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Abstract

In large-scale optimization problems, distributed asyn-
chronous stochastic gradient descent (DASGD) is a com-
monly used algorithm. In most applications, there are often
a large number of computing nodes asynchronously com-
puting gradient information. As such, the gradient informa-
tion received at a given iteration is often stale. In the pres-
ence of such delays, which can be unbounded, the conver-
gence of DASGD is uncertain. The contribution of this pa-
per is twofold. First, we propose a delay-adaptive variant of
DASGD where we adjust each iteration’s step-size based on
the size of the delay, and prove asymptotic convergence of
the algorithm on variationally coherent stochastic problems,
a class of functions which properly includes convex, quasi-
convex and star-convex functions. Second, we extend the con-
vergence results of standard DASGD, used usually for prob-
lems with bounded domains, to problems with unbounded do-
mains. In this way, we extend the frontier of theoretical guar-
antees for distributed asynchronous optimization, and provide
new insights for practitioners working on large-scale opti-
mization problems.

1 Introduction

In recent years, rapid advances in computing infrastructures
have led to a significant increase in the use of distributed
stochastic optimization. There has correspondingly been in-
tensive work studying distributed stochastic optimization,
such as (Chaturapruek, Duchi, and Ré 2015), (Karakus et al.
2017), (Damaskinos et al. 2018), (Wu et al. 2018),(Assran
et al. 2018), (Cutkosky and Busa-Fekete 2018), (Koloskova,
Stich, and Jaggi 2019), (Yu and Jin 2019), (Xie, Koyejo, and
Gupta 2019).

Many optimization algorithms in distributed settings are
first-order methods involving multiple computing nodes
working asynchronously to perform stochastic gradient
descent. For brevity, we will refer to such algorithms
as distributed asynchronous stochastic gradient descent
(DASGD) in this paper. Two common architectures on
which DASGD are deployed are 1) a “master-slave” archi-
tecture where each worker independently computes a noisy
gradient for the master node, and 2) a multiprocessor shared-
memory architecture, where there is no master node and
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workers asynchronously update a parameter in some shared
memory. Both architectures are vulnerable to delays in the
gradient computation. Such delays are of particular concern
in volunteer computing grids, where there is no upper bound
on the workers’ delay.

Related Work and Our Contributions

Our paper addresses the robustness of DASGD-type algo-
rithms in the presence of large, unbounded delays result-
ing from either the master-slave or shared memory parallel
computing architectures. In distributed deterministic opti-
mization, asynchronous gradient descent has been shown to
solve convex problems, even if delays scale sublinearly over
time (Bertsekas and Tsitsiklis 2003). For stochastic con-
vex problems, recent results by ((Agarwal and Duchi 2011),
(Recht et al. 2011), (Chaturapruek, Duchi, and Ré 2015))
have derived convergence rates for DASGD when the de-
lay is bounded. A delay-adaptive DASGD variant for con-
vex problems was proposed in (Sra et al. 2015), where the
algorithm’s step-size depends on the actual delay received.
However, the authors of (Sra et al. 2015) assumed that the
delays are either bounded or have finite first and second mo-
ments, whereas in many applications the delays might not be
bounded. An algorithm for problems with unbounded delays
for both convex and nonconvex problems was introduced in
(Peng et al. 2019). However, the proposed step-size in (Peng
et al. 2019) is not delay-adaptive, and the authors there as-
sumed finite-mean i.i.d delays, while we make no distri-
butional assumption. Beyond convexity, the class of vari-
ationally coherent (VC) problems, which properly includes
convex, quasi-convex, and star-convex objectives, was intro-
duced in ((Zhou et al. 2017a), (Zhou et al. 2020a)), and sub-
sequently generalized to multi-player game settings ((Zhou
et al. 2017c), (Zhou et al. 2017b), (Zhou et al. 2018a), (Mer-
tikopoulos and Zhou 2019)). For VC problems on a bounded
domain, ((Zhou et al. 2018b), (Zhou et al. 2020b)) proved
that DASGD converges almost surely to a global minimizer,
even when the delays between gradient updates and requests
grow at a polynomial rate. For synchronous stochastic op-
timization of variationally-coherent-like problems with un-
bounded domains, (Lelong 2008) proposed a random trun-
cation approach that achieves convergence.

Our main contributions are twofold: first, we propose a
delay-adaptive variant of DASGD for VC problems whose
convergence is robust to any delay sequence from either
the master-slave or shared-memory architecture, going be-
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yond the polynomially growing delay allowed in (Zhou et
al. 2020b). Developing such a theoretical guarantee is cru-
cial given the arbitrary nature of delays in real-life comput-
ing grids. Next, we develop a modified version of DASGD
that converges for VC problems with unbounded domains,
reposing on the truncation technique pioneered in (Lelong
2008). Both contributions are to the best of the authors’
knowledge novel in the literature.

2 Problem Setup

We will consider the following problem:

minimize f(x)

subject to x ∈ X , (Opt)

where the objective f : X → R is of the form

f(x) = E[F (x;ω)]

for some random function F : X × Ω → R, where we let
(Ω,F ,P) be some underlying probability space, and X is a
compact, convex subset of Rd.

Assumptions

We make the following assumptions:

Assumption 1. F satisfies the following:

1. F (x;ω) is differentiable in x for almost every ω ∈ Ω.

2. ∇F (x;ω) has bounded second moments, that is,
E[‖∇F (x;ω)‖22] <∞ for all x ∈ X .

3. ∇F (x;ω) is Lipschitz continuous in the mean on any
compact set X : for any X , there exists some LX such
that E[∇F (x;ω)] is LX -Lipschitz on X .

Assumption 2. The optimization problem (Opt) is varia-
tionally coherent in the mean, which means that

E[〈F (x;ω), x− x∗〉] ≥ 0, (VC)

for all x ∈ X and x∗ ∈ X ∗, with equality if and only if
x = x∗.

Variational coherence is a wide class of optimization
problems that properly includes convex, quasi-convex, and
star-convex functions. We note that (VC) is a significantly
weaker condition than convexity, as it has no information
on generic point pairs. For examples of such functions, see
(Bottou 1998), (Zhou et al. 2020a).

DASGD: A Framework for Asynchronous Optimization
Our goal in this paper is to deal with delays that occur either
in 1) master-slave or 2) multi-processor systems with shared
memory.

1. In distributed master-slave gradient descent, workers
asynchronously compute stochastic gradients and then
send them to the master. Meanwhile, the master updates
the global state of the system and pushes the updated
state back to the workers.

2. In a multi-processor system with shared memory, all pro-
cessors access a global, shared memory, which contains
both the data needed to compute a stochastic gradient as
well as the current iterate. Each processor independently
and asynchronously reads the current global iterate, com-
putes a stochastic gradient, and then updated the shared
global iterate.

Both systems are common asynchronous computations ar-
chitectures used in practice, and are described with more
detail in (Zhou et al. 2020b).

We can unify both these architectures under the DASGD
framework in Algorithm 1.

Algorithm 1: Distributed Asynchronous Stochastic Gra-
dient Descent

Require: Y0 ∈ R
d

1 n← 0
2 repeat
3 Xn = ProjX (Yn)
4 Yn+1 = Yn − αn+1(∇F (Xs(n);ωn+1))
5 n← n+ 1
6 until end;
7 return solution candidate Xn

In DASGD, note that s(n) is the iteration of the gradi-
ent used at iteration n. Let dn = n − s(n) represent the
delay. We say that the delay is (i) linear, (ii) polynomial,
(iii) exponential respectively if dn is (i) linear, (ii) polyno-
mial, (iii) exponential as a function of s(n). For instance, if
s(n) =

√
n, so that dn = n − √n, we say that the delay

received at iteration n is polynomial.

3 Adapting Step-size to Delay

Intuitively, using a fixed step-size sequence whilst ignoring
the delay information might jeopardize convergence, given
the potential for unbounded delay. Therefore, it is important
to develop a delay-adaptive step-size sequence that is robust
to bad delay. In this section, we first state and prove two ele-
mentary results on the delay sequence resulting from either a
master-slave or shared-memory architecture, before provid-
ing intuition for our proposed delay-adaptive stepsize.

Results on Delay Sequence

We start by better understanding the delay generated from
either (i) the master-slave architecture, or (ii) the multi-
processor system with shared memory. We show in fact that
the delays generated are for the most part not too stale.

To see this, assume that there are K workers computing
the gradients, where K ∈ Z

+. In a master-slave system,
xt from any particular time t is used in the computation
of future gradients precisely once. Meanwhile, in a shared-
memory system, multiple workers can access the same xt.
Then, while the K gradients computed by the K workers are
different (due to different stochasticity), they could all stem
from the same global iterate xt. Hence, xt from any partic-
ular time t can be used in the computation of gradients for
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future updates at most K times. This observation gives rise
to the following result.

Lemma 3.1. Suppose there are K workers in a master-slave
or shared-memory system. Then, for any N > 0, there exists
at least N/2 indices n ∈ [N ] such that s(n) ≥ n/(2K).

Proof. To see this, note that the first N/(2K) iterates can
each be used at most K times, so in total at most N/2 it-
erations n ∈ [N ] can use gradients computed from the first
N/(2K) iterates. Hence, for the remaining indices n ∈ [N ]
(and there are at least N/2 such indices),

s(n) ≥ N/(2K) ≥ n/(2K).

This shows that more often than not, the delay is not worse
than linear. This is an interesting observation in its own right.
It also implies that there are infinitely many n such that
s(n) ≥ n/(2K), which we will use later to prove conver-
gence of DASGD along a subsequence.

Lemma 3.2. As n goes to infinity, so does s(n).

Proof. To see this, suppose otherwise. Then, there exists
some C > 0 such that s(n) ≤ C for all n. Since there are
only K workers, it follows that only C ·K iterates will ever
be used in the computation of gradients, a contradiction.

A Delay-adaptive Step-size Proposal

In developing a new delay-adaptive step-size, we leverage
on insight from (Zhou et al. 2020b). There, to deal with
polynomially growing delay, the authors used the step-size
sequence

αn+1 =
1

n log n log log n
.

This suggests that we might want to build our step-size
on top of that, and incorporate a delay-adaptive adjustment
term. Suppose 0 < c < 1. Consider the step-size

αn+1 =
1

n log n log log n+ nc(log(n)/ log s(n))
(1)

We can view nc(log(n)/ log s(n)) as a delay-adjustment
term that varies with the delay. For concreteness we pick
c = 2/3 in our analysis during the rest of the paper.

To see why we picked this step-size, observe the size
of αn when s(n) is small, i.e. the delay is large. Suppose
s(n) = O(

√
n). Then,

n(2/3)(log(n)/ log s(n)) = o(n4/3).

So when the delay is unbounded and grows faster than poly-
nomially, αn is on the order O(1/n4/3), which is summable.

Next, note that when the delay is linear, i.e. s(n) is on the
order o(n), n(2/3)(log(n)/ log s(n)) = O(n2/3), so the step-
size αn is on the order o(1/(n log n log log n)), which is not
summable

We formalize the above in the following result generalized
for any 0 < c < 1. Details of the proof can be found in the
supplementary material.

Lemma 3.3. Let

αn+1 =
1

n log n log log n+ nc(log(n)/ log s(n))
.

Then,
1. On the subsequence whose indices satisfy s(n) = O(n�),

where � < c, the step-sizes are summable:
∞∑

n=0,s(n)=O(n�)

αn+1 <∞

2. On the subsequence whose indices satisfy s(n) ≥
n/(2K), where the step-sizes are not summable:

∞∑

n=0,s(n)≥n/(2K)

αn+1 =∞

4 Convergence Analysis
For clarity, we will write down the delay-adaptive variant of
DASGD we are proposing.

Algorithm 2: Delay-Adaptive DASGD

Require: Y0 ∈ R
d

1 n← 0, 0 < c < 1
2 repeat
3 Xn = ProjX (Yn)

4 αn+1 =
1

n log n log log n+ nc(log(n)/ log s(n))

5 Yn+1 = Yn − αn+1(∇F (Xs(n);ωn+1))
6 n← n+ 1
7 until end;
8 return solution candidate Xn

Energy Function
Consider the energy function

E(y) = inf
x∗∈X∗ Ex∗ (y),

where Ex∗ (y) = ‖x∗‖22 − ‖ProjX (y)‖22 + 2〈y,ProjX (y)− x∗〉.
The energy function satisfies the following properties:
Lemma 4.1.

1. E(y) ≥ 0 with equality if and only if ProjX (y) ∈ X ∗

2. Let {yn}∞n=1 be a sequence. Then, limn→∞ E(yn) = 0 if
and only if ProjX (yn)→ X ∗ as n→∞
Observe calling E(y) an energy function is justified since

E(y) is always nonnegative. The keypoint here is this: since
E(Yn) → 0 if and only if Xn → X ∗, the energy function
E(y) provides us a convenient way to characterize and prove
convergence.

This next result allows us to bound the change across an
iteration of the energy function, and will prove essential in
the technical analysis.
Lemma 4.2. Fix any x∗ ∈ X ∗

1. ‖ProjX (y) − ŷ‖22 − ‖ProjX (ŷ) − ŷ‖22 ≤ ‖y − ŷ‖22, for
any y, ŷ ∈ R

d

2. Ex∗(y+Δy)−Ex∗(y) ≤ 2〈Δy,ProjX (y)−x∗〉+‖Δy‖22,
for any y,Δy ∈ R

d.
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Convergence Analysis

We can write the DASGD updates as follows:

Xn = ProjX (Yn)

Yn+1 = Yn − αn+1(∇f(Xn) +Bn + Un+1)

where Bn = ∇f(Xs(n))−∇f(Xn) is the delay error term
and Un+1 = ∇F (Xs(n);ωn+1)−∇f(Xs(n)) is the stochas-
tic term in the gradient computation. In addition, we use the
adaptive step-size from equation (1).

In our proof (see supplement), we first prove almost sure
(a.s.) convergence along a subsequence before extending to
full a.s. convergence, a standard technique for convergence
proofs of discrete iterates.

Convergence Along a Subsequence

Proposition 4.2.1. Under assumptions 1 - 2, and lemmas
3.1 and 3.2, delay-adaptive DASGD admits a subsequence
Xnk

that converges to X ∗ almost surely as k →∞.

The proof is technical, and provided in full in the supple-
ment. We highlight that the key here is to show a bound on
the delay term Bn, which is almost surely bounded above
by O(log log log n) when the delay is allowed to be expo-
nential. A telescoping argument then allows us to show that
E(Yn+1)− E(Y0)→ −∞, a contradiction.

Extending to Convergence The main result of delay-
adaptivity in the stochastic context is the following:

Theorem 4.3. Under Assumptions 1 to 2, and lemmas 3.1
and 3.2, the global state variable Xn of delay-adaptive
DASGD converges a.s. to the solution set X ∗ of Opt.

The stochastic noise makes extending subsequential con-
vergence to full convergence tricky. To get around this, we
will write down an ODE that approximates the DASGD it-
erates trajectory and show convergence of the ODE flow to
the optima set. Then, we will relate the DASGD iterates to
the ODE trajectory to prove convergence.

We note that we can view the DASGD updates as a dis-
cretization of the mean-flow ODE

ẏ = −∇f(ProjX (y)) (2)

Compactness of X and Lipschitz-continuity of ∇f ensure a
unique trajectory for y. We can define P : R+ × R

d → R
d

as follows, where P (t, y0) denotes the state of the system
when starting from y0 after running for a time of t.

The idea is that asymptotically, the (random) iterates Y1,
Y2, . . . , Yn will hug close to the mean-field ODE specified
above in (2). Using the VC condition allows us to prove that
P (t, y0) → x∗ as t → ∞. This then allows us to prove
convergence of the iterates.

To make this argument more precise, we next introduce
the following three objects

1. The DASGD iterates Y1, Y2, . . . , Yn

2. An affine curve A(t) interpolating the iterates
Y1, Y2, . . . , Yn where Yr is placed at

∑r
s=0 αs (re-

call that here the step-size αr is still delay-adaptive)

3. the curve given by the ODE flow P (t, y)

In order to show that the interpolated curve A(t) is close
to the mean-field ODE asymptotically, we consider the fol-
lowing notion of an asymptotic pseudotrajectory (APT), in-
troduced in (Benaı̈m 1999):

Definition 1. A continuous function s : R
+ → R

d is an
APT for P if every T > 0,

lim
t→∞ sup

h≥T
d(s(t+ h), P (h, s(t))) = 0

In the absence of delay-adaptivity, Theorem 4.12 in (Zhou
et al. 2020b) showed that as long A(t) can be shown to be
an APT for P , assuming there exists a convergent subse-
quence, we can prove convergence of the DASGD iterates.
Since we have already shown a convergent subsequence in
the delay-adaptive setting, we just need to show that A(t) is
still an APT for P under the delay-adaptive setting. We can
prove this by relying on the fact that when s(n) = O(

√
n),

i.e. when there is a possibly bad delay, the delay-adaptive
stepsize is summable. The precise details, using ideas from
(Benaı̈m 1999), are in the supplement.

5 Extending DASGD to Unbounded Domain

While DASGD guarantees are often provided for problems
with bounded domains, to date, there has been no result in
the literature proving convergence of DASGD for problems
with unbounded domains. In this section, we propose a novel
variant of DASGD that achieves such guarantees for varia-
tionally coherent problems with unbounded domains.

We will require the following assumption, as the existing
proof technique only works for sublinearly growing decay.

Assumption 3. We assume that the delay sequence {dn}n
satisfies

dn ≤ βnc for some β > 0, 0 ≤ c < 1.

For clarity, we will also assume that the minimizer x∗ of
f is unique.

In an unconstrained setting, ensuring boundedness of the
iterates is problematic. To deal with this issue, we force the
algorithm to remain in an increasing sequence of compact
sets (Kj)j , where the containmentKj ⊂ Kj+1 is strict. Each
time the iterate leaves the current compact set Kτn , we in-
crease τn by 1, and perform a truncation by resetting the
iterate to a fixed point inKτ0 . To differentiate it from vanilla
DASGD, we call this new algorithm DASGD-T, where T
stands for truncation. Algorithm (3) provides one implemen-
tation of the algorithm DASGD-T.

As with DASGD, the master keeps track of a global
counter n and increments it every time it updates the current
solution candidate Xn. When an iterate exceeds the current
compact set Kτn , we return the algorithm to its initial iterate
X0. This ensures that the iterates return to some compact
set infinitely often, which will prove essential in ensuring
boundedness of the iterates. On the other hand, if the ten-
tative iterate stays within Kτn , we update Yn to be our new
candidate solution Xn+1. We say that the algorithm is in its
t-th cycle at time n if τn = t.

5506



Algorithm 3: DASGD-T

Require: Initial state X0 ∈ R
d, step-size sequence αn,

initial truncation parameter τ0
1 n← 0;
2 repeat
3 if τs(n) < τn; /* only use gradient from

current cycle */
4 then
5 Xn+1 ← Xn;
6 else
7 Yn ← Xn − αn+1∇F (Xs(n), ωs(n)+1);
8 if Yn ∈ Kτn then
9 Xn+1 ← Yn;

10 τn+1 ← τn;
11 else
12 Xn+1 ← X0; /* truncate */
13 τn+1 ← τn + 1; /* increase

exploration limit */
14 end

15 end
16 n← n+ 1
17 until end;
18 return Xn

Note also that if the gradient received at time n came from
an iteration s(n) for which τs(n) < s(n), we keep the exist-
ing iterate and do not use the gradient evaluated at time τs(n)
to produce a new iterate. The idea behind this is to prevent a
stale gradient from an earlier cycle τs(n) to affect the algo-
rithm, as the reason why we exited the compact set Kτs(n)

in the first place could have been because the algorithm was
producing iterates that started to diverge. This choice of only
using delayed gradient from the current cycle will also help
in proving boundedness of the iterates later.

Boundedness of Iterates

The crux of this analysis is showing that the iterates remain
a.s. bounded. To do so, we will first show that the delay and
noise terms are asymptotically negligible. Using that, we
will then show that the iterates have to remain a.s. bounded.

For the purpose of analysis, it is convenient to rewrite the
algorithm update in the following way. We have

Xn+1 = Xn − αn+1∇f(Xn)− αn+1δMn+1 + αn+1pn+1
(3)

where
δMn+1 = ∇f(Xs(n);ω)−∇f(Xn)

=
(∇f(Xs(n);ω)−∇f(Xs(n)

)
︸ ︷︷ ︸

ξs(n)

+
(∇f(Xs(n) −∇f(Xn)

)
︸ ︷︷ ︸

bn

(4)

and

pn+1 =

⎧⎨
⎩
∇f(Xn) + δMn+1 +

1

αn+1
(X0 −Xn) if Yn /∈ Kτn

0 if otherwise.
(5)

We can interpret δMn+1 as representing the delay and noise
terms, whilst pn+1 is the deviation from the noisy gradient
descent dynamics resulting from a truncation.

We also introduce a new notation vn, which we define as
follows,

v(n) � inf {k : τk = τn, k + dk ≥ s(n)} .
To parse the above, Xv(n) is the earliest iterate in the current
cycle whose gradient was used in producing any iterate from
time s(n) onwards. The particular choice of definition is to
make sure that (v(n))n is an increasing sequence, which is
important for the technical analysis.

We now characterize the notion that the delay and noise
terms do not matter asymptotically.

Lemma 5.1. Suppose assumptions (1), (2), and (3) hold,
and αn+1 = 1/n. Then, for all q > 0, the series∑

n αn+1δMn+1I‖Xv(n):n−x∗‖≤q converges a.s.

We prove this in the supplement. Note that this is where
we used the assumption that the delays scale sublinearly.

Next, we show that given that the delay and noise terms
do not matter asymptotically, the iterates must remain a.s.
bounded.

Proposition 5.1.1. Suppose assumptions (1), (2), and (3)
hold, and αn+1 = 1/n. If for all q > 0, the series∑

n>0 αn+1δMn+1I{‖Xv(n):n−x∗‖<q} converges a.s., then

the sequence (Xn)n remains a.s. in a compact set.

The proof is provided in the supplement. At a high-level,
the proof works by showing that no matter the convergence
of the truncation terms involving pn+1, as long as Lemma
5.1 is true, the iterates must remain a.s. bounded.

Convergence of Iterates

Having ascertained boundedness of the iterates, we can now
prove convergence.

Theorem 5.2. Suppose assumptions (1), (2), and (3) hold.
Suppose also that the step-size sequence is the following,

αn = 1/n, ∀n ∈ N.

Then, a.s., the sequence of iterates the algorithm DASGD-T
produces, (Xn)n converges to x∗.

Remark 5.2.1. We note that our algorithm is delay-adaptive
in the sense that we only use delayed gradients computed in
the current cycle of truncation. We can further consider a
delay-adaptive step-size of the form

αn =
1

n log n log log n+ nc logn/ log s(n)
,

similar to what we studied earlier. However, in order to high-
light the truncation argument, we simplify the analysis by
considering a delay-agnostic stepsize αn = 1/n.

The key to showing this is Proposition 5.1.1 (boundedness
of iterates) and the VC condition, and we leave details to the
supplement.
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Figure 1: Convergence for fRos, with no delay (baseline)

6 Numerical Results

Delay-adaptive DASGD

Rosenbrock test We supplement our theoretical analysis
with numerical results. We first verify convergence of delay-
adaptive DASGD on a standard Rosenbrock test function
with d = 101 degrees of freedom,

fRos(x) =

100∑

i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2], (6)

where x ∈ [0, 2]101. The global minimum of fRos is located
at (1,. . . ,1). While the profile of fRos is highly nonconvex,
its variational coherence can be checked over the constraint
set we specified.

In all the cases with different delay functions, we use the
same initial condition that was generated randomly but fixed
throughout all the runs. For all the cases, we drew noise from
a standard multivariate Gaussian distribution when comput-
ing the gradient of each time step. We ran 10 trials and av-
eraged the results for each case. We plotted the Rosenbrock
function value as well as an average of the function values
as the function of the time step.

Figure 1 shows the result with no delay with a fixed step
size of 1e−4 showing smooth convergence, which we use as
the baseline for the evaluation. In Figures (2, 3, 4, 5), we
simulate DASGD with 1000 workers and compare the re-
sults with v.s. without delay-adaptive step sizes. In the sub-
linear delay case, we used the delay function of unif[0, 10 ·
log(n)], where unif[.] is a uniform distribution random num-
ber generator. In the linear delay cases, we used the de-
lay function of unif[0, n/2000]. In the polynomial delay
cases, we used the delay function of unif[0, n2/2000000 +
n/5000]. In the exponential delay case, we used the delay
function of exp(unif[0, n/5000]). In the non-delay-adaptive
cases, we used the fixed step size of 1e−4 as the base-
line. In the delay-adaptive cases, we use the step size
1e−4/(n log n log log n + nc(log(n)/ log s(n))), where c =
1/2, but when the delay is less than 10, we use the non-
adaptive step size of 1e−4 in order to allow faster conver-
gence when the delay is small. In all the test cases with
different delay functions, it was observed that the function
values either diverged or struggled in converging when us-
ing the non-delay-adaptive step size, while using the delay-
adaptive step sizes always led to convergence.

Figure 2: Non-adaptive DASGD (left) vs. delay-adaptive
DASGD (right), for fRos, with sublinear delay

Figure 3: Non-adaptive DASGD (left) vs. delay-adaptive
DASGD (right), for fRos, with linear delay

Figure 4: Non-adaptive DASGD (left) vs. delay-adaptive
DASGD (right), for fRos, with polynomial delay

Figure 5: Non-adaptive DASGD (left) vs. delay-adaptive
DASGD (right), for fRos, with exponential delay
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Mean Mean Mean
delay- non- difference

adaptive adaptive in test
test test accuracy

accuracy accuracy (± 1 stdev)

exponen- 0.892 0.575 0.316
tial delay (± 0.080)
polynom- 0.851 0.622 0.230
ial delay (± 0.067)

linear 0.855 0.743 0.112
delay (± 0.035)

Table 1: MNIST test accuracy, delay-adaptive vs non-delay-
adaptive [baseline test accuracy (no delay): 0.907±0.001]

MNIST test We also compared the accuracies of a logistic
regression model learned using the delay-adaptive vs non-
delay-adaptive DASGD algorithms on the MNIST dataset
(LeCun 1998), a standard benchmark for machine learning
tasks.

For this comparison, we experimented with linear, poly-
nomial and exponential delay and simulated DASGD on a
logistic regression model with K = 10 workers. We also
tested the model on a baseline case with no delay, where
we used the fixed step size of 1e−3. For linear delay, we
used the delay function of unif[0, n/50]. For polynomial de-
lay, we used the delay function of unif[0, n2/5000000 +
n/50]. For exponential delay, we used the delay function
of exp(unif[0, n/5000]). In each case, we used a mini-
batchsize of 1, and ran the algorithm for 100000 steps. In
the non-delay-adaptive cases, we used the fixed step size of
1e−3 as the baseline. In the delay-adaptive cases, we use
the step size 1e−3/(n log n log log n + nc(log(n)/ log s(n))),
where c = 1/2, but when the delay is less than 100, we use
the non-adaptive step size of 1e−3 to allow faster conver-
gence when the delay is small. For each delay setting, we ran
10 trials, where we ran the delay-adaptive and non-delay-
adaptive algorithms on the same (random) delay sequence
each trial. In Table 1, the first column shows the average
delay-adaptive test accuracy, the second column shows the
average non-delay-adaptive test accuracy, whilst the third
column shows the average difference between the delay-
adaptive test accuracy and the non-delay-adaptive test accu-
racy across the trials (this is possible since in each trial both
delay-adaptive and non-delay-adaptive models use the same
delay-sequence). For our baseline model with no delay, we
achieved a test accuracy of 0.907 (±0.001), where 0.001 is
the standard deviation. In the three delay settings we consid-
ered, we found that the non-delay-adaptive step-size models’
test performances deteriorate significantly (between 0.575 to
0.743), while the delay-adaptive step-sizes achieve a level
of performance (between 0.855 to 0.892) that is close to the
baseline with no delay (0.907). This suggests the empirical
effectiveness of our delay-adaptive step-size.

Figure 6: DASGD-T with no delay (left) vs. DASGD-T with
Θ(
√
n) delay (right)

DASGD-T (Unbounded Domains)

To verify the results for DASGD-T, consider the following
two-dimensional function

f(x, y) =
1

2
x2y2 +

1

20
(x2 + y2).

Note that f has a single global minimizer at (0, 0), and
a simple calculation shows that it is also variationally co-
herent, and locally Lipschitz. The motivation for the above
function comes from the knowledge that the d-dimensional
function,

g(x) =
1

2

d∏

i=1

x2
i ,

satisfies a weak variational coherence property, defined in
(Zhou et al. 2020a). As an aside, a simple calculation shows
that f is not quasi-convex. Suppose z1 = (1, 0), and (z2) =
(0, 1); then, f(z1/2 + z2/2) = (1/40) + (1/32) > 1/20 =
max(f(z1), f(z2)). This can also be seen by visualizing the
sublevel sets of the function f .

To carry out the minimization, an asynchronous master-
slave framework was used, with delays that scale as Θ(

√
n),

a step-size sequence of αn ∝ 1/n, and gradients with
stochastic noise drawn from a standard multivariate Gaus-
sian distribution with zero mean and identity covariance.
The choice for the initial point was (10, 10), and the trun-
cation sets Kj was chosen to be

{
x : ‖x−X0‖2 ≤ j2

}
. We

show plots of value convergence of the function f , averaged
over 100 trials, both in the setting with and without delay.
While the no-delay case converged faster, we see that the
algorithm eventually stabilizes and converges in both cases.
This confirms our theoretical analysis that DASGD-T can
achieve convergence for a variationally coherent problem
with unbounded domain even when there is (sublinear) de-
lay.

7 Conclusion

To conclude, our contributions are twofold. First, we show
that a delay-adaptive algorithm can achieve convergence for
VC functions under general arbitrary delay sequences, a
novel contribution to the literature. Second, we show that
we can extend the convergence results of bounded domains
to unbounded domains using a truncation algorithm, with the
caveat that our current results hold only in the setting with
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sub-linearly growing delay. On the simulation front, we pro-
vide numerical results verifying our theoretical findings, and
also show that delay-adaptive step-sizes perform better than
their non-delay-adaptive counterparts across a range of de-
lay scenarios.
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