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Abstract

Random-graphs and statistical inference with missing data
are two separate topics that have been widely explored each
in its field. In this paper we demonstrate the relationship be-
tween these two different topics and take a novel view of the
data matrix as a random intersection graph. We use graph
properties and theoretical results from random-graph theory,
such as connectivity and the emergence of the giant compo-
nent, to identify two threshold phenomena in statistical in-
ference with missing data: loss of identifiability and slower
convergence of algorithms that are pertinent to statistical in-
ference such as expectation-maximization (EM). We provide
two examples corresponding to these threshold phenomena
and illustrate the theoretical predictions with simulations that
are consistent with our reduction.

1 Introduction

Missing data (or incomplete data) are data in which the val-
ues of one or more variables are missing. This constitutes
a frequent problem in quantitative research studies and to-
day there are many common techniques for handling incom-
plete data. These techniques range from the most simple
complete case (CC) analysis to more sophisticated and of-
ten preferable methods such as Expectation-Maximization
(EM) based maximum likelihood estimation (MLE), mul-
tiple imputation methods to fill in the missing values, and
inverse-probability-weighting (IPW) of the missingness pat-
tern (Little and Rubin 2019; Sun and Tchetgen Tchetgen
2018).

The missing data process is said to be missing completely-
at-random (MCAR) if it is independent of both observed and
unobserved variables in the full data, and missing at-random
(MAR) if, conditional on the observed variables, the pro-
cess is independent of the unobserved ones (Rubin 1976). A
missing data process which is neither MCAR nor MAR is
said to be missing-not-at-random (MNAR) (see also the re-
cent and more comprehensive taxonomy (Doretti, Geneletti,
and Stanghellini 2018)).

A key element in the missing-data literature is the miss-
ingness matrix, R, which is a 0/1 matrix indicating whether
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a data-point in the related data-matrix is observed or miss-
ing. Since such 0/1 matrices can be interpreted naturally as
an incidence matrix of a bipartite graph, when the missing-
ness pattern is random it can be treated as a random graph;
here we point to the relationships between key results and
phenomena in random-graph theory and the capacity of sta-
tistical analysis with missing data.

In this paper we focus on Missing Completely At Ran-
dom (MCAR) problems in linear systems. The goal of this
work is to present a different view on these problems and to
address some theoretical and simulations results with an em-
phasis on the fraction of missingness in the data-set. In sec-
tion 2 we review the theory of random intersection graphs,
and present the relevant results; in section 3 we cast the miss-
ingness matrix as a random intersection graph and then de-
rive some conclusions regarding model identifiability (sec-
tion 4.1) and convergence rates of statistical algorithms (sec-
tion 4.2). We focus mainly on MCAR for ease of presenta-
tion; however, at the end of section 4.2 (and much more ex-
tensively in section 6) we address non-MCAR missingness.
Simulations demonstrating these phenomena are presented
in section 5.

2 Random Intersection Graphs

The classic random graph model of Erdős and Rényi -
G(n, p) considers a fixed set of n vertices and edges that ex-
ist with a certain probability p = p(n), independently from
each other, (Erdős and Rényi 1960); typically, various fea-
tures of G(n, p) are studied while n → ∞. Similarly, a ran-
dom intersection graph (RIG) deals with randomly connect-
ing vertices from two different sets (Karoński, Scheinerman,
and Singer-Cohen 1999). In its simplest form, the model is
defined as follows: given a set V of n vertices and a set A of
m auxiliary vertices, construct a bipartite graph B(n,m, p)
by letting each edge between vertices v ∈ V and a ∈ A ex-
ist independently with probability p = p(n,m). The random
intersection graph G(n,m, p) with vertex set V is obtained
by connecting two vertices v, w ∈ V if and only if there
is a vertex a ∈ A such that a is linked to both v and w in
B(n,m, p). (Karo’nski et al. 1999).

Several key phenomena considered with the classic
Erdős-Rényi random graph model G(n, p), are also present
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in the random intersection graph model G(n,m, p); in par-
ticular, complete connectivity, and the existence of the giant
component.

2.1 Connectivity

Recall the following definition (see (Bondy, Murty, and oth-
ers 1976) for fundamental graph theoretical definitions, and
(Bollobás 2001) for random-graph definitions)

Definition 1 (Connected Graph). A graph G = (V,E) is
said to be connected if for every pair of vertices v, w ∈ V
there is a path joining them. The maximal connected sub-
graphs are called components.

The connectivity of G(n,m, p) is a threshold phe-
nomenon described by the following result by Singer-Cohen

Theorem 1. Let G(n,m, p) a random intersection graph
with m = nα, α > 0 and

p∗∗ =

{
lnn+ω

m , for α ≤ 1√
lnn+ω
nm , for α > 1

where ω is a slowly varying function of n

(i) If ω → −∞, then with high probability G(n,m, p) is
disconnected and does not contains a perfect matching.

(ii) If ω → ∞, then with high probability G(n,m, p) is
connected and contain a perfect matching.

See proof and additional details in section 3 of (Rybar-
czyk 2011), and (Karoński, Scheinerman, and Singer-Cohen
1999).

2.2 The Giant Component

A more subtle and interesting phenomenon than complete
connectivity is the existence of the giant component

Definition 2 (Giant Component). A giant component is a
connected component of a given random graph G = (V,E)
that contains a finite fraction of the entire graph’s vertices -
O(|V |) (Bollobás 2001).

Specifically, the number of vertices in the giant component
scales as O(n), and if the number of vertices in the largest
component scales only as o(n) then there is no giant com-
ponent.

There are numerous work and rigorous results on the
behavior of the largest component in G(n, p), the clas-
sic Erdős-Rényi random graph (Erdős and Rényi 1960;
Bollobás 1984; Janson et al. 1993). Molloy and Reed argue
that: “Perhaps the most studied phenomenon in the field of
random graphs is the behavior of the size of the largest com-
ponent in G(n, p) when p = c

n and c is near 1”. (Molloy and
Reed 1998).

In the random intersection graph - G(n,m, p), the compo-
nent evolution was analyzed by Behrisch for the case where
the scaling of vertices and attributes is m = nα. In his work,
Behrisch showed that if p is small enough, N (G) the order
(number of vertices) of the largest component is asymptot-
ically almost surely O(log(n)). On the other hand, if p is
large enough the largest component is actually much larger:

Theorem 2. Let G(n,m, p) be a random intersection graph
with m = nα and p2m = c

n . Furthermore let p be the single
solution to p = exp(c(p−1)) in the interval (0, 1) for c > 1.
Then we have asymptotically almost surely (a.a.s)

(i) N (G) ≤ 9
(1−c)2 ln(n) for α > 1, c < 1

(ii) N (G) = (1+o(1))(1−p)n for α > 1, c > 1

(iii) N (G) ≤ 10
√
c

(1−c)2

√
n
m ln(m) for α < 1, c < 1

(iv) N (G) = (1+o(1))(1−p)
√
cmn for α < 1, c > 1

See section 4.2 of (Behrisch 2007) for a proof.
Additionally, Britton et al. (Britton et al. 2008) studied

the α = 1 regime, as well as a Reed-Frost process on
the graph (i.e., edge percolation) for complementary re-
sults; Berchenko et al. (Berchenko et al. 2009), found the
(1 − CΔ)

−1 scaling relation between the critical point in
RIGs and that of the (triangle-free) configuration model ran-
dom graph (Molloy and Reed 1998) (where CΔ is the so-
called clustering coefficient).
Remark 1. As pointed out by Behrisch, note the surprising
result in (iv) above, where the size of the largest compo-
nent is sub-linear compared to n, in contrast to the case for
the classic Erdős-Rényi random graph G(n, p), although it
is still super-logarithmic.

For our purposes, the above result can be summarized
concisely as

Corollary 1. p∗ =
√

1
mn , is the critical value in G(n,m, p)

for the existence of large components (asymptotically almost
surely).

which follows immediately from Theorem 2.

3 From Data Matrices to Random

Intersection Graphs

For the first stage in connecting RIG to statistical theory and
(missingness) data, we now observe the connection between
the representation matrix R(n,m, p) of a RIG and the miss-
ingness matrix Rn×m of an n ×m partially-observed data-
matrix with a fraction p of its entries missing.

The representation matrix R(n,m, p) of a RIG is an al-
ternative view of the graph. This matrix is a n × m ma-
trix whose rows represent the vertices of G(n,m, p) and
whose columns represent the elements of the universal set
A = {1, ...,m}. The entries in R(n,m, p) are 0’s and 1’s.
Each entry is independently 1 with probability p (and 0 with
probability 1 − p). From the random representation ma-
trix R(n,m, p) we derive the graph G(n,m, p) by deeming
two vertices to be adjacent if and only if the corresponding
rows have a 1 in a common column (Karoński, Scheinerman,
and Singer-Cohen 1999). The random representation matrix
R(n,m, p) can derive a dual random intersection graph to
the one reviewed above - G(m,n, p). The dual graph has
m vertices that correspond to the columns in R(n,m, p).
Two vertices are adjacent if and only if the corresponding
columns have a 1 in a common row.

In the realm of missing data methodology, the most ba-
sic setting is the following: n independent m-dimensional
vectors are measured, for example from n different subjects;
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stacking these vectors creates the data-matrix Xn×m, where
each column depicts a certain variable measured; finally,
however, only a fraction of 1− p of the entries of X are ob-
served, with the rest missing (for example, each xi,j is miss-
ing independently with probability p). Consider the missing-
ness matrix Rn×m where ri,j = 1 if xi,j is missing, and 0
otherwise1. Clearly, each missingness matrix correspond to
an intersection graph (see Figure 1 which exemplifies the re-
duction we suggest from a data matrix with missing values
to a random intersection graph). Note as well that there is a
one-to-one correspondence between Rn×m and the support
of the RIG’s representation R(n,m, p). However, it is worth
inquiring how they compare in distribution. The following
proposition addresses this issue.

Propositions 1. Let K denote a binomial random variable,
K ∼ B(nm, p). If the locations of missingnes are exchange-
able (i.e., the ri,j’s are exchangeable2) and

∑
i,j ri,j ∼ K,

then Rn×m and R(n,m, p) are identical in distribution.

Remark 2. Note that MCAR missingness implies the con-
dition above that “missingness-locations are completely at
random”, while the converse is not true. The conditions of
proposition 1 are met even for non-MCAR missingness; see
section 6.

Using proposition 1 combined with the results reviewed in
section 2 makes it possible to address key issues in statistics
and inference.

4 Combinatorial Aspects of Missingness

We begin with two relatively crude example applications,
before continuing to two more subtle ones.

4.1 Connectivity and Identification

There is yet another notion of “connectivity” in statistics
(Van Buuren 2018).

Definition 3 (Pattern-connectivity). A missing data pattern
Rn×m is said to be connected if any observed data point
can be reached from any other observed data point through
a sequence of horizontal or vertical moves ri,j to ri,k, or
ri,j to rl,j (like the rook in chess) where every move in the
sequence lands in an observed data point.

Connected patterns are needed to identify unknown pa-
rameters. For example, to be able to estimate a correla-
tion coefficient between two variables, they need to be con-
nected, either directly by a set of cases that have scores for
both, or indirectly through their relationship with a third set
of connected data. Unconnected patterns often arise in par-
ticular data collection designs, such as data combination of
different variables and samples or potential outcomes; how-
ever, for MCAR data we have

1The alternative coding, with ri,j = 1 if xi,j is observed, and 0
otherwise, is also common, but we find it less convenient here.

2Recall that a sequence of random variables X1, X2, X3, . . . is
said to be exchangeable if the joint probability distribution of the
sequence does not change when the positions in the sequence in
which finitely many of them appear are altered. i.e., permutations
of the indices does not change the probability.

Theorem 3. Let p∗∗ be the critical value for graph-
connectivity given by theorem 1. For p < 1 − p∗∗ a.a.s.
R(n,m, p) is pattern-connected.

Proof. Consider G(n,m, q) where q = 1 − p, which is
equivalent to the alternative coding of G(n,m, p), with
ri,j = 1 if xi,j is observed, and 0 otherwise. When q > p∗∗
a.a.s. G(n,m, q) is graph-connected. Note that every pair
of vertices, v and w are thus connected by a path which
must take a sequence of horizontal or vertical moves on
R(n,m, q). Thus, every pair of half-edges, rv,j = 1 and
rw,i = 1 incident at v and w, are also connected by a rook’s
path and R(n,m, q) is pattern-connected.

Seguing now to the linear regression model

yi = 〈xi, β
∗〉+ εi, i = 1, 2, . . . , n

and p > p∗∗ with standard graph-connectivity, the picture is
even simpler. There is data missing in every row of Rn×m

and thus a complete-case analysis cannot be conducted; fur-
thermore, even sequential imputation via chained equations
or EM (Van Buuren et al. 2006; Dempster, Laird, and Rubin
1977) are likely to perform poorly due to the difficulty of
finding a good initial starting point; see figure 3 in section 5.

4.2 Large Missingness Components and
Statistical Algorithms

Statistical procedures such as EM and inverse-probability-
weighting (IPW) (Robins and Gill 1997; Sun and Tchet-
gen Tchetgen 2018) can perform poorly even for small val-
ues of p << p∗∗. When p < p∗, and very little data is miss-
ing, G(n,m, p) is a block-graph (i.e., a clique tree in which
every bi-connected component is a clique; cf. decompos-
able graphs in Gaussian graphical models (Buhl 1993), and
perfect elimination ordering (Chandran et al. 2003)) with-
out any large cycles. However, when p∗ < p << p∗∗,
even though only a little data is missing, G(n,m, p) con-
tains large components with large cycles which may harm
the compatibility of sequential algorithms.

EM Algorithm. The difficulties of computing directly the
maximum likelihood estimator (MLE) for statistical mod-
els prompted the development of the EM algorithm. A few
algorithms of the EM-type were analyzed in early work be-
fore Dempster, Laird and Rubin (1977) (Dempster, Laird,
and Rubin 1977) introduced the EM algorithm in its modern
general form, and many extensions and variants have been
suggested since (see section 2 in (Balakrishnan et al. 2017)).
Briefly, EM is an iterative procedure that repeatedly cycles
through two steps: the E (expectation) step imputes missing
values and the M (maximization) step estimates the model’s
parameters based on the “filled-in” data from the previous
E step (See (Allison 2003) for a more thorough overview of
the steps of the algorithm).

Although this iterative process continues until conver-
gence, a global convergence is more difficult to establish
(early works (Wu 1983; Dempster, Laird, and Rubin 1977)
examined the population-EM operator, under some tacit
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Figure 1: A simple example of the derivation of a random intersection graph from a 5 × 4 design matrix. The steps from (a) a
design matrix with missing values, through (b) a random bipartite graph to (c) a random intersection graph.

assumptions, while only recently more nuanced work ex-
amined the random sample-based EM operator more rig-
orously, although in a more limited setting (Balakrishnan
et al. 2017; Dwivedi et al. 2018; Xu, Hsu, and Maleki
2016)). Nevertheless, the EM algorithm is widely applied
to incomplete data problems, and there is now a very rich
literature on its behavior. In practical terms, the EM al-
gorithm has proven itself in effectiveness and correctness
(See experimental results in (Allison 2001; Friedman 1998;
Graham 2003)).

EM Convergence. Here, in light of previous sections, in-
stead of focusing on the end-point of the EM iterations, we
discuss the number of iterations themselves.

Suppose again we observe a response variable yi ∈ R that
is linked to a covariate vector xi ∈ R

m via the linear model
yi = 〈xi, β

∗〉+ εi, i = 1, 2, . . . , n

Here, the coefficients vector β∗ ∈ R
m is unknown, and

εi ∈ R is the observation noise, independent of xi. In addi-
tion, let {xi}ni=1 be independent and identically distributed
(i.i.d) from the multivariate Normal distribution. Further-
more, we assume that the missing mechanism is MCAR and
each entry in the design matrix X is missing at probability p
independently of the other entries.

The reduction presented in proposition 1 and theorems 1-
2 suggest the following regarding convergence of the EM
algorithm:
• When the missing fraction p in the design matrix X is

too big, i.e., p > p∗∗, the associated random intersec-
tion graph is a.a.s. connected (Theorem 1). Therefore, al-
though the missing mechanism is ignorable (Rubin 1976),
the performance of the EM algorithm in these cases will
be poor, which means that the estimated parameters pro-
duced by the EM algorithm will be far from the real pa-
rameters.

• When the missing fraction p in the design matrix is small

enough, i.e., p <
√

1
mn , the EM algorithm converges with

a small number of iterations, i.e., in linear time (in m).
The largest component in the respective random intersec-
tion graph is of size O(lnm) which means that the graph
contains only small cycles. Therefore, there exists a con-
sistent and simple order for the imputation (E step of the
algorithm).

However, when p >
√

1
mn , a.a.s. a giant component ex-

ists in the respective random intersection graph (corol-
lary 1), so the structure of the graph is complex and there
are large cycles which make it difficult for the algorithm
in the E step. Therefore, in these cases, there is massive
growth in the number of iterations of the EM algorithm
before convergence.

In other words, the missing fraction p =
√

1
mn defines a

threshold phenomenon for the EM algorithm convergence
running time.

Remark 3. Note that this is a purely “structural” consider-
ation, that ignores the model parameters altogether. These,
and in particular the signal-to-noise ratio ||β||

σε
(where ||β||

is the norm of the coefficients vector of the linear regres-
sion model and σε is the variance of the observation noise),
were found to play a role as well (Balakrishnan et al. 2017),
as indeed we also noticed in our simulations (paradoxically,
when the SNR is large enough√

σε

||β|| < p <

√
1

mn

the EM algorithm required more cycles until convergence;
data not shown).

Figure 2 provides a graphical representation of the cases
above, and figures 3 and 4 present the results of the associ-
ated simulations described below.

In addition to EM and sequential imputation, and when
the data is MAR (see section 6) we expect similar behav-
ior from IPW methods as well (Sun and Tchetgen Tchetgen
2018), due to the emergence of a non-block-tree with incom-
patible missingness patterns. However, this is not pursued
further here.

5 Simulations

In order to investigate and examine the issues described in
the previous section, series of simulation studies were per-
formed.

The data were simulated in the form of a linear regression
model:

yi = 〈xi, β
∗〉+ εi, i = 1, 2, . . . , n
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Figure 2: Convergence properties according to p and
SNR−0.5.

The first step was to generate the coefficients vector β∗,
the data (design) matrix X and the noise vector ε. We chose
to generate β∗ as a normal random vector, X as a normal
random matrix according to the assumptions described in
section 4.2 and ε as a normal random vector with a mean
equal to 0. According to the linear regression model, the re-
sponse vector Y was calculated. The next step was to omit
some of the values from X to create a missing data set; each
entry in the matrix was omitted at probability p indepen-
dently.

When the data set with missing values was ready, we ap-
plied the EM algorithm to produce an estimate β̂. We used
the norm package in the R program with a sensitive update
that counts the number of cycles until convergence and cal-
culated the following measures from the results:

1. ||β∗ − β̂|| - Distance between the estimated coefficients
vector by the EM algorithm and the original coefficients
vector.

2. Number of cycles until convergence of the algorithm.

In Figure 3, we plot the results of simulations using

n = 100,m = 30, X ∼ N(0, I), εi ∼ N(0, 1) ∀i.
We provide a plot of the scaled distance (the error) be-
tween the real coefficients vector - β∗ and its estimated
one - β̂ versus the probability for missingness, for five
different coefficients vectors with different norms ||β|| ∈
{50, 100, 500, 1000, 5000}. For all five choices of coeffi-
cients vectors, there was a massive growth in the error
around the same value of p, thus agreeing with the first pre-
diction that corresponds to Theorem 1 and 3.

We also verified the results of the second issue empiri-
cally. Figure 4 shows the results for a different set of sim-
ulations. In this set, the probability for missingness p was
constant and the number of coefficients varied. We pro-
vide two plots of the number of cycles per coefficient3

3The computational load increases also with the number of co-

Figure 3: Plot of the scaled distance between the real coeffi-
cients vector - β∗ and its estimated one - β̂ versus the proba-
bility for missingness - p. Each point represents the average
over 100,000 runs. In this simulation n = 100,m = 30. As

predicted by Theorem 1, p∗∗ =
√

lnn
nm = 0.033 (α > 1)

defines the threshold phenomenon.

( cyclesm ) versus (a) the number of coefficients and (b) the
normalized (standardized) number of coefficients according
to Corollary 1, p2mn. We used five different probabilities
p ∈ {0.02, 0.022, 0.024, 0.026, 0.028} and n = 100.

For more simulations results, see Section 7.

6 Discussion

The work presented here introduced an interesting and use-
ful connection between random graph theory and statistical
applications with missing data. This novel view of a data ma-
trix with missingness as a random intersection graph enables
a surprising use of classic combinatorial results, in addition
to the more prevalent spectral methodology (Tropp 2015). In
particular, as far as we are aware, this is the first time that the
giant component emerges naturally in practical algorithmic
concerns4. Nevertheless, this work leaves much to explore.

First, we focused here on MCAR and did not deal with
non-MCAR missingness. However, MCAR missingness is
not required, as the following example demonstrates.
Example 1. Let the entries of Xn×m be independent stan-
dard normal random variables. Draw K, a binomial random
variable, K ∼ B(nm, p), and remove the K largest entries
of X . Clearly, the locations of missingness are exchange-
able, whereas the missingness mechanism is not MCAR.

However, in this paper, for simplicity, we eschewed
adding to the various types of missingness and its rich taxon-
omy (Doretti, Geneletti, and Stanghellini 2018) and aimed
to avoid the debate regarding the scientific plausibility of
certain missingness patterns (see (Robins and Gill 1997)
and the discussion in (Sun and Tchetgen Tchetgen 2018)).
Moreover, when focusing on MCAR, our motivation was not

efficients and the size of the data; thus, in order to isolate the in-
crease due to the giant component we normalised by m.

4The giant component does indeed play a major role in model-
ing, in epidemiology and sociology for example, as well as in the
analysis of algorithms where the input is a random Erdős-Rényi
graph, G(n, p). However, the former does not concern computa-
tional issues, whereas in the latter the random graph (and giant
component) does not emerge naturally, but rather is “hard coded”.
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Figure 4: The number of cycles (per coefficient) vs. the num-
ber of coefficients and size of the data. Here the number of
observations, n, was kept fixed while the number of coef-
ficients, m, was varied m = {5, 6, . . . , 30}. (a) Finite size
effect interfere with pinpointing where a large increase in the
computational load began (top panel); therefore a re-scaled
x-axis was used (bottom panel). In (b) the critical point is
the same for every set of simulations according to Corollary
1 (the vertical line at 1). Notice the reversal of the ordering
of the lines (from largest to smallest) near the critical point
p2nm = 1. Each line represents the average over 100,000
runs.

only ease of presentation, but rather also our impression that
MCAR missingness is actually sufficiently important on its
own.

Second, even though spectral methods are often less re-
fined, the graph-theoretic approach cannot easily address
parameter-dependent behavior; in particular, the unique ef-
fect of the SNR we observed in our simulations (and noted in
(Balakrishnan et al. 2017)). Currently, there is very little we
are able to say about the impact of the SNR, and a combined
approach might be more fruitful (Drton 2018).

Finally, the threshold phenomena we examined here and
particularly the giant component, could be useful to practi-
cal applications such as confidentiality and privacy preserva-
tion (Henle, Matthews, and Harel 2018). There, it might be
the case that the random removal of only a small additional
fraction of the data (for privacy preservation) might impose
substantial difficulties on the adversary.

7 Appendix

In addition to the set of simulations we presented in Section
5, we also performed a set of simulations with data matrix
X as a uniform random matrix, i.e. each entry xij in the data
matrix X is uniformly distributed. The conclusions from the

results are presented in Figures 5 and 6 are similar to those
presented for the normal case.

Figure 5: This plot is the same as Figure 3, except the
distribution of X . In this case the distribution is uniform,
∀i, j xij ∼ U(0, 50). As expected, p∗∗ =

√
lnn
nm = 0.033

defines the threshold phenomenon.

Figure 6: This pair of plots is the same as Figure 4, except
the distribution of X . In this case the distribution is uniform,
∀i, j xij ∼ U(0, 50).
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