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Abstract

While AI is going to produce a great impact on society, its
alignment with human values and expectations is an essential
step towards a correct harnessing of AI potentials for good.
There is a corresponding growing need for mature and estab-
lished technical standards to enable the assessment of an AI
application as the evaluation of its graded adherence to for-
malized ethics. This is clearly dependent on methods to inject
ethical awareness at all stages of an AI application develop-
ment and use. For this reason we introduce the notion of Em-
bedding Principles of ethics by Design (EPbD) as a compre-
hensive inductive framework. Although extending generic AI
applications, it mainly aims at learning the ethical behaviour
through numerical optimization, i.e. deep neural models. The
core idea is to support ethics by integrating automated reason-
ing over formal knowledge and induction from ethically en-
riched training data. A deep neural network is proposed here
to model both the functional as well as the ethical conditions
characterizing a target decision. In this way, the discovery of
latent ethical knowledge is enabled and made available to the
learning process. The application of the above framework to a
banking application, i.e. AI-driven Digital Lending, is used to
show how accurate classification can be achieved without ne-
glecting the ethical dimension. Results over existing datasets
demonstrate that the ethical compliance of the sources can be
used to output models able to optimally fine tune the balance
between business and ethical accuracy.

Introduction

Penetration of Artificial Intelligence systems into everyday
life promises major changes and the opening of new op-
portunities (Craglia 2018). However, this enthusiasm also
brings concerns about the risks it poses on human society
about chance of misuse. Unacceptable behaviours are trig-
gered by several issues, ranging from design misspecifica-
tions (Amodei et al. 2016), to limited robustness with respect
to adversarial attacks (Goodfellow, Shlens, and Szegedy
2014) to unfair treatments (O’Neil 2016) and controversies
on AI experimentation itself (Bird et al. 2016). As the align-
ment with human values and expectations is an essential
step towards a correct harnessing of AI potential for good
(Smuha 2019), research about ethics in AI aiming at mitigat-
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ing ethics issues is an active area (Bostrom and Yudkowsky
2014; Boddington 2017).

Performing audit-like, i.e. post-hoc, ethic validation on a
deployed AI system is certainly a possible approach, but it
hardly constitutes a reliable guarantee: the space of possible
input states, especially in evolved systems, may be too big to
allow for exhaustive explorations. Moreover, the conditions
between testing and real scenarios may inherently exhibit
significant discrepancies or the required data may be insuf-
ficient or unavailable. For example, let us consider a bank
launching a Digital Lending solution: it offers short term
loans, by exploiting a machine learning algorithm based on
the risk associated with the user profile, hence granting or
denying the loan. Here, the ethical implications span many
dimensions, e.g. fairness, transparency and data privacy, all
socially relevant aspects. Worse, a satisfactory a-posteriori
validation would be hard. For example, it would be complex
to assess the system’s performance on false negatives, e.g.
rejected requests for lack of data about their financial his-
tory as information would likely not be available after bank
rejection. While it seems mandatory to guarantee the adher-
ence to acceptable levels of ethical compliance, this goal is
clearly dependent on methods to inject ethical awareness at
all stages the development and use of an AI application. For
this reason, we consider for the notion of Embedding Prin-
ciples of ethics by design (EPbD) for a target AI application.

In this work, we thus propose a framework for EPbD
that, although extending generic AI applications, mainly fo-
cuses on the learning of the ethical behaviour by numeri-
cal optimization, i.e. through a deep neural model (Good-
fellow, Bengio, and Courville 2016). The core idea is to
model ethics as automated reasoning over formal descrip-
tions of the AI system, e.g. based on ontologies, but mak-
ing it available during the learning stage. Note that our ap-
proach does not induce an ethical set of rules from a col-
lection of observable behaviours; it is rather the opposite.
In fact our approach gives for granted an explicit formula-
tion of ethical principles (as done for example in previous
work, (Bonnemains, Saurel, and Tessier 2018; Vanderelst
and Winfield 2018)) and focuses on a form of ethical learn-
ing as external alignment (learning from others, (Kleiman-
Weiner, Saxe, and Tenenbaum 2017)). It uses ethical evi-
dence inferred from an ethical ontology to guide the model
selection in deep learning. The resulting deep neural net-
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work here proposed jointly models the functional as well as
the ethical conditions characterizing the underlying decision
making. In this way, the discovery of latent ethical knowl-
edge, i.e. hidden information in the data that is meaningful
under the ethical perspective, is enabled and made available
to the learning process. Instead of relying on simulation to
proceed in ethical decisions (Vanderelst and Winfield 2018),
in our framework the specific learning goal is the integrated
acquisition of high quality inference abilities that simulta-
neously reflects ethical expectations. The target is a learning
machine able to select the best decisions among those that
are also ethically sustainable.

The objective is achieved through enriching the original
input space with dimensions corresponding to ethical prop-
erties, obtained through further reasoning or discovery over
the input features, in order to reformulate the learning func-
tion so that it leads to prefer decisions as trade-off choices
between operational efficiency and ethical compliance. Spe-
cific loss functions depending on ethic principles are intro-
duced to account for compliance to the reference Knowledge
Bases and they are used into a multitask learning framework
to jointly optimize the model.

The rest of this work is organized as follows. First, we
introduce the concept of Embedding Principles of Ethics by
Design. Then, we discuss how such notion can be special-
ized for the neural learning paradigm and propose a model,
the Ethical by Design Neural Network, that is able to ac-
commodate ethical learning. Last, we present results from
experimental investigation in the case of a Digital Lending
task and point to future research area.

Computational Ethics: Embedding Ethical

Principles by Design

Ethics does not constitute a monolithic and coherent en-
semble of concepts and norms: expectations over acceptable
or unacceptable behaviors greatly diversify across nations,
communities and industry sectors, often generating tensions
between ethical principles and opposing hierarchies of val-
ues (Awad et al. 2018). In general, the following knowledge
should be supplied: a top ontology, describing common-
sense knowledge and concepts that are cross-domains (e.g.
the concept of PERSON, GENDER, ...); a business domain
ontology, describing task-specific concepts (e.g. LOAN),
such as the FIBO ontology (Bennett 2013) w.r.t. the lending
use case targeted in this work; a “socio-political” compo-
nent, in which specific situations regarding the cultural con-
text should specialize all the others; an ethical component
defining core norms and constraints for ethical behaviours
based on domain and social concepts.

A requisite of any ethical framework in AI, is the avail-
ability of the ethical component, that we call here Ethical
Ontology EO. It provides a description of the data the AI
systems is trained on, the corresponding concepts and indi-
viduals in the business domain and the corresponding ethics
that rule business decisions. Ethics should allow at least to
sort any decision of the targeted AI system according to “de-
grees of ethicality”. It can be modeled as a set of Abstract
Ethical Principles, denoted by EΓ, where Γ is a propositional

logic formula to be read as: “ EΓ is an ethical principle in
force” or alternatively “The agent considers it unethical to
allow or cause ¬Γ (to happen)”.

Consequently, the Ethical Ontology (EO) is organized
into a set of Ethical Dimensions whose effects is to deter-
mine the properties, i.e. Ethical Features EF , of individual
decisions. While business features are the observable prop-
erties, e.g. SEX, RELIGION, or AGE of a person requesting
a lend, examples of ethical features are connected to ab-
stract notions such as SOCIAL INCLUSIVENESS or GENDER
EQUALITY. The abstract ethical principles must be enforced
through Ethical Rules: these constraint individual features
and determine the degree of ethicality of principles over their
domains. Ethical Rules usually target (i.e. define and manip-
ulate) one or more features and assign values (or better, es-
tablish some probabilty distributions) across the feature do-
mains. These rules are termed as truth-makers T M as they
account the possibly uncertain ethical state of the world re-
garding individual decisions.

Ethical models are thus distributions across (usually dis-
crete) domains, whose values are useful to specify thresh-
olds and ethical ranges: these suggest when deviations from
the underlying high-level principles become unacceptable.
Ethical features usually reflect context and the dataset’s
properties (e.g. Gender in the Lending use case) onto which
Ethical rules (such as Gender Prejudice) constrain sensitive
information.

An ethical features is characterized by a domain and by
an inner topological structure, i.e. the admissible values and
usually a graded estimates of their acceptance levels. In the
proposed computational ethics scenario, ethical rules thus
trigger truth-makers to automatically compute the basic dis-
tributions of ethical features over the underlying domains.
Ethical assessment is thus a two step approach: first, Truth-
makers are used to reason about the ethical features and then
the overall ethical status, as function of the overall set of
ethical features, is determined. In the first step the ethical
signature of an instance is derived and in the second step
its final ethical status is computed. A probabilistic approach
is here adopted: probability mass functions over the related
domains describe the individual features in the ethical signa-
ture and then support the final acceptability decision. In the
next sections we will formally define a quantitative model
for these ethical aspects able to support optimization criteria
for neural induction.

Neural Learning under ethical constraints

A learning machine usually searches for the hypothesis
function h(�x; �θ) which is the best approximation of some
target function, according to two major principles. Accuracy
is the function measuring the adherence of the hypothesis h
with the target concept: h() is designed to minimize the em-
pirical error, i.e., the error on training data, h(�x; �θ) �= y.
Moreover, h() must be as simple as possible in order to
avoid the overfitting on the training evidence. Regulariza-
tion is the principled imposed to suitably select the model
from the function family: here constraints on the parameter
vector �θ are imposed.
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In analogy with the above view, we introduce a further
dimension that we call Ethicality. We propose to model the
ethical principles as constraints in the selection of an hy-
pothesis h(�x; �θ). In other words, a machine learning-based
agent can be made ethical (by design) only if the process
used to enumerate and select useful hypothesis functions is
constrained to make use of ONLY the ones that are ethically
sustainable. This gives naturally rise to a multitask view
since the learning task of replicating business decisions is
different with respect to the learning ethically sustainable
decisions. A joint approach is here proposed based an a spe-
cific different formulation for loss functions.
DEFINITION: (Ethical Loss function). Given the response
h(�x; �θ) of a learning machine to a training instance (�x, y),
the loss L

(
y, h(�x; �θ)

)
of a Embedding Principles of ethics by

design (EPbD) approach is made by two independent com-
ponents, i.e.,

L
(
y, h(�x; �θ)

)
= LF

(
y, h(�x; �θ)

)
+ βLE

(
y, h(�x; �θ)

)

where LF is the monotonic non decreasing function min-
imizing (at least) the empirical error of h(.; .) and LE is
an ethical “cost” function that estimates the compliance of
h(�x; �θ) to ethical principles. In order to model the ethical
cost function LE() we need a quantitative definition for eth-
ical features as they are represented by the Ethical Ontology
EO.

The essence of ethical features

The i-th training instance is described by a set of attributes
fj(i), i.e., its observable features such as AGE, and corre-
spond to a classification d(i) ∈ {C1, · · · , CK}, giving rise
to a pair

((
f1(i), . . . , fn(i)

)
, d(i)

)
=

(
�f(i), d(i)

)
. These

properties describe cases and trigger ethical issues, i.e. world
states in specific conditions: risks, as for example the un-
fairness implied by refusing lend assignments to minorities
(e.g. women) as well as opportunities, such as the im-
pact of lending on the well-being of special social categories
(e.g. women with children). Notice that one ethical attribute
(e.g. unfairness w.r.t. minorities) depends in general on mul-
tiple observable variables (e.g. SEX or NUMBEROFCHIL-
DREN) and are not fully independent of each other. First,
we thus need a specific and separated set of further features
�e(i) = (e1(i), . . . , em(i)), modeling explicitly such ethi-
cal aspects. Here �e(i) describes the general ethical judgment
about an individual case i and is the result of ethical reason-
ing over a case �f(i) and its decision d(i).

Two different classes of ethical features, i.e. ethical risk
factors and ethical opportunities, can be defined as they play
different roles in ethically biased training. Ethical risk fac-
tors, denoted by �e r(i) =

(
er1(i), . . . , e

r
k(i)

)
, are individual

ethical dimensions of world states that must be avoided in
order to meet ethical constraints. Risk factors are features
whose quantitative assignment is to be minimized in order to
meet ethical expectations. Ethical opportunities correspond
to aspects world states that must be favoured in order to
meet ethical constraints. Opportunity level factors, denoted
by �e o(i) =

(
eo1(i), . . . , e

o
k(i)

)
, are features (e.g. GENDER

EQUALITY) whose quantitative assignment is to be maxi-
mized in order to meet ethical expectations.

Ethical induction depends on how risks and opportunities
contribute to the overall ethical signature �es(i) of an individ-
ual case i. The training data set T includes a reference (gold)
feature vector�i =

(
�f(i) || �es(i)

)
that concatenates the origi-

nal evidences �f(i) with �es(i) =
(
�e r(i) || �e o(i)

)
expressing

all the ethical implications of EO against the decision d(i).
The enriched training instances form the overall ethically en-
riched training set T eth, defined as:

Teth =
{(

�i, d(i)
)∣∣i ∈ T

}
=

{((
�f(i) || �es(i)), d(i)

)∣∣i ∈ T
}

that can suitably support multitask, i.e. business and ethical,
learning.

Notice that the Ethical status of an instance i can be de-
rived as a function of the �es(i) vector: ethical states are a
discrete set of categories defined by thresholding over risks
and opportunity distributions. In order to synthesize the eth-
ical description of an instance, the overall benefit and risk
of an instance form a pair of stochastic variables (B,R)
whose values are derived from the probability distributions
of individual opportunity levels (eoj ) and risk factors (erk),
respectively. In future, trained systems are expected not to
promote/suggest decisions d(i) that result in an ethical sta-
tus of future instances i that is not less than mildly ethical.
This graded judgment will be made dependent on the (B,R)
states derived from the probability distributions in the signa-
ture �es(i).

Ethical Features and Inductive Reasoning

Risk factors and Opportunity levels, described by �es(i), ex-
press how individual observable features fj(.) trigger ethi-
cal aspects. Truth-makers in the ethical ontology EO act on
observable features fj(i) (e.g., SEX = “female”) and de-
termine corresponding values onto ethical features (e.g. the
esj that represents the j-th ethical dimension). These assign-
ments are determined by complex reasoning chains possibly
depending on multiple features or multiple instances. Indi-
vidual risks and opportunities correspond to dimensions that
can be multiply assigned by different truth-makers.

Probabilistic restrictions over the domains of risks and op-
portunities allow to vectorially represent the ethical signa-
ture. Whenever an instance i ∈ T eh activates one or more
rules in EO, the truth-makers set the corresponding k-th eth-
ical opportunity or risk factor esk(i) to the predicted status
of the k-th ethical dimension. Multiple rules may affect the
same ethical factor and a cumulative effect is obtained. We
thus model the ethical signature vector with as many values
as they are foreseen in the corresponding domain of a risk
and opportunity factor: if B is the number of opportunities,
R is the number of risks and V is the number of values in
their domains, the overall number of ethical risk and oppor-
tunity dimensions is (B +R) · V .

A pair instance-decision implies ethical consequences,
i.e., ethical risks and ethical opportunities, that are not hard-
cut. They can be captured by graded judgments along the
ethical dimensions, e.g., probability distributions over the
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reference domain. While other design choices are in prin-
ciple possible, we propose to discretize every ethical di-
mension in the same domain V defined by a finite, closed
and ordered set: V = {vi ∈ R : 0 ≤ v1 < ... < vm ≤ 1}. In
particular, for both benefits and risks, we fixed m = 5
and limit values in the [0, 1] range. The following five
labels can be adopted {“VERY LOW”, “LOW”, “MILD”,
“HIGH”, “VERY HIGH”} corresponding to the numerical
values v1 = 0.1, v2 = 0.25, v3 = 0.5, v4 = 0.75 and
v5 = 0.9.
The role of truth-makers. Truth-makers are the rules of the
EO ontology that actively determine the ethical profile of
the instance-decision (i, d(i)) pair. In particular, given a pair(
i, d(i)

)
, a truth-maker tm will determine a probability dis-

tribution to the set of benefit and risk dimensions. For ev-
ery tm, ethical dimension ej(i) and possible ethical value
vk ∈ V the following probability is defined:

P
(
ej(i) = vk |

(
�i, d(i)

)
, tm

)
∀j, ∀k = 1, . . . , 5

which expresses the evaluation of the truth-maker tm onto
the instance i given the decision d(i), along the k-th value
of the j-th ethical dimensions. A truth-maker thus assigns
probabilities to the ethical signature of an individual i for all
possible combinations of business characteristics �f(i) and
decisions d(i)1. Multiple truth-makers can contribute to a
given ethical feature ej(i) individually biasing their overall
probability P (ej(i)). When all truth-makers are fired, the
resulting ethical signature over an instance�i and its decision
d(i) consists ∀j, k:

esj(i) =
∏
tm

P
(
tm|EO

)
P
(
ej(i) = vk |

(
�i, d(i)

)
, tm

)

Notice that when a training instance is defined, the unique
decision d(i) is available and one unique ethical signature is
the result. During classification no final d(i) is available and
the estimates of the ethical implication must be available for
all the different target classes, d1, ..., dl. From signatures we
can then express the final ethical status. Notice also that in-
dividual decisions over input i correspond to probabilities
along all the dimensions determined by decisions, risks and
opportunities. A factor yljk estimates the probability of the
joint event

(
d(i),B,R

)
corresponding to i. By assuming in-

dependence, each element yljk estimates the following:

yljk = P
(
d(i) = dl

)
· P

(
B = vj

)
· P

(
R = vk

)

= (shortened as) P (dl) · Bj · Rk (1)

The collective benefit B is obtained as a joint probability
distribution:

Bj = P
(
B = vj

)
=

B∏
t=1

P
(
eot (i) = vj |�i, d(i)

)
P
(
eot (i)

)

1If no truth-maker is triggered by an instance
the uniform probability distribution u is used, i.e.
P
(
ej(i) = vk|

(
�i, d(i)

)
, tm

)
= 1

m
, over the values vk and

different ethical features, i.e. ∀j, k .

where P
(
eot (i)

)
is the probability of the t-th ethical feature

in describing the collective benefit B. Similarly, risk R is
modeled as joint probability distribution whose component
are defined by:

Rk = P (R = vk) =

R∏
t=1

P
(
ert (i) = vk|�i, d(i)

)
P
(
ert (i)

)

Variables yljk control the impact of risks and opportuni-
ties during training and can be assigned to specific neurons.
Gold standard for Ethics: Ethical landmarks. Given the
ethical signature �es(i) of an instance i, we can reason about
its ethicality. Two specific points in the ethical domain can
be defined as references for a quantitative measure of ethi-
cal sustainability and unacceptability. The probability mass
function reserving most of the probability to v5 =“VERY
HIGH” to ethical benefits while minimizing the probability
of ethical risks v1 =“VERY LOW” is by definition the ethi-
cal optimum (OPTeth). Dually, we define the ethical mini-
mum (MINeth) as the probability distribution that reserves
most probability to the minimum opportunity value, v1 and
maximal probability to the maximal risk, v5. During train-
ing, every ethical signature is optimized to be close to the
ethically optimal and far from the ethical minimum.
DEFINITION: (Ethical compliance). An instance-decision
pair (�i, d(i)) is ethically compliant to EO iff:

dist
(
�es(i, d),MINeth

)
≥ dist

(
�es(i, d), OPTeth

)

where �es(i, d) is the ethical signature of i given the decision
d and dist is a valid distance over probability distributions.

Embedding Ethics as Multitask Neural Learning

Once a quantitative model for ethics is available through ob-
servable features, risk factors and opportunity levels as prob-
ability distributions across finite domain V , neural learning
is enabled. An ethical neural architecture should be able to
use dependencies among observable features as triggers of
the target business decisions but also to actively recognize
dependencies between ethical and observable features, i.e.
ethical consequences implied by some features.

In this perspective, back-propagation has the aim of op-
timizing both the business accuracy and the ethical compli-
ance. For this reason, we propose the adoption of a multi-
strategy learning approach with the cascading (i.e. stack-
ing) of different (sub)networks. The proposed network is
composed of 3 main processing stages, as shown in Fig-
ure 1. In the first stage the input vector �x is fed to a series
of fully connected layers, namely the Ethics encoder. Its
role is to learn combinations of input features able to cap-
ture relationship between business observations and, possi-
bly, their ethical consequences (i.e., ethical features). Later
stages of the network can exploit the effective ethics encod-
ing without resorting back to the EO. This component is
not directly optimized through a loss function but, rather,
it receives penalties by back-propagation from later layers.
It can be seen as a sort of pre-training stage. Formally, it
corresponds to: Φ(�x) = g1(W1�x+ �θ1) = ŷ1 ∈ R

d1 where
W1 ∈ R

(n+2mj)×d1 , �θ1 ∈ R
n+2mj are parameters to be op-

timized, d1 is a network meta-parameter. The second stage
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comprises two MLPs that are independently trained to learn
two different tasks: estimating the correct decisions’ distri-
bution, under the sole business perspective, and to recon-
struct the ethical consequences of such decisions. The Busi-
ness Expert DNN and the Ethics Expert DNN are responsi-
ble for the first and the second task, respectively. Note that
they receive the same input, that is the vector emitted from
the first stage of the architecture.
The Business Expert (BE) DNN. As it’s entrusted with
emitting business decisions without any direct penalization
for the unsatisfactory ethical consequences, it can be seen as
the final layers of an ethics-agnostic sub-network, modeled
as BE

(
Φ(�x)

)
= BE

(
�̂y1
)
= g2

(
W2�̂y1 + �θ2

)
= �̂y2 ∈ R

K

where K is the number of output categories, i.e. decisions.
The estimator is then optimized by a standard cross-entropy
loss function over the predicted distribution �̂y2 against the
gold distribution d(i) = �yB .
The Ethical Expert (EE) DNN. Its role is to reconstruct
the ethical signature for each pair (xinput, d). It processes
the encoding from the first stage and it outputs a vec-
tor which represents the joint probability of the triplet
(decision, benefit, risk) under maximal entropy of the
business decisions distribution and independence assump-
tion. Here, the EE is modelled as EE(Φ(�x)) = EE(�̂y1) =

g3(W3�̂y1 + �θ3) = �̂y3 ∈ R
K×m2

where K is the num-
ber of possible decision and m is the number of possi-
ble values for ethical benefits and risks. As in Equation 1,
each element ŷijk3 in the output vector should reconstruct
yijk3 = ud · P (eoj) · P (erk) where ud is the expected value of
the uniform distribution over the possible decisions and the
probabilities for benefits and risks are the ones in the cor-
responding ethical signature. Then, the cross-entropy loss
function LEr is applied to compute the ethics recognition
loss over the predicted �̂y3 against the gold distribution en-
coded in the vector �y3.
Ethics-aware (EA) Deep Neural Network. Similarly to the
EE network, it is responsible for estimating the joint prob-
ability of each possible triplet (di, bj , rk). However, here
P (D = di) is directly derived from the gold standard while
the probabilities for benefits and risks are extracted from
OPTeth for ethically compliant decisions and MINeth for
not compliant ones, i.e.:

yijk5 = P (di) · P (boptj ) · P (roptk ) (if (�x, di) ∈ D+)

yijk5 = P (di) · P (bmin
j ) · P (rmin

k ) (if (�x, di) ∈ D−)

where D+ and D− are the set of ethically and not compliant
decisions for �x, respectively, according to EO. Overall, this
sub-network is described by

EA([�̂y2; �̂y3]) = EA(�̂y4) = g4(W4�̂y4 + θ4) = �̂y5 ∈ R
K×m2

At this stage, as for the Ethics Expert, the error is updated
by computing the Ethical Loss LE , which is again the cross
entropy between y5 and �̂y5. Note that this formulation is not
directly promoting ethically sustainable decisions but it is
rather encouraging the network to pair them with highly-
beneficial and low-risk ethical consequences.

The final business decision of our network is determined
by a decision policy over risks and opportunities. Here we
define two possible policies:

• Ethics-Unconstrained (EU) policy. The final decision di
is derived simply by summing up all probability contribu-
tions of the triplets (i, j, k) where i is fixed, i.e.,

d̂EU
i = argmaxiPEU (di) (2)

• Ethics-Constrained (EC) policy. Here a probability
P (di, bej , rik) contributes to P (di) only if bej , rik sat-
isfy some membership constraints, i.e.,

d̂EC
i = argmaxiPEC(di)

= argmaxi

∑

vj∈V′

∑

vk∈V′′
P (di, vj , vk) (3)

where we set V ′
= {“HIGH”, “VERY HIGH”} and

V ′′ = {“LOW”,“VERY LOW”}.

As we will see in the experimental evaluation, the above net-
work is able to learn from a business point of view (through
the loss LF ) consistently with the EO (through the ethical
loss LE), while promoting ethically sustainable business de-
cisions.

Balancing business and ethical adequacy

Different contexts and applications may require different
trade-offs between the prescriptions from the ethics sys-
tem and the behavioural patterns induced from historical
data. While it may be possible to balance such trade-offs
by changing the distributions of benefits and risks derived
from the truth-makers, it would be cumbersome from a prac-
tical point of view and, more importantly, it may make it
difficult to compare different models, as the underlying fea-
ture spaces would be related but different. More manage-
able methods, as discussed here, consist in acting only on
the joint distributions used to train the EA-DNN.
Smoothing business decision. Gold standards usually pro-
vide unique decisions, that is sharp probability distributions
across business decisions. However, they are not guaran-
teed to be ethical. Smoothing is needed to allow the ne-
glecting of unethical cases so that probabilities for decisions
di different from the gold standard decisions are non zero.
Laplace smoothing is applied across the K different classes,
expressed by: d̂i = di+α

1+Kα .
Tweaking between Ethics and Business accuracy.
Through similar a technique, it’s possible to tune the empha-
sis of ethical consequences by applying a tweaking factor β
to the probability of benefits and risks in the joint probability
of the (d,B,R) triple, i.e.,:

Pβ

(
di,Bj ,Rk

)
= P

(
d(i) = dl

) · (P (B = vj) · P (R = vk)
)β

Here the influence of ethics turns weaker as β → 0. The
above equation corresponds to the input of the network and
establishes the influence onto the NN of the ethical infor-
mation through the corresponding impact on loss functions
LEr and LE .
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Figure 1: The architecture of the Ethical by Design Neural Network.

Experimental Evaluation: Ethical Risk

Assessment in Banking

We run extensive evaluation of the proposed framework
on the German Credit dataset2 (GC). Here the task is to
predict whether a loan request carries a “ low” (C0) or “
high” (C1) risk of default (i.e., the requester not paying
back the loan) based on 20 different attributes, some of
which are domain-specific (e.g., PREVIOUS CREDIT HIS-
TORY or ACCOUNT BALANCE) and others are more gen-
eral (e.g., AGE of the requester or the NUMBOFPEOPLE-
UNDERMAINTENANCE). Despite its small dimension (only
1000 instances) and strong class unbalance (700 instances
labeled as “low” C0 profile), this dataset is appealing to
test ethics learning approaches as it represents a real-world
problem (King, Feng, and Sutherland 1995) and offers many
attributes upon which ethical rules can be defined. We de-
fined and experimented on different ethical policies and
truth-makers but, due to space limitations, we will focus
on one particularly simple ethic ontology (EO1), which
includes two truth-makers: “MOTHERHOOD FOSTERING”
(tmMF ), favouring (lending decisions representing) women
with children and, to a lesser extent, men with at least 2 chil-
dren, and “CULTURAL INCLUSIVENESS” (tmCI ), favour-
ing foreign workers. Details on the truth-makers are in Ap-
pendix3. Ethical values V = {0.1, 0.25, 0.5, 0.75, 0.9} are
used to express V = {“VERY LOW”, “LOW”, “MILD”,
“HIGH”, “VERY HIGH”} . Due to the strong unbalance
between the target classes (70%-30%), we report business
performances according to the average F1-measure, μF1,
as: μF1 = F1C0+F1C1

2 . The overall ethical compliance
EComp of the data set, given the ontology EO1, is com-
puted as the percentage of ethically complaint instances, ac-
cording to the gold standard decision, i.e. D+

D++D− . It corre-
sponds to the EComp = 0.70 that suggests that historical
data alone cannot be used to promote ethics.

It is clear how the joint adherence to the EO1 ethics
and to business optimality requires a complex trade-off.
It requires in fact neglecting some training cases to im-
prove upon ethical compliance. A possible straightforward
measure of the trade-off between ethics and business accu-

2Publicly available from the University of California-Irvine ma-
chine learning repository (Dua and Graff 2017).

3Supplemental material in the submitted version.

racy is the parametrized Acceptability factor EAccγ as the
weighted average between the μF1 and the ethical compli-
ance EComp:

EAccγ = γ · μF1 + (1− γ) · EComp (4)
where γ ∈ [0, 1] can be adjusted according to the relative
importance of the two terms. The EAccγ measure, when
the superiority of ethics is imposed by γ = 0.2 over the
GC dataset, provides the strong baseline for ethical training
given by EAcc.2 = 0.76. Such gold standard EAccγ is a
useful reference measure to compare ethical neural models.
Experimental Set-Up. The chosen architecture for the
EbDNN has an Ethics Encoder with 2 layers, where the
first layer has the same size of the input and the second
has dimension 400, the Business Expert has 1 layer with
output dimension equals to K. Both the Ethics Expert and
the Ethics-Aware DNN have 1 layer with K · m2 neu-
rons (where K is the number of classes and m the num-
ber of ethical values). Non-linearity is applied through the
relu function at each layer, except for the last layer in each
component associated with a loss function, where a soft-
max is computed. A dropout rate of 0.2 on each layer is
applied. To cope with the limited number of instances, we
applied 10-fold cross validation, training each model for
1000 epochs with a standard batch size of 256 through
Adam optimizer4. Various settings of the the smooth-
ing and tweaking factors (α, β) ∈ {0.1, 0.3, 0.6, 1.0} ×
{0.01, 0.05, 0.10, 0.20, 0.35, 0.50, 0.75, 1.00} have been ap-
plied to systematically study their impact. We fed each
model alternatively with the enriched input vector, i.e.,(
�f(i) || �es(i)

)
or only with business observable �f(i). No sig-

nificant difference has been observed as the EE-DNN seems
able to robustly reconstruct ethical signatures across all set-
tings. In the rest of the experiments, we thus trained models
only over �f(i).

To provide a fair comparison with a standard learning
framework, a simple MultiLayer Perceptron (MLP) with
2 layers and 320 units per layer has been trained, over
�f(i) only: it achieves an accuracy of 76.21% compara-
ble to state-of-the-art results on this dataset (Ratanama-
hatana and Gunopulos 2002). It corresponds to a busi-
ness performance of μF1 = 66.4% with an ethical com-
pliance EComp = 77.8%. The ethical acceptance is thus

4Models were implemented in python using Tensorflow.
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System (α, β) μF1 EthCompl EAcc0.2
EAEU (0.3, 0.5) 63.1% 79.6% 76.3%
EAEU (0.3, 0.01) 63.9% 78.8% 75.8%
EAEC(0.1, 0.5) 41.2% 100.0% 88.2%
EAEC(0.1, 0.2) 53.8% 93.0% 85.2%
EAEC(0.1, 0.01) 61.7% 78.4% 75.1%
EAEC(0.3, 0.1) 60.6% 85.1% 80.2%

MLP 66.4% 77.8% 75.5%

Table 1: μF1, EthCompl and EAccγ (γ = 0.2) for differ-
ent configurations of the EA model.

Figure 2: The trends of the Ethical Compliance EComp of
the outcome of the EA-DNN as a function of the tweeking β.
While MLP and Gold Standard refers to ethically unaware
methods, plots represent several smoothing α parameters.

EAcc.2 = 75.5% that does not improve on the gold stan-
dard, as expected: it provides a second comparative refer-
ence as ethical unaware system.
Evaluating ethical aware learning. Table 1 reports the per-
formances of both the baseline MLP and of the EA models,
under different α,β settings and decision policies. The trade-
offs between ethical and business performances is largely
improved by EA models for all the configurations. Gains in
ethical compliance of EA models w.r.t. baselines are signif-
icant while business performance losses are relatively small.

The effect of both factors (α, β) is observed in Figure 2.
As β increases, ethics plays a stronger role and the model’s
behaviour deviates from a purely business-driven predic-
tor. The smoothing factor α plays a complementary role:
stronger smoothing actions corresponds to markedly more
ethical behaviours, even for smaller β. Notice how, even
for high α values at lower β’s (≤ 0.1) every EA mod-
els starts to exhibit unethical choices. The fully enforced
ethics network EAEC with (α, β) = (.1, 0.5) achieves the
maximal EthCompl with less than 20% loss in terms of
μF1. Note that, the unconstrained decision policy, i.e., the
EAEU model, is not sensitive to the tweaking factor, as for
β = 0.5, 0.2 the performance is basically the same. Figure 3
plots Ethical Acceptability EAccγ (with γ = 0.2) restricted
to the test cases where the MLP provides non ethical deci-
sions. The robustness of ethical aware networks is striking.
The progressive deviation from ethical sustainability is vi-
sually captured in Fig 4, where the ethical signature of each

Figure 3: EAccγ for γ = 0.2 of the EA model over non
ethical decisions of the gold standard: performances of con-
strained (EAEC), unconstrained (EAEU ) networks and the
baseline MLP are reported against EthCompl and μF1 val-
ues.

prediction is projected on the plane with axis (E[be],E[ri])
(the point size is proportional to the number of projections
falling in that point): as β decreases, more and more points
are mapped in the semi-plane where the expected value of
risk is higher than the expected benefit.

Overall, the experimental evaluation confirmed that the
embedding of ethics principles into the decision function of
the model can be effectively modulated through the fine tun-
ing of β, and to lesser extent α, and the application of the
proper decision policy.

Figure 4: Projections of ethically-constrained EA-DNN’s
predictions for different β = 0.5 (top) and 0.01 (bottom)
values: size is proportional to the number of projected pre-
dictions. The blue dashed line corresponds to ethically neu-
tral choices, i.e., expectation about benefits is equal to risks,
hence the upper left half-plane includes all ethically non
compliant decisions.

Conclusions

In this work, we propose a deep learning framework to
achieve the acquisition of high quality inferences that simul-
taneously reflects ethical expectations. Experimental eval-
uation suggests the framework to be effective as well as
to allow the fine-tuning of the balance between business
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and ethics perspective, through the smoothing and tweak-
ing methods. This work represents an early exploration of
the framework potential, hence future directions are rich as
they range from the definition of more complex ethics and
the application to more challenging inference tasks as well
as different learning paradigm (e.g., Reinforcement Learn-
ing).

Appendix A: a Simple Ethical Ontology for the

Lending Case
During experimental evaluation, we tested the learning
framework against a very essential ethics EO1, enforced by
2 truth-makers: ’MOTHERHOOD FOSTERING’ (tmMF ) and
’CULTURAL INCLUSIVENESS’ (tmCI ), both promoting
the ’low risk-profile’ decision as ethically preferable when
certain conditions are met. If the instance description
doesn’t satisfy the conditions of any rule, then the default
behaviour is to assign (:=) probability distributions centered
in (B := MILD,R := MILD).
In the following, req stands for the loan request,
(B := vi,R := vj) indicates the assignments of gaussian
distributions centered in vi and vj to benefits B and risks R,
respectively. Due to limited space, here we report the details
of tmMF only:

’MOTHERHOOD FOSTERING’:
sex(req, female) ∧maintainedPeople(req,X) ∧X ≥ 2

∧ loanRisk(req, low)

⇒ (B := VERY HIGH), (R := VERY LOW)

sex(req, female) ∧maintainedPeople(req, 1)

∧ loanRisk(req, low)

⇒ (B := HIGH,R := LOW)

¬sex(req, female) ∧maintainedPeople(req,X) ∧X ≥ 2

∧ loanRisk(loan, low)

⇒ (B := HIGH,R := MILD)

sex(req, female) ∧maintainedPeople(req,X) ∧X ≥ 2

∧ loanRisk(req, high)

⇒ (B := VERY LOW,R := VERY HIGH)

sex(req, female) ∧maintainedPeople(req, 1)

∧ loanRisk(req, high)

⇒ (B := LOW,R := HIGH)

¬sex(req, female) ∧maintainedPeople(req,X) ∧X ≥ 2

∧ loanRisk(req, high)

⇒ (B := LOW,R := MILD)

Consider, for examples, the two instances partially rep-
resented in Table 2,i.e. a case (1) representing a female re-
quester with 1 child and associated with an high risk profile
and a case (2) representing a male requested with 2 children
and associated with a low risk profile. Then, ethical signa-
tures �esi that are derived from the triggering of rule (6) and
(5) in tmMF , respectively, will promote the decision regard-
ing (2) as beneficial (i.e., high ethical benefit and low ethical
risk), while they will penalize with similar intensity the de-
cision regarding case (1).

REQ SEX MANTAINEDP. LOANRISK
1 female 1 high C1
2 male 2 low C0

Table 2: Two (partial) examples of instances in the German
Credit dataset.
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