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Abstract

In this paper, we investigate a novel problem of using genera-
tive adversarial networks in the task of 3D shape generation
according to semantic attributes. Recent works map 3D shapes
into 2D parameter domain, which enables training Generative
Adversarial Networks (GANs) for 3D shape generation task.
We extend these architectures to the conditional setting, where
we generate 3D shapes with respect to subjective attributes
defined by the user. Given pairwise comparisons of 3D shapes,
our model performs two tasks: it learns a generative model
with a controlled latent space, and a ranking function for the
3D shapes based on their multi-chart representation in 2D. The
capability of the model is demonstrated with experiments on
HumanShape, Basel Face Model and reconstructed 3D CUB
datasets. We also present various applications that benefit from
our model, such as multi-attribute exploration, mesh editing,
and mesh attribute transfer.

Introduction

Building a generative model for 3D shapes has a wide vari-
ety of applications in computer vision and graphics, in both
research and industrial fields. For instance, we can design
a system for a computer animator so that he can manipu-
late 3D shapes not only based on low-level attributes such
as geometry, but also high-level semantic attributes such as
expressions for 3D faces or girth for 3D human bodies.

However, learning a generative model for fine-grained qual-
ity 3D shapes remains a challenging problem. The current
state-of-the-art methods rely on representing the 3D shape
as a tensor data itself which begets many limitations. For
volumetric grid (i.e., voxel) representation (Choy et al. 2016;
Wu et al. 2016), surface details such as smoothness and con-
tinuity are lost due to limited resolution of voxel tensors. In
contrast, point cloud (Qi et al. 2017) representation is sim-
ple, but it lacks a regular structure to easily fit into neural
networks and it does not model connectivity between points,
making 3D surface reconstruction a non-trival task. These
drawbacks hinder the extension of these methods to more
sophisticated tasks such as, semantic mesh manipulation.
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Recently, Hamu et al. (2018) proposed to represent 3D
meshes using 2D multi-chart structure based on orbifold tutte
embedding (Maron et al. 2017). The basic idea is to cut the
mesh (or part of it) through landmark points on the surface,
then map it to a chart structure in 2D, and finally sample
a grid in 2D. This results in a tensor of image-like data,
which is both smooth and bijective. Moreover, the convolu-
tion operation is well-defined and can be mapped back to the
original surface. Hence GANs (Goodfellow et al. 2014) can
be trained based on multi-chart structure to generate charts
tensor, which implicitly represent a 3D mesh surface.

Inspired by the semantic image manipulation using RankC-
GAN (Saquil, Kim, and Hall 2018), our aim is to extend this
work to 3D mesh surfaces using the multi-chart structure
(Hamu et al. 2018), which enables us to provide a deep learn-
ing system that can generate 3D meshes while manipulating
some semantic attributes defined by the user. The key charac-
teristic of this approach is the addition of a ranking module
that can order 3D shapes via their multi-chart representa-
tion. Such a system is particularly useful to digital artists
and designers since they can set the semantic attributes using
pairwise comparisons in order to perform personalized 3D
shapes editing and exploration.

We evaluated our method on three types of datasets of
human bodies (HumanShape (Pishchulin et al. 2017)), birds
(reconstructed 3D shapes of CUB imagery data (Kanazawa
et al. 2018)), and human faces (Basel Face Model (Paysan et
al. 2009; Gerig et al. 2018)). Both quantitative and qualita-
tive results show that: Our model can disentangle semantic
attributes while ensuring a coherent variation of high-quality
3D meshes thanks to the usage of multi-chart structure in
comparison to existing methods. Also, our model has impor-
tant applications in mesh generation, editing, and transfer.

Our contributions are two-fold: 1) a novel conditional
generative model that can generate quality 3D meshes with
semantic attributes quantified by a ranking function; 2) an
end-to-end training scheme that only requires pairwise com-
parison of meshes instead of global annotation of the dataset.

Related work

3D shape generative models Early works on 3D shape
synthesis relied on probabilistic inference methods. (Kaloger-

5586



akis et al. 2012) proposed a probabilistic generative model
of component-based 3D shapes, while (Xue, Liu, and Tang
2012) reconstructed 3D geometry from 2D line drawings
using MAP estimate. These models are generally adequate
for a certain class of 3D shapes.

Recent works shifted towards using deep generative mod-
els for 3D data synthesis. These works can be categorized
according to the learned 3D representation, which fall into
three types: voxel, point clouds and depth map based meth-
ods. Unlike the component-based methods, the voxel-based
methods do not rely on part labeling and learn voxel grids
from a variety of inputs; a probabilistic latent space (Wu et
al. 2016), single or multi-view images (Choy et al. 2016;
Girdhar et al. 2016). However, generated 3D voxels are gen-
erally low resolution and memory costly.

Another line of work focused on generating 3D point
clouds (Achlioptas et al. 2018). This formulation avoids reso-
lution issue, but induces challenges to ensure the order and
transformation invariance of the 3D points (Qi et al. 2017).
Another limitation of point clouds is the lack of point connec-
tivity, which complicates the task of reconstructing a mesh.

Finally, some works considered generating depth maps,
which are used as an intermediate step along with an es-
timated silhouette or normal map to generate a 3D shape
(Soltani et al. 2017).

3D mesh surface learning There has been an increasing in-
terest to generalize deep learning operators to curved surface
meshes. (Boscaini et al. 2016; Masci et al. 2015) formulated
the convolution operation in the non-Euclidean domain as
template matching with local patches in geodesic or diffu-
sion system. (Monti et al. 2017) proposed a mixture model
networks on graphs and surfaces and built parametric local
patches instead of fixed ones. These methods were demon-
strated in the tasks of shape correspondence and description.

In another spectrum, many works processed triangular
meshes with NNs despite their irregular format. (Tan et al.
2018) proposed a VAE to encode meshes using rotation-
invariant representation for shape embedding and synthesis.

In addition, few works (Chen and Zhang 2019; Mescheder
et al. 2019) focused on representing the 3D surface as a
decision boundary of a classifier learned using voxelized
shapes. These implicit models allow generating high-quality
meshes using isosurface extraction algorithms.

Surface parameterization for mapping 3D surfaces to a
2D domain is a well studied problem in computer graphics.
(Sinha, Bai, and Ramani 2016) learned CNN models using
geometry images (Gu, Gortler, and Hoppe 2002). However,
geometry images are neither seamless nor unique, making
the convolution operation not translation-invariant. (Maron et
al. 2017) tackled these issues by parameterizing a 3D surface
to a global seamless flat-torus, where the convolution is well
defined. These methods are restricted to sphere-type shapes
and are applied to shape classification, segmentation and
landmark detection tasks.

For 3D mesh surface synthesis, (Sinha et al. 2017) learned
to generate geometry images as a shape representation. On
the other hand, AtlasNet (Groueix et al. 2018) used MLPs to

learn multiple parameterizations that map 2D squares with
latent shape features to the 3D surface. Meanwhile, based on
a sparse set of surface landmarks, (Hamu et al. 2018) repre-
sented a 3D shape by a collection of conformal charts formed
by flat-torus parameterization (Maron et al. 2017). This re-
duces mapping distortion and can be used for multiple tasks
that requires mesh quality, notably mesh generation using
GANs (Goodfellow et al. 2014). Our work is an extension of
multi-chart 3D GAN (Hamu et al. 2018) in the conditional
setting using relative attributes.

Relative attributes In early studies, binary attributes that
indicate the presence or the absence of an attribute in data
showed state-of-the-art performance in object recognition
(Tao, Smeulders, and Chang 2015) and action recognition
(Liu, Kuipers, and Savarese 2011).

However, a better representation of attributes is necessary
if we want to quantify the emphasis of an attribute and com-
pare it with others. For this reason, relative attributes (Parikh
and Grauman 2011) tackled this issue by learning a global
ranking function on data using constraints describing the
relative emphasis of attributes (e.g., pairwise comparisons
of data). This approach is regarded as solving a learning-
to-rank problem where a linear function is learned based
on RankSVM (Joachims 2002). This problem can also be
modeled by a non-linear function as in RankNet (Burges et
al. 2005), where the ranker is a neural network trained us-
ing gradient descent methods. Furthermore, semi-supervised
learning can as well learn user-defined ranking functions as
demonstrated in criteria sliders (Tompkin et al. 2017).

While these algorithms focus on predicting attributes on
existing data entries, another line of works were interested
in manipulating data using semantic attributes. For 3D shape
generation task, (Streuber et al. 2016) used semantic at-
tributes as high-level word description to generate 3D human
shape. (Chaudhuri et al. 2013) proposed an interactive part-
based assembly method for 3D shape creation associated with
semantic attributes. For 3D shape editing task, (Yümer et al.
2015) proposed a method where the user creates continuous
geometric deformations using a set of semantic attributes.

For image generation task, (Yan et al. 2016) separated the
background and foreground generation. (Kaneko, Hiramatsu,
and Kashino 2018) proposed a decision tree latent controller
for GAN to capture salient features of the generated images.
Lastly, RankCGAN (Saquil, Kim, and Hall 2018) proposed
an extension enabling to continuously synthesize new im-
agery data according to semantic attributes. Our work can
also be treated as an extension of RankCGAN to 3D mesh
synthesis with respect to subjective criteria.

Approach

In this section, we describe in details our Rank3DGAN
model, which consists of a conditional GAN capable of gener-
ating 3D mesh representation while manipulating predefined
semantic attributes. Firstly, we start with a presentation of
the 2D CNN adaptation for 3D surfaces using mesh parame-
terization method, which describes the process of mapping
3D surface to 2D images (charts). Secondly, we highlight the
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Figure 1: The process of computing a discretized chart from a 3D mesh, where S the original surface, S4 the 4-cover of the
surface, T the 2D flat-torus, and discrete-T the obtained chart after sampling and tiling the torus to fit a square. Since the
parameterization is bijective, A reconstruction of the original mesh can be performed from the resulting chart.

multi-chart structure as a representation of a 3D mesh in a
tensor of charts, where each chart models a part of the mesh
and the tensor covers the whole mesh with minimal distortion.
We also describe multi-chart structure necessary geometric
properties satisfied by the addition and modification of some
CNN layers. Thirdly, we detail the loss functions of condi-
tional GAN trained on this representation, which consists of
a WGAN-GP loss for tensor of charts generation and a rank-
ing loss for ensuring the ranking constraint on the semantic
ordering of tensors of charts. Lastly, we show how we can
extend Rank3DGAN to multiple attributes generation using
a multi-label ranking loss and how Rank3DGAN can be used
for mesh editing by training an additional encoder.

Seamless toric covers

Building a generative model for 3D meshes consists of learn-
ing a function G : Rd → S that maps a latent distribution in
R

d, usually a gaussian or uniform noted by pz, to a complex
distribution pg in S that approximates the real distribution px
of our training surfaces {S i}i∈I , where d is the dimension of
the latent space and S is the surface space.

GANs (Goodfellow et al. 2014) are popular generative
models for 2D images. But CNN architectures cannot be
applied directly on data sampled from S, which show the
necessity of transferring the learning problem from surface to
image space where the convolution operation is defined. For
this reason, (Maron et al. 2017) suggest to transfer functions
over the surface to a flat-torus, represented as a planar square
[−1, 1]2 and denoted as T . The flat-torus is handy because
we can discretize it to a n × n grid and apply standard 2D
convolutions directly on the sampled grid.

Formally, in order to build a seamless mapping between
S and T domains, an intermediate surface, S4, of 4-cover
of S is created as follows; four copies of the surface are cut
along the path p1 → p2 → p3 designed by triplet of points
P = {p1, p2, p3} ⊂ S to get disk-like surface; Then, the four
surfaces are stitched to get a surface torus, S4; Afterwards,
the conformal mapping ΦP : S4 → T is computed using the
parameterization method (Maron et al. 2017); Lastly, the flat
torus is tiled to cover the discretization grid resulting into a
sampled chart as shown in the Figure 1.

In the case of S being a disk-like surface, e.g. 3D face
meshes, a surface cut is not needed and a quadriplet of points
P = {p1, p2, p3, p4} ∈ ∂S is designated, with ∂S the surface

boundary, in order to stitch the four surfaces to get a torus.
pushP(x) = x ◦Ψ ◦ Φ−1

P ∈ R
c×n×n is the obtained conformal

chart after transferring a function x ∈ F (S,Rc) over the
surface to a flat-torus using ΦP, where Ψ : S4 → S is the
projection of 4-cover surface to the original one. A conformal
chart produces an area scaling with respect to the selected
triplet P, thus a careful choice of multiple triplets can ensure
a global coverage of the surface with a minimum distortion.

Multi-chart structure

The multi-chart structure (Hamu et al. 2018) is a set of charts
that globally cover the surface of mesh. Formally, it is a tuple
(P, F), where P ∈ Rn×3 is the set of landmarks and F is the set
of landmark triplets, such that each triplet P = {pi, p j, pk} ∈
F represents a chart and every mesh S i consists of |F| charts.

Besides the coverage property, the multi-chart structure
should ensure the scale-translation (s-t) rigidity (Hamu et
al. 2018) that allows unique recovering the original scale
and mean of the charts after the normalization applied while
training a network.

Recall that our purpose is to learn a generative model
for 3D meshes, which leads us to consider the coordinates
X = (x, y, z) as functions over the mesh X ∈ F (S,R3) to be
transferred using the multi-chart structure (P, F) as follows:

pushP(X) = X ◦ Ψ ◦ Φ−1
P ∈ R

3×n×n

where pushP(X) is the obtained chart with spatial dimension
n × n using the triplet P ∈ F. By concatenating the charts ob-
tained from using all triplet in F, we get the final multi-chart
tensor representing the whole mesh defined by: C ∈ R3|F|×n×n.
Since every 3 charts in C represent a different part in the
mesh, we need to normalize them for an optimal learning
process. In the end, the scale-translation rigidity property
ensures a unique reconstruction.

Thanks to the multi-chart structure, learning a generative
model G : Rd → R3|F|×n×n for 3D meshes can be performed
in the image space using GANs (Goodfellow et al. 2014) with
considerations for the geometric setting described below:

• Standard convolution and deconvolution are substituted by
cyclic-padding ones (Maron et al. 2017; Hamu et al. 2018)
to take into account the invariance to torus symmetry.
• Projection layer is incorporated in the generator to satisfy

the invariance of S4 symmetries.
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Figure 2: Rank3DGAN network: The dark grey represents the latent variables, light grey represents the chart images, light blue
indicates the outputs of the critic, and the dark blue indicates their loss functions. The layers L, P, Z represent the landmark
consistency, projection and zero-mean layers respectively.

• Landmark consistency layer (Hamu et al. 2018) is incor-
porated to force the generated normalized charts G(z) ∈
R

3|F|×n×n, z ∈ Rd to satisfy the s-t rigidity property.

• Zero-mean layer is proposed to reduce the mean of every
generated chart after using the landmark consistency layer.

The final step following learning a generative model G is
to reconstruct the 3D mesh from the generated charts C =
G(z) ∈ R3|F|×n×n using template fitting (Hamu et al. 2018).

Since C is output of the landmark consistency layer, we
can uniquely recover the scale and mean of charts resulting
in charts denoted by Ĉ. Afterwards, a template mesh S t is
used to obtain the generated mesh by setting the mesh ver-
tices location using the multi-chart structure (P, F) and the
generated charts Ĉ as follows:

v =
∑
P∈F τP(v) Ĉ(ΦP(v))∑

P∈F τP(v)

where τP(v) is the inverse area scale of the 1-ring of vertex
v exhibited by flat-torus ΦP(S t) of the template mesh and
Ĉ(ΦP(v)) is the image of the flat-torus vertex v under the
learned charts in Ĉ associated with triplet P computed using
bilinear interpolation of the grid cells in these learned charts.

Semantic mesh generation

We recall that Generative Adversarial Networks (GANs)
(Goodfellow et al. 2014) is defined as a minmax game be-
tween two networks; A generator G that maps a latent vari-
able z ∼ pz to generated sample G(z), and a discriminator
D that classifies an input sample as either a real or gener-
ated sample. Due to the training instability with the former
loss, WGAN (Arjovsky, Chintala, and Bottou 2017) proposes
using Wasserstein distance defined as the minimum cost of
transporting mass to transform the generated distribution into
real distribution. The WGAN loss suggests clipping the D
(called a critic) weights to enforce the Lipschitz constraint.

WGAN-GP (Gulrajani et al. 2017) proposes another alter-
native for setting the Lipschitz constraint, which consists of a
penalty on the gradient norm, controlled with a hyperparam-
eter λ = 10, for random samples x̂ ∼ px̂ with px̂ a uniform
sampling along straight lines between samples from real px
and generated pg distributions. The WGAN-GP (Gulrajani et
al. 2017) optimizes the following loss:

LGP = Ex̃∼pg [D(x̃)]−Ex∼px [D(x)]+λ Ex̂∼px̂ [(||∇x̂D(x̂)||2−1)2]

In order to generate meshes controlled by one or more
subjective attributes, we need to incorporate semantic or-
dering constraints in WGAN-GP loss. We follow (Saquil,
Kim, and Hall 2018) in modelling the semantic constraints
by a ranking function, noted R, to be incorporated in
the training of critic and generator. Training a pairwise
ranker R using CNNs was proposed in (Burges et al. 2005;
Souri, Noury, and Adeli 2016), which consists of learning
to classify a pair of inputs, x(1) and x(2) according to their
ordering, x(1) 	 x(2) or x(1) ≺ x(2). Formally, given a dataset
{(x(1)

i , x
(2)
i , y)}Pi=1 of size P, such that (x(1)

i , x
(2)
i ) pair of images

and yi ∈ {0, 1} a binary label indicating if x(1)
i 	 x(2)

i or not,
we define the ranking loss as follows:

Lrank(x(1)
i , x(2)

i , yi) = −yi log[σ(R(x(1)
i ) − R(x(2)

i ))]

− (1 − yi) log[1 − σ(R(x(1)
i ) − R(x(2)

i ))]),

with σ(x) the sigmoid function. The ranker R can be regarded
as a function that outputs the ranking score of the input data.

With all necessary components presented, we propose an
architecture, Rank3DGAN, that can generate meshes accord-
ing to subjective attributes set by the user. The underlying
mechanism is the addition of semantic ordering constraint,
defined by a ranking function, to the generative model trained
using multi-chart structure representing the 3D meshes.

A fundamental difference between our work and (Saquil,
Kim, and Hall 2018) is in the application context, since we
focus on manipulating 3D shapes via the multi-chart structure.
We also opted for architecture changes. As illustrated in
Figure 2, instead of having a separate network for the ranker
as in (Saquil, Kim, and Hall 2018), we introduce the ranker
in the critic network D as an auxiliary classifier (Odena, Olah,
and Shlens 2017), so that the critic D has two outputs for
adversarial and ranking losses respectively. The idea behind
dwells in the fact that with a separate ranker architecture, an
end-to-end training with critic and generator is not required.
The ranker could be trained off-line and plugged while the
generator is trained. While having the ranker as an auxiliary
classifier ensures that the training is end-to-end and the ranker
can benefit from the learned representation of the critic.

In the following subsections, we describe Rank3DGAN in
the mesh generation task with respect to one attribute, then
we generalize to multiple attributes. Finally, we introduce an
inference network that estimates the latent variables of an
input multi-chart tensor for the task of mesh editing.
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Dataset # meshes attributes # pairs # lmks # triplets
MPII Human Shape 15,000 weight, gender 5,000 21 16

CUB-200-2011 5,000 lifted wings 5,000 14 11
Basel Face Model 09 5,000 gender, height, weight, age 5,000 4 N/A

Basel Face Model 17 5,000 anger, disgust, fear,
happy, sad, surprise 5,000 4 N/A

Table 1: We prepared data from four datasets for our experiments. ‘lmks’ stands for landmarks.

Figure 3: Generated interpolation of human shape with respect to weight attribute in the following methods: Top: Voxel 3D
GAN. Middle: AtlasNet. Bottom: Our method Rank3DGAN.

One attribute generation As shown in Figure 2, the gen-
erator G outputs a multi-chart tensor G(r, z) given two inputs,
the noise latent vector z ∼ N(0, 1) and the attribute latent
variable r ∼ U(−1, 1). The critic D takes a real I = x or fake
I = G(r, z) multi-chart tensor and outputs its critic value D(I)
and ranking score R(I). Given {(x(1)

i , x
(2)
i , yi)}Pi=1 and {xi}Ni=1,

mesh pairwise comparisons and mesh datasets represented by
their multi-chart structure, with size of P and N respectively,
we train our model in mini-batch setting of size B by defining
the critic (LD) and generator (LG) loss functions as follows:

LD =
1
B

B∑

i=1

[D(x̃i) − D(xi) + λ (||∇x̂i D(x̂i)||2 − 1)2]

+
2
B

B/2∑

i=1

Lrank(x(1)
i , x

(2)
i , yi),

LG = −
1
B

B∑

i=1

D(x̃i) + ν
2
B

B/2∑

i=1

Lrank(x̃(1)
i , x̃

(2)
i , [r

(1)
i > r(2)

i ]),

with x̃i = G(ri, zi), x̂i = αx̃i + (1 − α)xi, for α ∼ U(0, 1),
x̃(1)

i = G(r(1)
i , z

(1)
i ), x̃(2)

i = G(r(2)
i , z

(2)
i ). [.] is Iverson bracket. ν

(hyperparameter) controls the ranker gradient magnitude in
the generator update.

Multiple attributes generation Our method can be ex-
tended to the multiple attributes case where the attribute latent
space is vector representing the set of controllable attributes
and the critic network D outputs a vector of ranking scores
with respect to each attribute. Formally, let {(x(1)

i , x
(2)
i , yi)}Pi=1

mesh pairwise comparisons dataset with yi a binary vector

indicating whether x(1)
i 	 x(2)

i or not with respect to all at-
tributes A. The new ranking loss is defined as follows:

Lm−rank(x(1)
i , x

(2)
i , yi) = −

A∑

j=1

yi j log[σ(Rj(x(1)
i ) − Rj(x(2)

i ))]

+ (1 − yi j) log[1 − σ(Rj(x(1)
i ) − Rj(x(2)

i ))])

with yi j, Rj(x(1)
i ), Rj(x(2)

i ) the j-th elements in
yi, R(x(1)

i ), R(x(2)
i ) vectors respectively. By substitut-

ing Lrank in Equations LG and LD with Lm−rank, we obtain
the generative model with multiple attributes.

Encoder for mesh editing The last component to add to
our generative model, is an inference network for tasks that
require estimating the latent variables of an input mesh such
as mesh editing or attributes transfer. Following the previous
work (Zhu et al. 2016) in image manipulation, we propose
to train the encoder E on the real multi-chart tensors dataset
{xi}Ni=1 in order to estimate the latent variables that minimise
the reconstruction loss defined in the mini-batch setting as:

LE =
1
B

B∑

i=1

‖ G(E(xi)) − xi ‖22 .

Empirical results

In this section, we describe our experimental settings, show
quantitative and qualitative results, and then demonstrate
applications in mesh generation, mesh editing, and mesh
attribute transfer.
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Figure 4: Mean-FID on face, bird and human datasets. Left: face dataset trained on age and gender. Middle: bird dataset trained
on lifted wings. Right: human dataset trained on gender and weight.

Dataset IoU Chamfer Normal Consistency
Rank3DGAN AtlasNet Voxel 3DGAN Rank3DGAN AtlasNet Voxel 3DGAN Rank3DGAN AtlasNet Voxel 3DGAN

Human 0.8146 - 0.6426 0.0074 0.0129 0.0084 0.9561 0.8116 0.8535
Bird 0.7882 - 0.4192 0.0246 0.0428 0.0684 0.9362 0.8612 0.7353
Face - - - 0.0273 0.0237 0.0373 0.9386 0.9335 0.5577

Table 2: Quantitative comparison of our approach against the baselines in the mesh generation task.

Data preparation

We relied on four datasets for our experiments: 3D human
shapes from MPII Human Shape (Pishchulin et al. 2017),
3D bird meshes reconstructed from CUB image dataset
(Kanazawa et al. 2018), and 3D faces from Basel Face Model
2009 (Paysan et al. 2009) and 2017 (Gerig et al. 2018). We
sampled a large variety of meshes from each dataset with
different attributes, and formed pairs with ordered attributes.
For the meshes within each dataset, we also consistently dis-
tributed a good number of landmarks with triplet/quadriplet
relations to form the chart-based structure, allowing the gen-
erative model to work on 3D meshes. Table 1 summarizes the
information of all the datasets. Details on data preparation
can be found in the supplementary document.

Implementation

We implemented Rank3DGAN on top of multi-chart 3D
GAN (Hamu et al. 2018) with the same hyperparameter set-
ting. The structure of the critic D is modified to adapt for
the incorporated ranker as in Figure 2, while the structure
of the generator G remains intact. We modelled the encoder
E with the same architecture of the vanilla critic D. For the
multi-chart representation, we sampled 64 × 64 images from
human and bird flattened meshes, and 128×128 for faces. For
the training, we set the hyperparameters λ = 10, ν = 1, and
trained the networks for 300 epochs on all datasets. Similarly
to (Hamu et al. 2018), we activated the landmark consistency
layer after 50 training epochs for human and bird datasets.
This layer is not used for faces since they have a single chart.
Finally, we obtained face textures using the nearest neighbors
in the real face dataset for better rendering of the results.

Qualitative Results

To compare our method with recent 3D generative model ap-
proaches, we extended these models to the conditional setting

using semantic attributes, including the voxel 3D GAN (Wu
et al. 2016), and AtlasNet (Groueix et al. 2018) generative
models. For the former, we have incorporated a ranking net-
work and trained the model similarly to RankCGAN (Saquil,
Kim, and Hall 2018) procedure. For the latter, we focused
on the task of mesh generation from point clouds input and
concatenated the latent variable r to the latent shape represen-
tation. We also added the ranking loss to the global objective
function, while the ranker is a CNN that takes the point cloud
coordinates and produces a ranking score.

We trained these models and Rank3DGAN for 300 epochs
using 5000 meshes, 5000 pairwise comparison meshes of the
human shape dataset (Pishchulin et al. 2017) and their corre-
sponding point clouds with respect to weight attribute. Figure
3 shows the comparison between the selected methods.

Note that the voxel 3D GAN learned the desired transfor-
mation, but the results are low in resolution (643 dimensions)
without surface connectivity and continuity compared to the
mesh generated by our method. For AtlasNet interpolation,
we remarked that the obesity of human mesh is represented
by some vertices getting farther of the mesh. We alleged this
behaviour to the objective function being optimal in this sce-
nario where the resulting mesh is a close reconstruction to
the input point cloud while the weight ranking constraint is
satisfied by moving some vertices outside the 3D shape. The
interpolation failed to provide the desired output as we do
not have access to the ground truth point cloud output given
an input point cloud and a specific latent variable r value.

Quantitative Results

We used the metric Fréchet Inception Distance (FID) (Heusel
et al. 2017) for evaluating the quality of generated charts. It
consists of calculating the Fréchet Distance of two multivari-
ate Gaussians that are estimated from two datasets of real and
generated image features. We modelled the feature extraction
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Figure 5: Generated mesh interpolation in the following three datasets: Top: human shape, Middle: face, Bottom: bird with
respect to the attributes weight, happy, lifted wings respectively.

Figure 6: Generated 2D mesh interpolation in the following two datasets: Left: human shape with respect to (weight, gender)
attributes and Right: face with respect to (age,gender) attributes.

network by FCN (Long, Shelhamer, and Darrell 2014) and
calculated FID with respect to each chart in the multi-chart
structure, then we averaged the obtained values to get the
final mean-FID result.

We trained FCN for segmentation task in face, human,
bird datasets. Face dataset (Paysan et al. 2009) provides
4 segment labels along with the face morphable model.
We sampled 5000 meshes whose coordinates and labels
are represented using the multi-chart structure to create a
dataset of {(Ci, li)}5000|F|

i=1 , with |F| = 1 for one quadriplet,
Ci ∈ R3×128×128 and li ∈ [0 . . 3]128×128 for the coordi-
nates and label chart. For human (Pishchulin et al. 2017)
and bird (Kanazawa et al. 2018) datasets, we manually
labelled the mesh vertices and sampled 5000 meshes, re-
sulting in datasets of {(Ci, li)}5000|F|

i=1 with Ci ∈ R3×64×64,
|F| = 16, li ∈ [0 . . 7]64×64 for human meshes, and |F| = 11,
li ∈ [0 . . 4]64×64 for bird meshes.

Once FCN (Long, Shelhamer, and Darrell 2014) is trained

for segmentation task, we extract features of 2048 dimensions
from conv7 layer, modified for this purpose, using input real
and generated chart images of the same size to build two sets
of real and generated features. To investigate the variation in
the quality of generated images, we compared the calculated
mean-FID of Rank3DGAN with multi-chart 3DGAN (Hamu
et al. 2018) at every 15 epochs on all the datasets (see Figure
4). Note that the mean-FID value differences in-between
becomes less significant as the models progress through the
training epochs, indicating competing performance (with
varying attributes) to multi-chart 3DGAN.

We also compared Rank3DGAN against voxel 3D GAN
(Wu et al. 2016) and AtlasNet (Groueix et al. 2018) using
the volumetric IoU, Chamfer distance and normal consis-
tency metrics on human, face, bird datasets. We selected the
attributes weight, happy, lifted wings for the training and esti-
mated the closest generated mesh to the ground-truth mesh by
minimizing L2 loss. Quantitative results are shown in Table

5592



Figure 7: Face mesh editing with respect to height attribute.

Figure 8: Face attribute transfer according to weight attribute.

2. We notice that our method achieves the highest normal
consistency and IoU scores as well as a competing Chamfer
distance. We note that a mesh is obtained from a voxel using
Marching Cube and IoU is not evaluated for AtlasNet and
face dataset since the obtained meshes are not watertight.

Applications

Mesh generation: To demonstrate the generative capability
of our model, we choose single and double semantic attributes
that span an interpolation line and plane respectively, where
we fix the latent vector z and vary the latent relative variables
in the interval [−1, 1] in order to change the desired relative
attributes. Figure 5 shows how the generated meshes vary
with respect to the value of the following semantic variables:
weight, lifted wings, happy. Figure 6 focuses on mesh interpo-
lation with respect to two attributes. We select weight, gender
for human meshes and gender, age for face meshes. We re-
mark that the generated meshes are smooth and the attributes
variation is coherent with the selected relative attributes.

Mesh editing: This is an interesting feature for 3D ob-
ject software tools. It enables the 3D graphic designer to
alter high-level attributes in the mesh, that can be customised
according to the user intent. This application consists of map-
ping an input mesh onto the subjective scale by estimating its
reconstruction using the latent variables r, z, and then editing
the reconstructed mesh by changing the value of r ∈ [−1, 1].
Figure 7 highlights this application in face meshes using
height attribute. The framed mesh is the reconstructed in-
put mesh with latent variables r∗, z∗, while z∗ is fixed, the
first and second rows are the interpolation of r in the range
[−1, r∗] and [r∗, 1] respectively, denoting generated meshes
of subjectively less or more emphasis on the chosen attribute.

Mesh attribute transfer: We can also transfer the subjec-
tive strength of an attribute from a reference mesh to a target
mesh. Using the encoder E, we quantify the semantic latent

variable r of the reference mesh, and then we edit the target
mesh with the new estimated semantic value. Figure 8 shows
this application for 3D faces in the case of weight attribute.

Discussion and Conclusion

We introduce Rank3DGAN, a GAN architecture that synthe-
sises 3D meshes based on their multi-chart structure represen-
tation while manipulating local semantic attributes defined
relatively using a pairwise comparisons of meshes. We have
shown through experimental results that our model is capable
of controlling a variety of semantic attributes in generated
meshes using a subjective scale. The main limitations of our
model are inherited from multi-chart 3D GAN (Hamu et al.
2018), which are the restriction to zero-genus surfaces, e.g.
sphere-like or disk-like surface and the usage of a fixed tem-
plate mesh for reconstructing the mesh from the generated
charts. Moreover, since the charts represent different parts of
the mesh, the pre-processing chart normalization implicitly
induces a loss of some global mesh attributes such as the
height of human shape, which complicates the task of learn-
ing a subjective measure using the ranking function. Possible
extension of this work can focus on finding a novel way to
represent global attributes so that it will not be lost in the
mesh processing step. Another line of work can concentrate
on enhancing the quality of the generated meshes by generat-
ing high resolution charts using other extensions of GANs or
using advanced sampling and reconstruction techniques of
the 2D flat-torus. Finally, other interesting applications can
be derived from this work, such as 3D style transfer and 3D
mesh reconstruction from RGB images.
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