degradation. The re-
sult suggests that DARB is promising for CNNs. We will op-
timize DARB for state-of-the-art CNNs as our future work.

Demonstration of Efficient Index Decoding

To demonstrate the index decoding efficiency of DARB, we
define the decoding efficiency as the number of activations
that can be selected from an activation vector per clock cy-
cle. Block pruning is used as our baseline. The size of the ac-
tivation vector in the aforementioned LSTM model is 1500.
We implement six decoders in RTL to concurrently support
the block size of 2, 4, ..., and 64. They are synthesized in

Table 7: Decoding Efficiency and Pruning Ratio Comparison

Metric DARB Block-4×4 Block-8×8
Area (μm2) 58928 58928 58928
Decoder No. 6 6.41 6.45

Decoding Efficiency
(activations/cycle) 1478 103 413

Pruning Ratio 13.14× 7.48× 5.37×

CMOS 40nm process to measure the hardware area. We
also design and synthesize the decoders for the baseline to
support two types of block pruning. As shown in Table 7,
given the same hardware area, we can equivalently deploy
6.41 and 6.45 decoders for the block-pruning design whose
block size is 4×4 and 8×8, respectively. From the table, we
can find that the decoding efficiency of DARB outperforms
the other two designs by up to 14.3×. Moreover, once no
perplexity degradation is allowed, DARB can achieve 1.76×
and 2.45× higher pruning ratio than the other two designs.
It is worth noting that the decoding efficiency of irregular
pruning is only 7 with the same footprint. Such low decod-
ing efficiency explains why it is rarely adopted in reality.

Regarding the index storage overhead, block pruning only
has minor advantage over DARB. In general, block prun-
ing has significantly lower pruning ratio than DARB, which
indicates that its overall storage is still dominated by the
weight itself. For instance, the original model has 66 million
weights. After block pruning, 12.29 million weights (v.s.
DARB’s 5.02 million) are retained so that 0.2(=12.29/64)
million indices are required. Assuming weights are quan-
tized into INT8, it needs at least 12.29MB to store weights.
Therefore, even if it only needs <0.1MB for relative CSR in-
dex, the overall storage saving is minor. On the other hand,
DARB needs 5.02(=66/13.14) million indices. It seems huge
at the first glance. However, the weight index in DARB just
indicates its position within the block. As the block size is a
power of two, a block whose size is m only requires log2 m
bits for indexing. Therefore, the average bit width of each
index is less than four, and the total index storage overhead
of DARB is less than 0.63MB, which is slightly larger than
block pruning but still minimal.

5 Conclusion

In this work, we study the intrinsic characteristics of irregu-
larly pruned weight matrices, including the row density dis-
tribution, the sensitivity of different rows to further prun-
ing, and the positional characteristic of weights within each
row. Motivated by our observations, we propose a block-
max weight masking method that is superior to previous
work in selecting salient weights. Then we devise a density-
adaptive regular-block pruning method that can simultane-
ously achieve high pruning ratio and decoding efficiency,
with almost no accuracy loss. Experimental results show
that DARB outperforms the state-of-the-art prior in terms of
pruning ratio by 2.8× to 4.3×. And it achieves up to 14.3×
decoding efficiency over the block pruning.

On the other hand, inspired by prior work (Liu et al. 2018;
Frankle and Carbin 2019), we believe that mining more
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characteristics of sparse neural networks has great poten-
tial in not only pushing the state-of-the-art pruning ratio, but
also facilitating neural architecture search. We will extend
our research in this direction.
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