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Abstract

After learning a concept, humans are also able to continually
generalize their learned concepts to new domains by observ-
ing only a few labeled instances without any interference with
the past learned knowledge. In contrast, learning concepts
efficiently in a continual learning setting remains an open
challenge for current Artificial Intelligence algorithms as per-
sistent model retraining is necessary. Inspired by the Parallel
Distributed Processing learning and the Complementary Learn-
ing Systems theories, we develop a computational model that
is able to expand its previously learned concepts efficiently to
new domains using a few labeled samples. We couple the new
form of a concept to its past learned forms in an embedding
space for effective continual learning. Doing so, a generative
distribution is learned such that it is shared across the tasks in
the embedding space and models the abstract concepts. This
procedure enables the model to generate pseudo-data points
to replay the past experience to tackle catastrophic forgetting.

Introduction

An important ability of humans is to continually build and
update abstract concepts. Humans develop and learn ab-
stract concepts to characterize and communicate their percep-
tion and ideas (Lake, Salakhutdinov, and Tenenbaum 2015).
These concepts often are evolved and expanded efficiently
as more experience about new domains is gained. Consider
for example, the concept of the printed character “4”. This
concept is often taught to represent the “natural number four”
in the mother tongue of elementary school students, e.g.,
English. Upon learning this concept, humans can efficiently
expand it by observing only a few samples from other related
domains, e.g., variety of hand written digits or printed digits
in other secondary languages. Despite remarkable progress
in Artificial intelligence (AI) over the past decade, learn-
ing concepts efficiently in a way similar to humans remains
an unsolved challenge for AI. This is because the excep-
tional progress of AI is mostly driven by re-emergence of
deep neural networks. Since deep networks are trained in
an end-to-end supervised learning setting, access to labeled
data is necessary for learning any new distribution. For this
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reason and despite emergence of behaviors similar to the ner-
vous system in deep nets (Morgenstern, Rostami, and Purves
2014), adapting a deep neural network to learn a concept in a
new domain usually requires model retraining from scratch
which is conditioned on the availability of a large number
of labeled samples in the new domain. Moreover, training
deep networks in a continual learning setting is challenging
due to the phenomenon of “catastrophic forgetting” (French
1999). When a network is trained on sequential tasks, the
new learned knowledge usually interferes with past learned
knowledge, causing forgetting what has been learned before.

In this paper, we develop a computational model that is
able to expand and generalize learned concepts efficiently
to new domains using a few labeled data from the new do-
mains. We rely on Parallel Distributed Processing (PDP)
paradigm (McClelland et al. 1986) for this purpose. Work on
semantic cognition within the PDP framework hypothesizes
that abstract semantic concepts are formed in higher level
layers of the nervous system (McClelland and Rogers 2003;
Saxe, McClelland, and Ganguli 2019). We model this hy-
pothesis by assuming that the data points are mapped into an
embedding space, which captures existing concepts. To pre-
vent catastrophic forgetting, we rely on the Complementary
Learning Systems (CLS) theory (McClelland, McNaughton,
and O’Reilly 1995). CLS theory hypothesizes that continual
lifelong learning ability of the nervous system is a result of a
dual long- and short-term memory system. The hippocampus
acts as short-term memory and encodes recent experiences
that are used to consolidate the knowledge in the neocortex as
long-term memory through offline experience replays during
sleep (Diekelmann and Born 2010). This suggests that if we
store suitable samples from past domains in a memory buffer,
like in the neocortex, these samples can be replayed along
with current task samples from recent-memory hippocampal
storage to train the base model jointly on the past and the
current experiences to tackle catastrophic forgetting.

More specifically, we model the latent embedding space
via responses of a hidden layer in a deep neural network. Our
idea is to stabilize and consolidate the data distribution in
this space, where domain-independent abstract concepts are
encoded. Doing so, new forms of concepts can be learned
efficiently by coupling them to their past learned forms in
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the embedding space. Data representations in this embedding
space can be considered as neocortical representations in the
brain, where the learned abstract concepts are captured. We
model concept learning in a sequential task learning frame-
work, where learning concepts in each new domain is consid-
ered to be a task. To generalize the learned concepts without
forgetting, we use an autoencoder as the base network to ben-
efit from efficient coding ability of deep autoencoders and
model the embedding space as the middle layer of the autoen-
coder. This will also make our model generative, which can
be used to implement the offline memory replay process in
the sleeping brain (Rasch and Born 2013). To this end, we fit
a parametric multi-modal distribution to the training data rep-
resentations in the embedding space. The drawn points from
this distribution can be used to generate pseudo-data points
through the decoder network for experience replay to prevent
catastrophic forgetting. We demonstrate that this learning
procedure enables the base model to generalize its learned
concepts to new domains using a few labeled samples.

Related Work
Lake et al. (Lake, Salakhutdinov, and Tenenbaum 2015) mod-
eled human concept learning within a “Bayesian probabilistic
learning” (BPL) paradigm. They present BPL as an alterna-
tive for deep learning to mimic the learning ability of humans
as these models require considerably less amount of training
data. The concepts are represented as probabilistic programs
that can generate additional instances of a concept given a
few samples of that concept. However, the proposed algo-
rithm in Lake et al. (Lake, Salakhutdinov, and Tenenbaum
2015), requires human supervision and domain knowledge to
tell the algorithm how the real-world concepts are generated.
This approach seems feasible for the recognition task that
they have designed to test their idea, but it does not scale
to other more challenging concept learning problems. Our
framework similarly relies on a generative model that can
produce pseudo-samples of the learned concepts, but we fol-
low an end-to-end deep learning scheme that automatically
encodes concepts in the hidden layer of the network with
minimal human supervision requirement. Our approach can
be applied to a broader range of problems. The price is that
we rely on data to train the model, but only a few data points
are labeled. This is similar to humans with respect to how
they too need practice to generate samples of a concept when
they do not have domain knowledge (Longcamp, Zerbato-
Poudou, and Velay 2005). This generative strategy has been
used in the Machine Learning (ML) literature to address
“few-shot learning” (FSL) (Snell, Swersky, and Zemel 2017;
Motiian et al. 2017). The goal of FSL is to adapt a model that
is trained on a source domain with sufficient labeled data to
generalize well on a related target domain with a few target
labeled data points. In our work, the domains are different
but also are related in that they share similar concepts.

Most FSL algorithms consider only one source and one
target domain, which are learned jointly. Moreover, the main
goal is to learn the target task. In contrast, we consider a
continual learning setting in which the domain-specific tasks
arrive sequentially. Hence, catastrophic forgetting becomes
a major challenge. An effective approach to tackle catas-

trophic forgetting is to use experience replay (McCloskey
and Cohen 1989; Robins 1995). Experience replay addresses
catastrophic forgetting via storing and replaying data points
of past learned tasks continually. Consequently, the model
retains the probability distributions of the past learned tasks.
To avoid requiring a memory buffer to store past task sam-
ples, generative models have been used to produce pseudo-
data points for past tasks. To this end, generative adversar-
ial learning can be used to match the cumulative distribu-
tion of the past tasks with the current task distribution to
allow for generating pseudo-data points for experience re-
play (Shin et al. 2017). Similarly, autoencoder structure can
also be used to generate pseudo-data points (Parisi et al. 2019;
Rostami, Kolouri, and Pilly 2019). Building upon our prior
work (Rostami, Kolouri, and Pilly 2019), we develop a new
method for generative experience replay to tackle catas-
trophic forgetting. Although prior works require access to
labeled data for all the sequential tasks for experience replay,
we demonstrate that experience replay is feasible even in
the setting where only the initial task has labeled data. Our
contribution is to combine ideas of few-shot learning with
generative experience replay to develop a framework that
can continually update and generalize learned concepts when
new domains are encountered in a lifelong learning setting.
We couple the distributions of the tasks in the middle layer
of an autoencoder and use the shared distribution to expand
concepts using a few labeled data points without forgetting.

Problem Statement and the Proposed Solution

In our framework, learning concepts in each domain is consid-
ered to be classes of an ML task, e.g., different types of digit
characters. We consider a continual learning setting (Ruvolo
and Eaton 2013), where an agent receives consecutive tasks
{Z(t)}TMax

t=1 in a sequence t = 1, . . . , TMax over its lifetime.
The total number of tasks, distributions of the tasks, and the
order of tasks is not known a priori. Since the agent is a life-
long learner, the current tasks is learned at each time step and
the agent then proceeds to learn the next task. The knowledge
that is gained from experiences is used to learn the current
task efficiently, i.e., using minimal number of labeled data.
The new learned knowledge from the current task also would
be accumulated to the past experiences to potentially ease
learning in future. Additionally, this accumulation must be
done consistently to generalize the learned concepts as the
agent must perform well on all learned task, i.e., not to forget.
This is because the learned tasks may be encountered at any
time in future. Figure 1 presents a high-level block-diagram
visualization of this framework.

We model an abstract concept as a class within a domain-
dependent classification task. Data points for each task t,
are drawn i.i.d. from the joint probability distribution, i.e.,
(x

(t)
i ,y

(t)
i ) ∼ p(t)(x,y) which has the marginal distribu-

tion q(t)(x) over x. We consider a deep neural network
fθ : R

d → R
k as the base learning model, where θ de-

note the learnable weight parameters. A deep network is
able to solve classification tasks through extracting task-
dependent high quality features in a data-driven end-to-end
learning (Krizhevsky, Sutskever, and Hinton 2012). Within
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Figure 1: Architecture of the proposed framework.

PDP paradigm (McClelland et al. 1986; McClelland and
Rogers 2003; Saxe, McClelland, and Ganguli 2019), this
means that the data points are mapped into a discriminative
embedding space, modeled by the network hidden layers,
where the classes become separable, i.e., data points belong-
ing to a class are grouped as an abstract concept. On this
basis, the deep network fθ is a functional composition of an
encoder φv(·) : Rd → Z ⊂ R

f with learnable parameter v,
that encode the input data into the embedding space Z and
a classifier sub-network hw(·) : Rf → R

k with learnable
parameters w, that maps encoded information into the label
space. In other words, the encoder network changes the in-
put data distribution as a deterministic function. Because the
embedding space is discriminative, data distribution in the
embedding space would be a multi-modal distribution that
can be modeled as Gaussian mixture model (GMM). Figure 1
visualizes this intuition based on experimental data, used in
the experimental validation section.

Within ML formalism, the agent can solve the task
Z(1) using standard empirical risk minimization (ERM).
Given the labeled training dataset D(1) = 〈X(1),Y (1)〉,
where X(1) = [x

(1)
1 , . . . ,x

(1)
nt ] ∈ R

d×n1 and the labeles
Y (1) = [y

(1)
1 , . . . ,y

(1)
n ] ∈ R

k×nt , we can solve for the
network optimal weight parameters: θ̂(t) = argminθ êθ =

argminθ 1/nt
∑

i Ld(fθ(x
(t)
i ),y

(t)
i ). Here, Ld(·) is a suit-

able loss function, e.g., cross entropy. Conditioned on having
large enough number of labeled data points n1, the empirical
risk would be a suitable function to estimate the real risk func-
tion, e = E(x,y)∼p(t)(x,y)(Ld(fθ(t)(x),y)) (Shalev-Shwartz
and Ben-David 2014) as the Bayes optimal objective. Hence,
the trained model will generalize well on test data points for
the task Z(1). Good generalization performance means that
each class would be learned as a concept which is encoded
in the hidden layers. Our goal is to consolidate these learned
concepts and generalize them when the next tasks with min-
imal labeled data arrive. That is, for tasks Z(t), t > 1, we
have access to the dataset D(t) = 〈{X ′(t),Y (t)},X(t)〉,
where X ′(t) ∈ R

d×nt denotes the labeled data points and
X(t) ∈ R

d×nt denotes unlabeled data points. This learning

setting means that the learned concepts must be generalized
in the subsequent domains with minimal supervision. Stan-
dard ERM can not be used to learn the subsequent tasks
because the number of labeled data points is not sufficient,
i.e., overfitting would occur. Additionally, even in the pres-
ence of enough labeled data, catastrophic forgetting would
be consequence of using ERM. This is because the model
parameters will be updated using solely the current task data
which can potentially deviate the values of θ(T ) from the pre-
vious learned values in the past time step. Hence, the agent
would not retain its learned knowledge.

Following PDP hypothesis, our goal is to use the encoded
distribution in the embedding space to expand the concepts
that are captured the embedding space such that catastrophic
forgetting does not occur. The gist of our idea is to update
the encoder sub-network such that each subsequent task is
learned such that its distribution in the embedding space
matches the distribution that is shared by {Z(t)}T−1

t=1 at t =
T . Since this distribution is initially learned via Z(1) and
subsequent tasks are enforced to share this distribution in the
embedding space with Z(1), we do not need to learn it from
scratch as the concepts are shared across the tasks. Hence,
since the embedding becomes invariant with respect to any
learned input task, catastrophic forgetting would not occur.

The key challenge is to adapt the standard ERM such that
the tasks share the same distribution in the embedding space
becomes. To this end, we modify the base network fθ(·) to
form a generative autoencoder by amending the model with
a decoder ψu : Z → X .We train the model such the pair
(φu, ψu) form an autoencoder. Doing so, we enhance the
ability of the model to encode the concepts as separable clus-
ters in the embedding. We use the knowledge about data
distribution form in the embedding to match the distributions
of all tasks in the embedding. This leads to consistent general-
ization of the learned concepts. Additionally, since the model
is generative and knowledge about past experiences is en-
coded in the network, we can use CLS process (McClelland,
McNaughton, and O’Reilly 1995) to prevent catastrophic
forgetting. When learning a new task, pseudo-data points for
the past learned tasks can be generated by sampling from the
shared distribution in the embedding and feeding the samples
to the decoder sub-network. These pseudo-data points are
used along with new task data to learn each task. Since the
new task is learned such that its distribution matches the past
shared distribution, pseudo-data points generated for learning
future tasks would also represent the current task as well.

Proposed Algorithm
Following the above framework, learning the first task (t = 1)
reduces to minimizing the discrimination loss for classifica-
tion and the autoencoder reconstruction loss to solve for
optimal parameters:

min
v,w,u

Lc(X
(1),Y (1)) = min

v,w,u

1

n1

n1∑
i=1

(

Ld

(
hw(φv

(
x

(1)
i )
)
,y

(1)
i

)
+ γLr

(
ψu

(
φv(x

(1)
i )
)
,x

(1)
i

))
,

(1)
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where Lr is the reconstruction loss, Lc is the combined loss,
and γ is a trade-off parameter.

If the base learning model is complex enough, the con-
cepts would be formed in the embedding space as separable
clusters upon learning the first task. This means that the data
distribution can be modeled as a GMM distribution in the em-
bedding. We can use standard methods such as expectation
maximization to fit a GMM distribution with k components
to the multimodal empirical distribution formed by the drawn
samples {(φv(x(1)

i ),y
(1)
i )n1

i=1}n1
i=1 ∼ p(0) in the embedding

space. Let p̂(0)k (z) denote the estimated parametric GMM dis-
tribution with k components. The goal is to retain this initial
estimation that captures concepts when future domains are
encountered. Following PDP framework, we learn the subse-
quent tasks such that the current task shares the same GMM
distribution with the previous learned tasks in the embedding
space. We also update the estimate of the shared distribution
after learning each subsequent task. Updating this distribu-
tion means generalizing the concepts to the new domains
without forgetting the past domains. As a result, the distribu-
tion p̂(t−1)

J,k (z) captures knowledge about past domains when
Z(t) is being learned. Moreover, we can perform experience
replay by generating pseudo-data points by first drawing sam-
ples from p̂

(t−1)
J,k (z) and then passing the samples through the

decoder sub-network. The remaining challenge is to update
the model such that each subsequent task is learned such that
its corresponding empirical distribution matches p̂(t−1)

J,k (z) in
the embedding space. Doing so, ensures suitability of GMM
to model the empirical distribution.

To match the distributions, let D(t)
ER = 〈ψ(Z(t)

ER),Y
(t)
ER〉

denote the pseudo-dataset for tasks {Z(s)}t−1
s=1, generated for

experience replay when Z(t) is being learned. Following the
described framework, we form the following optimization
problem to learn Z(t) and generalized concepts:

min
v,w,u

Lc(X
′(t),Y (t)) + Lc(X

T
(ER),Y

T
(ER))+

ηD
(
φv(q

(t)(X(t))), p̂
(t)
J,k(Z

(T )
ER)

)
+

λ

k∑
j=1

D
(
φv(q

(t)(X ′(t))|Cj), p̂
(t)
J,k(Z

(T )
ER |Cj)

)
, ∀t ≥ 2,

(2)

where D(·, ·) is a suitable metric function to measure the dis-
crepancy between two probability distributions. λ and η are a
trade-off parameters. The first two terms in Eq. (2) denote the
combined loss terms for each of the current task few labeled
data points and the generated pseudo-dataset, defined similar
to Eq. (1). The third and the fourth terms implement our idea
and enforce the distribution for the current task to be close to
the distribution shared by the past learned task. The third term
is added to minimize the distance between the distribution
of the current tasks and p̂(t−1)

J,k (z) in the embedding space.
Data labels is not needed to compute this term. The fourth
term may look similar but note that we have conditioned
the distance between the two distribution on the concepts

Algorithm 1 ECLA (L, λ, η)

1: Input: data D(1) = (X(1),Y (t)).
2: D(t) = ({X ′(t),Y (t)},X(t)) for t = 2, . . . , TMax
3: Concept Learning: learning the first task (t = 1) by

solving (1)
4: Fitting GMM:

5: estimate p̂(0)k (·) using {φv(x(1)
i ))}nt

i=1
6: for t ≥ 2 do
7: Generate the pseudo dataset:

8: DER = {(x(t)
ER,i = ψ(z

(t)
ER,i),y

(t)
ER,i)}

9: (z
(t)
ER,i,y

(t)
ER,i) ∼ p̂

(t−1)
k (·)

10: Update:
11: learnable parameters are updated by
12: solving Eq. (2)
13: Concept Generalization:

14: update p̂(t)k (·) using the combined samples
15: {φv(x(t)

i ), φv(x
(t)
ER,i)}nt

i=1

16: end for

to avoid the matching challenge, i.e., when wrong concepts
(or classes) across two tasks are matched in the embedding
space (Globerson and Roweis 2006). We use the few labeled
data that are accessible for the current task to compute this
term. Adding these terms guarantees that we can continually
use GMM to model the shared distribution in the embedding.

The main remaining question is selection of a suitable
probability distance metric D(·, ·). Common probability dis-
tance measures such as Jensen–Shannon divergence KL di-
vergence are not applicable for our problem as the gradient
for these measures is zero when the corresponding distri-
butions have non-overlapping supports (Rabin and Peyré
2011). Since deep learning optimization problems are solved
using first-order gradient-based optimization methods, we
must select a distribution metric which has non-vanishing
gradients. For this reason, we select the Wasserstein Distance
(WD) metric (Bonnotte 2013) which satisfies this require-
ment and has recently been used extensively in deep learning
applications to measure the distance between two probability
distributions (Courty et al. 2017). In particular, we use Sliced
Wasserstein Distance (SWD) (Bonneel et al. 2015) which is
a suitable approximation for WD, while it can be computed
efficiently using empirical samples, drawn from two distri-
butions. Our concept learning algorithm, Efficient Concept
Learning Algorithm (ECLA), is summarized in Algorithm 1.

Theoretical Analysis

We follow a standard PAC-learning style framework to an-
alyze our algorithm (Shalev-Shwartz and Ben-David 2014)
and using result from domain adaptation (Redko, Habrard,
and Sebban 2017) to demonstrate the effectiveness of our
algorithm. We perform the analysis in the embedding space
Z , where the hypothesis class is the set of all the classi-
fiers hw(·) parameterized by w. For any given model h in
this class, let et(h) denotes the observed risk for the do-
main that contains the task Z(t), et′(h) denotes the observed
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risk for the same model on another secondary domain, and
w∗ denotes the optimal parameter for training the model
on these two tasks jointly, i.e., w∗ = argminw eC(w) =
argminw{et(h) + et′(h)}. We also denote the Wasserstein
distance between two given distributions as W (·, ·). We rely
on the following theorem (Redko, Habrard, and Sebban 2017)
which relates performance of a model trained on a particular
domain to another secondary domain.

Theorem 0.1. Consider two tasks Z(t) and Z(t′) with nt
and nt′ training data points, respectively. Let hw(t′) be a
model trained for Z(t′), then for any d′ > d and ζ <

√
2,

there exists a constant number N0 depending on d′ such that
for any ξ > 0 and min(nt, nt′) ≥ N0 max(ξ−(d′+2), 1) with
probability at least 1− ξ for all fθ(t′) , the following holds:

et(h)− et′(h) ≤W (p̂(t), p̂(t
′)) + eC(w∗)+√(

2 log(
1

ξ
)/ζ

)(√ 1

nt
+

√
1

nt′

)
,

(3)

where p̂(t) and p̂(t
′) are empirical distributions formed by

the drawn samples from p(t) and p(t
′).

Theorem 0.1 is a broad result that provides an upper-bound
on performance degradation of a trained model, when used
in another domain. It suggests that if the model performs
well on Z(t′) and if the upper-bound is small, then the model
performs well on Z(t′). The last term is a constant term which
depends on the number of available samples. This term is
negligible when nt, nt′ � 1. The two important terms are the
first and the second terms. The first term is the Wasserstein
distance between the two distributions. It may seem that
according to this term, if we minimize the WD between two
distributions, then the model should perform well on Z(t).
But it is crucial to note that the upper-bound depends on the
second term as well. The second term suggests that the base
model should be able to learn both tasks jointly. However,
in the presence of “XOR classification problem”, the tasks
cannot be learned by a single model (Mangal and Singh 2007).
This means that not only the WD between two distributions
should be small, but the distributions should be aligned class-
conditionally. Building upon Theorem 0.1, we provide the
following theorem for our framework.
Theorem 0.2. Consider ECLA algorithm at learning time
step t = T . Then all tasks t < T and under the conditions of
Theorem 0.1, we can conclude:

et ≤eJT−1 +W (φ(q̂(t)), p̂
(t)
J,k) +

T−2∑
s=t

W (p̂
(s)
J,k, p̂

(s+1)
J,k )

+ eC(w∗) +
√(

2 log(
1

ξ
)/ζ

)(√ 1

nt
+

√
1

ner,t−1

)
,

(4)

where eJT−1 denotes the risk for the pseudo-task with the

distribution ψ(p̂(T−1)
J,k ).

Proof: In Theorem 0.1, consider the task Z(t) with the
distribution φ(q(t)) and the pseudo-task with the distribu-

tion p(T−1)
k in the embedding space. We can use the trian-

gular inequality recursively on the term W (φ(q̂(t)), p̂
(T−1)
J,k )

in Eq. (3), i.e., W (φ(q̂(t)), p̂
(s)
J,k) ≤ W (φ(q̂(t)), p̂

(s−1)
J,k ) +

W (p̂
(s)
J,k, p̂

(s−1)
J,k ) for all time steps t ≤ s < T . Adding up all

the terms, concludes Eq. (4).
We can rely on Theorem 0.2 to demonstrate that why our

algorithm can generalize concepts without forgetting the past
learned knowledge. The first term in Eq. (4) is small be-
cause, experience replay minimizes this term using the la-
beled pseudo-data set via ERM. The fourth term is small
since we use the few labeled data points to align the dis-
tributions class conditionally in Eq. (2). The last term is a
negligible constant for nt, ner,t−1 � 1. The second term de-
notes the distance between the task distribution and the fitted
GMM. When the PDP hypothesis holds and the model learns
a task well, this term is small as we can approximate φ(q̂(t))
with p̂(s−1)

J,k ) (see Ashtiani et al. (Ashtiani et al. 2018) for a
rigorous analysis of estimating a distribution with GMM). In
other words, this term is small if the classes are learned as
concepts. Finally, the terms in the sum term in Eq 4 are min-
imized because at t = s we draw samples from p

(s−1)
k and

by learning ψ−1 = ψ enforce that p̂(s−1)
J,k ≈ φ(ψ(p̂

(s−1)
J,k )).

The sum term in Eq 4 models the effect of history. After
learning a task and moving forward, this term potentially
grows as more tasks are learned. This means that forgetting
effects would increase as more subsequent tasks are learned
which is intuitive. To sum up, ECLA minimizes the upper
bound of et in Eq 4. This means that the model can learn and
remember Z(t) which in turn means that the concepts have
been generalized without being forgotten on the old domains.

Experimental Validation

We validate our method on learning two sets of sequential
learning tasks: permuted MNIST tasks and digit recognition
tasks. These are standard benchmark classification tasks for
sequential task learning. We adjust them for our learning
setting. Each class in these tasks is considered to be a concept,
and each task of the sequence is considered to be learning
the concepts in a new domain.

Learning permuted MNIST tasks

Permuted MNIST tasks is standard benchmark that is de-
signed for testing abilities of AI algorithms to overcome
catastrophic forgetting (Shin et al. 2017; Kirkpatrick et al.
2017). The sequential tasks are generated using the MNIST
(M) digit recognition dataset (LeCun et al. 1990). Each task
in the sequence is generated by applying a fixed random shuf-
fling to the pixel values of digit images across the MNIST
dataset (Kirkpatrick et al. 2017). As a result, generated tasks
are homogeneous in terms of difficulty and are suitable to per-
form controlled experiments. Our learning setting is different
compared to prior works as we considered the case where
only the data for the initial MNIST task is fully labeled. In
the subsequent tasks, only few data points are labeled. To
the best of our knowledge, no precedent method addresses
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(a) BP vs. CLEER (b) ECLA vs. FR

(c) FR (d) ECLA

Figure 2: Learning curves for four permuted MNIST tasks((a)
and (b)) and UMAP visualization of ECLA vand FR in the
embedding ((c) and (d)). (Best viewed in color.)

this learning scenario for direct comparison, so we only com-
pared against: a) classic back propagation (BP) single task
learning, (b) full experience replay (FR) using full stored data
for all the previous tasks, and (c) learning using fully labeled
data (CLEER) (Rostami, Kolouri, and Pilly 2019). We use
the same base network structure for all the methods for fair
comparison. BP is used to demonstrate that our method can
address catastrophic forgetting as a lower-bound. FR is used
as absolute an upper-bound to demonstrate that our method is
able to learn cross-task concepts without using fully labeled
data. CLEER is an instance of ECLA where fully labeled
data is used to learn the subsequent tasks. We used CLEER
to compare our method against an upper-bound.

We used standard stochastic gradient descent to learn the
tasks and created learning curves by computing the perfor-
mance of the model on the standard testing split of the current
and the past learned tasks at each learning iteration. Figure 2
presents learning curves for four permuted MNIST tasks.
Figure 2a presents learning curves for BP (dashed curves)
and CLEER (solid curves). As can be seen, CLEER (i.e.,
ECLA with fully labeled data) is able to address catastrophic
forgetting. This figure demonstrates that our method can be
used as a new algorithm on its own to address catastrophic
forgetting using experience replay (Shin et al. 2017). Fig-
ure 2b presents learning curves for FR (dashed curves) and
ECLA (solid curve) when 5 labeled data points per class are
used respectively. We observe that FR can tackle catastrophic
forgetting perfectly but the challenge is the memory buffer re-
quirement, which grows linearly with the number of learned
tasks, making this method only suitable for comparison as an

(a) M → U (b) U → M

(c) M → U (d) U → M

Figure 3: Performance results on MNIST and USPS digit
recognition tasks ((a) and (b)). UMAP visualization for
M → U and U → M tasks ((c) and (d)). (Best viewed
in color.)

upper-bound. FR result also demonstrates that if we can gen-
erate high-quality pseudo-data points, catastrophic forgetting
can be prevented completely. Deviation of the pseudo-data
from the real data is the major reason for the initial perfor-
mance degradation of ECLA on all the past learned tasks,
when a new task arrives and its learning starts. This degrada-
tion can be ascribed to the existing distance between p̂(T−1)

J,k

and φ(q(s)) at t = T for s < T . Note also as our theoretical
analysis predicts, the performance on a past learned task de-
grades more as more tasks are learned subsequently. This is
compatible with the nervous system as memories fade out as
time passes unless enhanced by continually experiencing a
task or a concept.

In addition to requiring fully labeled data, we demonstrate
that FR does not identify concepts across the tasks. To this
end, we have visualized the testing data for all the tasks in
the embedding space Z in Figures 2 for FR and ECLA after
learning the fourth task. For visualization purpose, we have
used UMAP (McInnes, Healy, and Melville 2018), which
reduces the dimensionality of the embedding space to two. In
Figure 2c and Figure 2d, each color denotes the data points
of one of the digits {0, 1, . . . , 9} (each circular shape indeed
is a cluster of data points). We can see that the digits form
separable clusters for both methods. This result is consistent
with the PDP hypothesis and is the reason behind good per-
formance of both methods. It also demonstrates why GMM
is a suitable selection to model the data distribution in the
embedding space. However, we can see that when FR is used,
four distinct clusters for each digit are formed (i.e., one clus-

5550



(a) Permuted MNIST tasks (b) U → M

Figure 4: UMAP visualizations of data representations for (a)
U → M and (b) permuted MNIST tasks in the embedding
along with a few generated pseudo-data points after learning
the final task. (Best viewed in color.)

ter per domain for each digit class). In other words, FR is
unable to identify and generalize abstract concepts across
the domains. In contrast, we have exactly ten clusters for
the ten digits when ECLA is used, and hence the concepts
are identified across the domains. This is the reason that we
can generalize the learned concepts to new domains, despite
using few labeled data.

Learning sequential digit recognition tasks

We performed a second set of experiments on a more real-
istic scenario. We consider two handwritten digit recogni-
tion datasets for this purpose: MNIST (M) and USPS (U)
datasets. USPS dataset is a more challenging classification
task as the size of the training set is smaller (20,000 compared
to 60,000 images). We performed experiments on the two
possible sequential learning scenarios M → U and U → M.
The experiments can be considered as concept learning for
numeral digits as both tasks are digit recognition tasks but in
different domains, i.e. written by different people.

Figure 3a and Figure 3b present learning curves for these
two tasks when 10 labeled data points per class are used for
the training of the second task. Note that the network retains
the knowledge about the first task quite well following the
learning of the second task. As expected from the theoretical
justification, this empirical result suggests the performance
of our algorithm depends on closeness of the distribution
ψ(p̂

(t)
J,k) to the distributions of previous tasks, and improving

probability estimation will boost the performance of our ap-
proach. Since the two tasks are much more related compared
to the permuted MNIST task, forming abstract concepts is
more feasible. Additionally, we see a jumststart in the perfor-
mance for the second task in both Figure 3a and Figure 3b
which demonstrates knowledge transfer from the previous
task due to the inherent similarity between the concepts. We
have also presented UMAP visualization of the data points
for the tasks in the embedding space in Figures 3c and Fig-
ures 3d. We observe that the distributions are matched in the
embedding space and cross-domain concepts are learned by
the network. These results demonstrate that our algorithm
inspired by PDP and CLS theories can generalize concepts
to new domains using few labeled data points.

Finally, to clarify how our approach is able to learn task-
agnostic concepts, Figure 4a and Figure 4b present UMAP
visualizations of data representations for U → M (related
and similar tasks) and permuted MNIST tasks in the em-
bedding, respectively. In these figures, data clusters for each
task are shown with the same color. Interestingly, we observe
two distinct phenomena in these two figures. When the tasks
are visually similar (i.e., digit recognition tasks), data points
for each class across the tasks are mixed in the embedding
(in Figure 4b the green and red clusters almost completely
overlap). This means that the corresponding cluster for each
class in the embedding is task-agnostic. We have visualized
a few random pseudo-data points that the model generated.
As can be seen, with the exception of one data point, the gen-
erated data points are similar to real digits that can represent
both MNIST and USPS datasets. We conclude that when the
tasks are similar, our algorithm builds clusters that represent
concepts ( e.g., digit “4”) that transcend the tasks and allow
the model to generate pseudo-data points that can represent
all tasks. In contrast, when the tasks are not very similar (i.e.,
permuted MNIST tasks), and we synthetically consider and
enforce that they share the same classes, the formed clusters
are structured but exhibit a different profile. In Figure 4a, it
can be seen that the data points for the four tasks in each
cluster are not completely mixed; i.e., the clusters are divided
among the tasks. Our algorithm works because pseudo-data
points for different tasks are generated from different task-
specific regions of the clusters. Of course, the model will also
generate pseudo-data points that are similar to combinations
of data points of two or more tasks (i.e., when we sample
from a region in the cluster that is shared among several
tasks), but these data points do not harm learning or cause
forgetting effect as they are consistent with the clusters. This
can be seen by observing the generated pseudo-data points in
Figure 4a carefully. We make an important conclusion that
task-agnostic concepts can be abstracted for “continual con-
cept learning” if there is an inherent similarity of the concepts
across the tasks in the input space. Our algorithm also works
for dissimilar tasks because we are synthetically enforcing
the tasks to share the same classes, similar to the permuted
MNIST tasks, but the resulting clusters would then not be
completely task-agnostic. Interestingly, however, the clus-
ters for each class across the dissimilar tasks are themselves
clustered with respect to those for the other classes.

Conclusions
Inspired by the CLS theory and the PDP paradigm, we de-
veloped an algorithm that enables a deep network to update
and generalize its learned concepts in a continual learning
setting. The proposed algorithm is able to address the learn-
ing challenges by accumulating the new learned knowledge
consistently to the past learned knowledge. For this purpose,
our generative framework encodes abstract concepts in a hid-
den layer of the deep network in the form of a parametric
GMM distribution. This distribution can be used to generalize
concepts to new domains, where only a few labeled samples
are accessible. Additionally, the model is able to generate
pseudo-data points for past tasks, which can be used for ex-
perience replay to tackle catastrophic forgetting. Future work

5551



will extend our model to detect new concepts automatically
and actively ask for few labeled data points as unseen concept
samples are encountered.
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