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Abstract

Value iteration networks (VINs) have been demonstrated to
have a good generalization ability for reinforcement learning
tasks across similar domains. However, based on our experi-
ments, a policy learned by VINs still fail to generalize well
on the domain whose action space and feature space are not
identical to those in the domain where it is trained. In this
paper, we propose a transfer learning approach on top of VINs,
termed Transfer VINs (TVINs), such that a learned policy
from a source domain can be generalized to a target domain
with only limited training data, even if the source domain and
the target domain have domain-specific actions and features.
We empirically verify that our proposed TVINs outperform
VINs when the source and the target domains have similar
but not identical action and feature spaces. Furthermore, we
show that the performance improvement is consistent across
different environments, maze sizes, dataset sizes as well as dif-
ferent values of hyperparameters such as number of iteration
and kernel size.

Introduction

Convolutional neural networks (CNNs) have been applied
to reinforcement learning (RL) tasks to learn policies, i.e., a
mapping from observations of system states to actions (Mnih
et al. 2015). As analyzed in (Tamar et al. 2016), reactive
polices learned by conventional CNN-based architectures
usually fail to generalize well to previously unseen RL do-
mains even though most of the configurations remain the
same to the training domain. To boost the generalization
performance, value iteration networks (VINs) (Tamar et al.
2016) have been proposed to integrate a planning module
into policy learning. VINs have been applied to various appli-
cation tasks including path planning, e.g., visual navigation
(Gupta et al. 2017) and the WebNav challenge (Nogueira and
Cho 2016), which requires the agent to navigate the links of a
website towards a goal web-page, specified by a short query.
Despite the success of VINs, we observe that the generaliz-
ability of VINs is based on an implicit assumption that the
feature space and the action space in the unseen domain are
as the same as the ones in the seen domain for training the
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policy. To relax this assumption, in this paper, we propose
a transfer learning framework to generate VIN-based poli-
cies across different domains even if their action spaces and
feature spaces are not identical.

Intuitively, if the target domain has different feature space
and action space to the source domain, the VIN-based policy
learned from the source domain fails to be used in the target
domain directly. A straight-forward solution is to learn a new
policy from scratch from the target domain, which is time-
consuming. Therefore, it is more desirable to transfer the
learned knowledge captured in the source-domain VIN-based
policy to the target domain, such that an optimal target policy
can be learned with less training data and shorter training
time. However, if the source domain and the target domain
have totally different feature spaces or action spaces, it is
extremely difficult to adapt a learned policy across domains
effectively. Therefore, in this work, we assume that 1) the
feature spaces between the source and the target domains can
be different but are not heterogeneous (e.g., text v.s. images),
2) there is a common subset of actions between the source
and the target domains.

We propose the Transfer VIN (TVIN ) to transfer the a
well-trained VIN-based policy from the source domain to
the target domain with limited training data. Specifically,
to address the difference between feature spaces and action
spaces across domains, in TVIN , we develop two transfer
learning modules with respect to the learned reward function
and the learned transition function, respectively:
• We first encode state observations (with different features

to the source domain) in the target domain to the same
representation of the source domain, such that the reward
function transferred from the pre-trained VIN can accu-
rately produce reward images in the target domain.

• We then leverage the common subset of actions between
the source and the target domains to transfer state-action
transition information from the source domain to the target
domain. Furthermore, we fine-tune the transferred transi-
tion function by introducing transfer weights to automati-
cally learn to what degree the transferred actions resemble.

By leveraging knowledge transferred via the above trans-
fer learning modules, we further design a new Value Itera-
tion module (VI module) to generate a policy for the target

5676



wt

previous value V Q(s, a)

new value 
V

Observation

O(s')

Observation

O(s)

Reward Rt

Pt

Q(s', a')

Reward R't

P't

previous value V

Attention

Policy

wr

Part III

Part I 

Part II pre(s, a)Q

K iterations

TVIN

Figure 1: The Framework of a TVIN

domain. An optimal target-domain policy can be learned
by back-propagating the gradient of loss through the whole
TVIN in an end-to-end training manner.

To evaluate the effectiveness of our proposed TVIN , we
conduct experiments to transfer knowledge between different
2D RL domains, including 2D mazes and Differential Drive
(Lee et al. 2018). We evaluate the transfer performance of
TVIN with varying environments, maze sizes, dataset sizes
and hyperparameters, etc. Extensive experiments empirically
show that our proposed TVIN is able to learn a target-domain
policy significantly faster and reach a higher generalization
performance, compared with the conventional VIN and an-
other heuristic transfer learning method.

Problem Definition

Let M denote the MDP of some domain, where an optimal
policy π is expected to be learned. The states, actions, re-
wards, and transitions in M are denoted by s ∈ S, a ∈ A,
R(s, a) and P (s′|s, a) respectively. Let φ(s) denote an obser-
vation for state s. R and P are dependent on the observations
as R = fR(φ(s)) and P = fP (φ(s)). The functions fR and
fP are learned jointly in the policy learning process. Given
a pre-trained MDP in a source domain, we aim to transfer
the learned knowledge including the learned reward function
and transition function to the target domain, such that an opti-
mal policy π(a|φ(s); θ) for the target domain can be learned.
Here θ denotes all the parameters of the TVIN .

Transfer Value Iteration Networks

In this section, we introduce our proposed TVIN in detail.
The overall framework of TVIN is depicted in Figure 1. We
develop an encoder to map observations of states in the target
domain to the feature representation as the same as the source
domain, which is indicated as “part I” in the figure. We then
transfer the Q-network with respect to the common subset of
actions from the source domain to the target domain, which
is indicated as “part II” in the figure. After that, we enrich the
Q-network by learning states transition for domain-specific
actions of the target domain from scratch. By combining
the above two Q-networks, we design a new Value Iteration
module (VI module) for the target domain, which is indicated
as “part III”. The planning-integrated TVIN -based policy for

the target domain can be trained in an end-to-end manner by
back-propagating the gradient through the whole network.

Pre-trained VIN

For TVIN , we suppose that a well-trained source-domain
VIN model is given in advance. Basically, a key idea behind
many reinforcement learning algorithms is to estimate the
action-value function (Tsitsiklis and Roy 2002), by using
the Bellman equation as an iterative update, Qi+1(s, a) =
Es,a [r + γmaxa′ Qi(s

′, a′)|s, a]. The value-iteration algo-
rithm is a popular algorithm for calculating the optimal value
function V ∗ and deriving the correspondingly optimal pol-
icy π∗. In each iteration, Vn+1(s) = maxaQn(s, a) ∀s,
where Qn(s, a) = R(s, a) + γ

∑
s′ P (s

′|s, a)Vn(s′). The
value function Vn converges to the optimal value function
V ∗ when n→ ∞, from which an optimal policy is derived
as π∗(s) = argmaxaQ∞(s, a). In a VIN, a VI module im-
plemented by a neural network is used to approximate the
value iteration algorithm. Specifically, the VIN first produces
a reward image R by fR(φ(s); θ) and inputs R of dimen-
sions l, m, and n to the VI module. The reward is then fed
into a convolutional Q-layer of A channels followed by a lin-
ear activation function: Qa,i′,j′ =

∑
l,i,j W

a
l,i,jRl,i′−i,j′−j .

Each channel in this layer corresponds to Q(s, a) for a par-
ticular action a. This layer is then max-pooled along the
actions channel to produce the next-iteration value function
layer, where Vi,j = maxa(Q(a, i, j)). The next-iteration
value function layer V is then stacked with the reward R, and
fed back into the convolutional layer and max-pooling layer
K times to perform K value iterations. By training the VIN
end-to-end in the source domain, we obtain a source-domain
VIN and its derived policy for knowledge transfer.

TVIN Algorithm

The overall algorithm is presented in Algorithm 1. Given
the pre-trained VIN in the source domain, the pre-trained
reward function fR is first transferred to produce reward
images for the observation s in the target domain (i.e., Step
3). After that the state transition values on the common subset
of actions, fprep , is transferred to the target domain with a
learnable weight associated with each action to measure the
similarity degree between domains. And the state transition
values on new domain-specific actions, fnewp , are learned
from scratch. All of these state transition values reconstruct
a transition function in the target domain, which is further
used to compute the Q-function in each iteration for the
target domain (i.e., Steps 6 and 7). An attention vector is fed
as an input to generate the target policy πT (i.e., Step 11).
Finally, the back-propagation algorithm is used to update the
parameters of the whole network to learn an optimal target-
domain policy (i.e., Step 13). The implementation details of
transferring the reward function and the transition function
are described in the following sections.

Reward function transferring In the source VIN, fR(s)
maps observations of input states to reward images, and pass
the reward images to the VI module. For example in the
gird-world domain (Tamar et al. 2016), fR can map an ob-
servation to a high reward at the goal, and negative reward
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Algorithm 1 Transfer Value Iteration Algorithm

1: Initialize value function V (s) with zeros
2: for epoch = 1, M do
3: Set reward R(s, a) = fR(φ(s), a; θ)
4: for n = 1, K do
5: Construct transition functions for each of the states:

6: P (s′|s, a) =
{
fnewP (φ(s), a; θ), a ∈ Anew

θtf
pre
P (φ(s), a), a ∈ Atransfer

7: Qn(s, a; θ) = R(s, a) + γ
∑

s′ P (s
′|s, a)Vn(s′)

8: Vn+1(s; θ) = maxaQn(s, a; θ)
9: end for

10: Construct optimal Q with Q∗(s, a) = R(s, a) +
γ
∑

s′ P (s
′|s, a)V ∗(s′)

11: Add attention vector ψ(s; θ) to the final policy
πT (a|ψ(s); θ)

12: Compute TVIN policy πT (a|s; θ) with π∗(s) =
argmaxaQ

∗(s, a)
13: Update θ by back-propagating the gradient according

to (4)
14: end for

near an obstacle. If we directly adopt the pre-trained fR from
the source domain to the target domain, the reward function
may be constrained to the task-specific features due to the
diversity of pixel-level inputs. Therefore, for the target do-
main where the feature space is different from that of the
source domain, we propose a feature mapping component to
map states from different domains onto the same represen-
tation. Specifically, we encode the state observations in the
target domain into the same representation as in the source
domain by using an autoencoder (Zhuang et al. 2015). In
this way, the reward function transferred from the pre-trained
VIN is able to accurately produce a reward image for the
target domain before being passed to the new VI module.
In particular, we reuse the learned parameters of pre-trained
reward function in source domain, and retrain an additional
fully-connected layer acting as the feature encoder to output
a shared representation for the input states s in the target do-
main. This feature encoder is trained in an end-to-end manner
with the whole TVIN . The new reward function is denoted
by R(s, a) = fR(s, a; θ), where θ denotes all the parameters
of the whole TVIN .

Transition function transferring To transfer the transi-
tion function across domains, we design a new VI mod-
ule, which performs value iteration by approximating the
Bellman-update through a CNN in the target domain. Specifi-
cally, the CNN used in the VI module is comprised of stacked
convolution and max-pooling layers. The input to each con-
volution layer is a 3-dimensional signal X , typically, an
image with l channels and m × n pixels. Its output h is
a l′-channel convolution of the image with different kernels:
hl′,i′,j′ = σ

(∑
l,i,j W

l′
l,i,jXl,i′−i,j′−j

)
, where σ is an ac-

tivation function. A max-pooling layer then down-samples
the image by selecting the maximum value among some di-
mension. In this sense, each iteration in our new VI module
can be approximately regarded as passing the reward R as

well as the previous value function Vn through a convolution
layer and max-pooling layer. As mentioned in (Tamar et al.
2016), each channel in the convolution layer corresponds to
the Q-function for a specific action, and convolution kernel
weights correspond to the discounted transition probabilities.
Thus, we leverage the state transition values regarding the
common subset of actions from the pre-trained model as a
bridge of transition functions between the source domain
and the target domain. At the high level, the new VI module
divides the channels in the convolution layer into two parts:
one corresponds to the Q-function for the common subset
of actions and the other is for the new actions in the target
domain.

For common actions between domains, some of them
perform more similarly on both domains, while others
may perform less similarly. To model the degree of sim-
ilarity of actions between domains, we propose to add a
learnable weight θt for each common action. The fine-
tuned transition function in the target domain is defined
by P (s′|s, a) = θtf

pre
P (φ(s), a), if a ∈ Atransfer, and

P (s′|s, a) = fnewP (φ(s), a), if a ∈ Anew, where Atransfer

is the common subset of actions, fpreP is adopted from
the pre-trained transition function, Anew is the subset of
domain-specific actions in the target domain, and fnewP is
learned from scratch with target domain data. When back-
propagating the gradient through the TVIN in the target do-
main, we fix fpreP and only learn θt and fnewP . To sum up,
convolution kernel weights corresponding to the discounted
transition probabilities in TVIN are computed based on two
different cases:

W a =

{
θtW

a
pre a ∈ Atransfer;

W a
new a ∈ Anew,

(1)

where W a
pre stands for the pre-trained convolution kernel

parameters corresponding to the discounted transition proba-
bilities for the transferred (common) actions, θt stands for the
transfer weight, and W a

new stands for the new convolution
kernel parameters corresponding to the discounted transition
probabilities for new actions in target domain. The value func-
tion V is stacked with the reward R, and they are fed back
into the convolutional layer, where each channel corresponds
to the Q-function for a specific action. The convolution oper-
ation in new VI module is formulated as

Qa,i′,j′ =
∑
l,i,j

W a
l,i,jRl,i′−i,j′−j +

∑
i,j

W a
l+1,i,jVi′−i,j′−j ,

(2)
where i, j stand for the input state s = (i, j), R is the reward
and V is the value function in each iteration. These convolu-
tional channels in both two parts are then max-pooled along
all channels to produce the next-iteration value function layer
V with Vn+1(s; θ) = maxaQn(s, a; θ). Performing value
iteration for K times in this form, the new VI module outputs
the approximate optimal value function V ∗ = VK . The value
iteration module in TVIN has an effective depth of K, which
is larger than the depth of the well-known Deep Q-Network
(Mnih et al. 2015). To reduce parameters for training process,
we share the weights in the K recurrent layers in the TVIN .

After learning the internal transfer VI module which
is independent to observations, we generate a pol-
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icy for the input state s according to π∗(s) =
argmaxaR(s, a) + γ

∑
s′ P (s

′|s, a)V ∗(s′). Note that the
transition

∑
s′ P (s

′|s, a)V ∗(s′) only depends on a subset of
the optimal value function V ∗, if the states have a topology
with local transition dynamics such as the grid-world appli-
cation. Thus, we suppose that a local subset of s is sufficient
for extracting information about the optimal TVIN plan.

Motivated by the wide use of attention mechanism (Xu
et al. 2015) to improve learning performance by reducing
the effective number of network parameters during training,
in TVIN , we introduce an attention moduel to select the
value of the current state after K iterations of value itera-
tion. Intuitively, for a given label prediction (action), only
a subset of the input features (value function) is relevant.
The attention module can be represented by a parameterized
function to output an attention modulated vector ψ(s; θ) for
the input state s. And this vector is added as additional fea-
tures to the TVIN to generate the final policy πT (ψ(s); θ).
By back-propagating through the whole network in an end-
to-end manner, we update the joint parameters θ and learn
the planning-based TVIN policy for the target domain.

Updating Parameters

By specifying the forms of the reward function fR, the tran-
sition function fP , and the attention function, and denoting
the parameters of the whole TVIN by θ, we define the policy
objective over the TVIN as the cross-entropy loss function
between the expert policy and the current policy derived by
TVIN . The TVIN can be trained by minimizing the loss
function L(θ),

L(θ) =
∑
a∈A

πE(a|s) log πT (a|s; θ), (3)

where πT (a|s; θ) is the TVIN policy parameterized by θ, and
πE(a|s) is the expert policy for training data. To acquire train-
ing data, we can sample the expert to generate the trajectories
used in the loss. In contrast to the deep reinforcement learn-
ing objective (Mnih et al. 2015) which recursively relies on
itself as a target value, we use imitation learning (IL) (Giusti
et al. 2016), which uses a stable training signal generated by
an expert to guide the transfer network. Learning the TVIN
policy then becomes an instance of supervised learning.

We consider the updates that optimize the policy parameter
θ of the state representation, the reward function, and the new
VI model. We update the θ towards the expert outcome. The
gradient of the loss function with respect to the weights can
be computed via

∇θL(θ) =
∑
a∈A

πE(a|s)
πT (a|s; θ)

∇θπT (a|s; θ). (4)

We use the above gradient to update parameters by stochastic
gradient descent (SGD) (Boyd and Vandenberghe 2004). In
summary, the joint parameters θ of are updated to make the
planning-integrated TVIN -based policy πT more close to
the expert policy πE .

Experiments

Datasets and Criteria

Dataset The RL task domains for our experiments are syn-
thetic 2D maps with randomly placed obstacles, in which
observations include positions of agents, goal positions and
the map configurations. Specifically, we use three differ-
ent 2D environments similar to the GPPN experiments in
(Lee et al. 2018) : the NEWS, the Moore and the Differ-
ential Drive. In NEWS, the agent can move {East, West,
North, South}; in Differential Drive, the agent can move
forward along its current orientation, or turn left/right by
90 degrees. The action space is {Move forward, Turn left,
Turn right}; in Moore, the agent can move to any of the
eight cells in its neighborhood. The action space of Moore is
{East, West, North, South, Northeast, Northwest, South-
east, Southwest}. When considering knowledge transfer in
the following experiments, we give the pairs of possible simi-
lar actions between different domains. Between NEWS and
Differential Drive, the similar pairs are {(North, Move for-
ward), (East, Turn left), (West, Turn right)}. Between NEWS
and Moore, the similar pairs are {(East, East), (West, West),
(North, North), (South, South)}.

In the experiments on the above three domains, the state
vectors given as input to the models consist of the maps and
the goal location. In NEWS and Moore, the target is an x-y
coordinate. Similar to the experimental setup in (Tamar et al.
2016), we produce a (2×m×m)-sized observation image
for each state s = (i, j) in each trajectory, where m is the
maze size. The first channel of the image encodes the obstacle
configuration (1 for obstacle, 0 otherwise), while the second
channel encodes the goal position (1 at the goal, 0 otherwise).
The full state observation vector consists of the observation
image and the state s = (i, j). While in Differential Drive,
the goal location contains an orientation along with the x-y
coordinate. Consequently, the dimension of the goal map
given as input to the models is 4 ∗ m ∗ m in Differential
Drive. In addition, for each state, we produce a ground-truth
label encoding the action that an optimal shortest-path policy
would take in that state. Experimentally, our ground-truth
label is created with a maze generation process that uses
depth-first search with the recursive back-tracker algorithm
(Cormen et al. 2009).

Criteria In the following experiments, we empirically com-
pare TVIN and VIN using two metrics referred to (Lee et al.
2018) : %Optimal (%Opt) is the percentage of states whose
predicted paths under the policy estimated by the model has
optimal length. %Opt is denoted by:

%Opt =
Num(ai = a∗i )

Stest
,

where Stest represents the total number of states in test set, a∗i
represents the optimal action for state si, and ai is the action
prediction generated by models for si. The second metric
%Success (%Suc) is the percentage of states whose predicted
paths under the policy estimated by the model reach the goal
state. A trajectory is said to succeed if it reached the goal
without hitting obstacles. Let Ntest denote the total number
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Source NEWS-9 NEWS-15 NEWS-28
Target Moore-9 Moore-15 Moore-28 Moore-9 Moore-15 Moore-28 Moore-9 Moore-15 Moore-28

N Model %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc

1k VIN 84.2 87.7 77.3 81.7 56.2 65.8 84.2 87.7 77.3 81.7 56.2 65.8 84.2 87.7 77.3 81.7 56.2 65.8
1k TVIN 89.8 94.2 88.3 91.0 66.7 74.7 94.6 96.6 90.1 92.8 66.1 75.3 94.3 95.8 86.4 89.1 62.1 71.1

5k VIN 90.5 92.5 86.7 88.7 64.3 72.9 90.5 92.5 86.7 88.7 64.3 72.9 90.5 92.5 86.7 88.7 64.3 72.9
5k TVIN 97.0 98.0 93.8 94.9 80.4 86.3 97.1 97.2 95.2 96.0 73.4 84.3 97.8 98.2 91.1 92.6 76.2 84.3

10k VIN 86.2 88.0 91.1 92.3 60.8 68.0 86.2 88.0 91.1 92.3 60.8 68.0 86.2 88.0 91.1 92.3 60.8 68.0
10k TVIN 97.6 97.8 95.4 96.2 83.1 88.3 97.4 97.5 96.2 96.7 87.8 91.8 96.6 96.8 92.5 93.7 78.7 84.0

Table 1: Transfer from NEWS to Moore with varying dataset sizes N and maze sizes M.

Source Moore-9 Moore-15 Moore-28
Target NEWS-9 NEWS-15 NEWS-28 NEWS-9 NEWS-15 NEWS-28 NEWS-9 NEWS-15 NEWS-28

N Model %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc

1k VIN 77.8 81.0 69.3 71.1 45.6 51.9 77.8 81.0 69.3 71.1 45.6 51.9 77.8 81.0 69.3 71.1 45.6 51.9
1k TVIN 94.7 94.8 85.5 86.8 69.1 71.6 94.8 94.9 96.3 96.4 89.2 89.4 82.0 84.0 73.1 75.0 64.0 67.7

5k VIN 79.8 81.9 70.7 73.5 57.8 60.9 79.8 81.9 70.7 73.5 57.8 60.9 79.8 81.9 70.7 73.5 57.8 60.9
5k TVIN 95.0 95.0 88.6 89.4 75.1 77.8 97.1 97.1 96.5 96.6 93.0 93.1 85.1 86.7 77.3 80.3 65.1 68.1

10k VIN 87.1 88.4 88.1 88.4 58.4 61.5 87.1 88.4 88.1 88.4 58.4 61.5 87.1 88.4 88.1 88.4 58.4 61.5
10k TVIN 96.6 96.6 89.3 90.0 80.1 82.2 97.4 97.4 97.0 96.9 94.4 94.5 91.7 92.5 88.7 89.6 68.4 72.9

Table 2: Transfer from Moore to NEWS with varying dataset sizes N and maze sizes M.

Figure 2: Training process on Moore-15 with 1k training
data transferred from NEWS-9 compared with VIN. Left:
domains of 30% obstacles. Right: domains of 50% obstacles.

of test trajectories, Tgoal represents the goal state of trajectory
T and Tend represents the end state of the trajectory predicted
by the models. Then %Suc can be denoted by:

%Suc =
Num(Tend = Tgoal)

Ntest
.

Experimental Results

Our experiments attempt to transfer policies between 2D
domains with different environments and maze sizes. We
evaluate our TVIN approach in the following aspects:
1. We first evaluate TVIN between different domains, includ-

ing transfer from NEWS to Moore, transfer from Moore to
NEWS and transfer from Differential Drive to NEWS. Ad-
ditionally we vary the maze sizes in each domains, dataset
sizes in the target domains, etc., to see the performance of
TVIN when only limited training data is available.

2. We then evaluate TVIN approach on hyperparameter sen-
sitivity, including the iteration count K and the kernel

Figure 3: Prediction accuracy on Moore-15 with varying
dataset sizes transferred from NEWS-9 compared with VIN.
Left: domains of 30% obstacles. Right: domains of 50%
obstacles.

size F . Experiments show that TVIN can indeed perform
better than single VIN and does not rely on the setting of
these hyperparameters.

3. We finally evaluate TVIN by varying the amount of pre-
trained knowledge transferred from the source domain,
which is characterized by the number of transferable ac-
tions between source and target domains. We aim to see
the impact of the amount of transferred knowledge.

In 2D domains, an optimal policy can be calculated by
exact value iteration algorithm. And the pre-trained VIN
represented by a neural network has been proved to learn
planning results. However, for these different tasks of similar
complexity and sharing similar actions, TVIN can greatly
accelerate training process as well as improving the perfor-
mance of training by leveraging learned knowledge and by
reducing the learning expense of parameters.
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Source Drive-9 Drive-15 Drive-28
Target NEWS-9 NEWS-15 NEWS-28 NEWS-9 NEWS-15 NEWS-28 NEWS-9 NEWS-15 NEWS-28

N Model %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc %Opt %Suc

1k VIN 77.8 81.0 69.3 71.1 45.6 51.9 77.8 81.0 69.3 71.1 45.6 51.9 77.8 81.0 69.3 71.1 45.6 51.9
1k TVIN 86.7 88.1 70.2 72.2 49.2 52.6 80.0 81.4 83.4 84.6 63.9 68.7 78.3 81.3 72.8 74.8 57.5 59.8

5k VIN 79.8 81.9 70.7 73.5 57.8 60.9 79.8 81.9 70.7 73.5 57.8 60.9 79.8 81.9 70.7 73.5 57.8 60.9
5k TVIN 88.0 88.8 83.7 86.0 84.1 84.9 86.0 86.8 93.4 93.6 91.9 92.1 81.9 84.4 85.2 85.1 78.8 80.5

10k VIN 87.1 88.4 88.1 88.4 58.4 61.5 87.1 88.4 88.1 88.4 58.4 61.5 87.1 88.4 88.1 88.4 58.4 61.5
10k TVIN 92.8 93.3 92.9 93.1 91.2 91.5 90.9 91.7 94.2 94.3 93.3 93.4 89.5 90.7 95.5 95.5 92.5 92.5

Table 3: Transfer from Drive to NEWS with varying dataset sizes N and maze sizes M.

Accuracy w.r.t. domains Based on these guidelines, we
evaluate several instances of knowledge transfer, i.e., from
NEWS to Moore, from Moore to NEWS and from Differen-
tial Drive to NEWS. For each transfer, we compare TVIN
policy to the VIN reactive policy. Additionally we vary the
maze sizes in each domains and dataset sizes in the target
domains. Note that, K is required to be chosen in proportion
to the maze size. In the implementation, we refer to (Lee et al.
2018) and set the default recurrence K relative to the maze
sizes: K = 20 for 9× 9 mazes, K = 30 for 15× 15 mazes
and K = 56 for 28 × 28 mazes. Results are respectively
reported in Table 1, Table 2, and Table 3, showing that our
transfer learning approach TVIN provides a definite increase
in accuracy when we have limited data in the target domain.
Even compared to the standard reactive networks DQN of
the success rate 74.2% on Moore-28 with full dataset which
is shown in (Tamar et al. 2016), TVIN can reach the success
rate of 84.3% (Table 1), outperforming DQN only with 5k
training data in the same case. Additionally, training process
of the TVIN and VIN on 1k training data of Moore-15 is
depicted in Figure 2. It also shows that knowledge transfer
by TVIN speeds up learning process and reaches a higher
generalization.

Accuracy w.r.t. transfer methods As shown in Table 4,
we make comparison with a simple transfer method denoted
by VINi. VINi is a heuristic transfer method (Parisotto, Ba,
and Salakhutdinov 2016) by directly leveraging pre-trained
weights of fR and part of fp (with respect to similar actions)
as the initialization for training in the target domain. Taking
the experiments between NEWS-15 to MOORE for example,
the results show that heuristic transfer by VINi give useful
pre-trained information, compared to training from scratch.
Moreover, the TVIN policy learned in target domain performs
much better than heuristic transfer VINi, which shows that
our transfer strategies are effective and applicable.

Accuracy w.r.t. planning complexity The complexity of
planning in the 2-D maze domains generally depends on the
number of obstacles and their distribution on the grid map.
We thus synthesize domains based on different number of
obstacles and different size of the grid map. In this experi-
ments, We compare two complexity, which are 30 percent
and 50 percent. It means 30 percent or 50 percent of the map
is randomly placed with obstacles. Although we evaluate our

Source NEWS-15
Target Moore-9 Moore-15 Moore-28

N Model %Opt %Suc %Opt %Suc %Opt %Suc

1k VIN 84.2 87.7 77.3 81.7 56.2 65.8
1k VINi 92.8 94.9 88.6 91.2 65.2 74.6
1k TVIN 94.6 96.6 90.1 92.8 66.1 75.3

5k VIN 90.5 92.5 86.7 88.7 64.3 72.9
5k VINi 96.2 96.1 94.2 95.4 71.9 80.9
5k TVIN 97.1 97.2 95.2 96.0 73.4 84.3

10k VIN 86.2 88.0 91.1 92.3 60.8 68.0
10k VINi 96.1 96.3 95.0 95.5 84.6 90.4
10k TVIN 97.4 97.5 96.2 96.7 87.8 91.8

Table 4: Policy performance compared with simple trans-
ferred VINi and TVIN

approach on these 2-D domains, we should note that many
real-world application domains, such as navigations, ware-
house scheduling, etc. can be matched to 2-D maze domains
with different complexity, and thus such evaluation in these
domains should be convincing.

In this experiment, we view 9 × 9 NEWS as source do-
mains, and transfer pre-trained knowledge to 15× 15 Moore.
We investigate the transfer performance with respect to differ-
ent complexity. The results are show in Figure 2 and Figure
3, where the left one shows the transfer between domains of
30 percent obstacles, and the right one is the transfer between
domains of 30 percent obstacles. In both cases, adjusting
weights of the transferred knowledge in TVIN can indeed
outperform the mechanism of randomly initializing VIN. It
illustrates that TVIN planning policies, by our transfer strate-
gies, are technically effective either in simple environment or
complex environment. The performance gap between transfer
learning policy TVIN and original VIN policy is more signif-
icant in low complexity domain, whereas in high complexity
domains the gap between TVIN and VIN is comparatively
slight. Furthermore, the difference in the performance gap
shows that it is more challenging for TVIN to leverage the
pre-trained knowledge when the complexity of planning is
much higher.

Accuracy w.r.t. dataset sizes To evaluate the objective on
transfer learning, we compare the performance of TVIN
model by using different size of dataset. As is illustrated
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K = 10 K = 20 K = 30
Model %Opt %Suc %Opt %Suc %Opt %Suc

VIN 70.3 78.3 67.7 77.0 64.7 74.5
TVIN 78.0 85.8 81.6 90.8 80.1 91.8

Table 5: Test performance on Moore-15 transferred from
NEWS-9 with varying iteration counts K.

F = 3 F = 5 F = 7
Model %Opt %Suc %Opt %Suc %Opt %Suc

VIN 64.7 74.5 77.3 81.7 77.8 83.1
TVIN 80.1 91.8 88.3 91.0 85.3 88.9

Table 6: Test performance on Moore-15 transferred from
NEWS-9 with varying kernel sizes F .

in Table 1, Table 2 and Table 3, the size of training data on
target domain influences the performance of TVIN . Predic-
tion accuracy with varying training data in target domain is
also depicted in Figure 4. It shows that, in each case, TVIN
can indeed outperform the mechanism of randomly initializ-
ing VIN. Although the performance gap decreases gradually
with the dataset size increasing, the performance of TVIN
turns out to be significantly greater than VIN when there is
limited data in the target domain. This shows that if there
is already sufficient data for a novel domain to learn opti-
mal policies, information transferred from the source domain
would not help improve the performance a lot. Rather, our
transfer strategies focus more on generating planning-based
TVIN policies for a target domain with limited dataset.

Accuracy w.r.t. hyperparameters Following the above re-
sults that TVIN performs better or equals to VIN, we further
evaluate the effect of varying both iteration count K and
kernel size F on the TVIN models. Table 5 and Table 6 show
%Opt and %Suc results of TVIN and VIN on Moore-15
for different values of F and K, and we use NEWS-9 as the
source domain. This shows that TVIN outperforms VIN even
when hyperparameters such as iteration count K and kernel
size F are set differently in the target domains. Although in
VINs, larger mazes require larger kernel sizes and iteration
counts, the performance gap between TVIN and single VIN
do not rely on a specific choice of hyperparameters.

Accuracy w.r.t. transferred knowledge Finally, we eval-
uate the influence of the number of transferable actions be-
tween source and target domains in TVIN . The more actions
are transferred, the more knowledge is leveraged in target
domain. Table 7 shows results for different numbers of trans-
ferable actions between the source domain (NEWS-9) and
the target domain (Moore-15) with 1k training data. It is il-
lustrated that the more similar actions to transfer, the better
performance for target TVIN to gain.

Actions Num = 1
%Opt %Suc

Num = 2
%Opt %Suc

Num = 3
%Opt %Suc

Num = 4
%Opt %Suc

VIN 77.3 81.7 77.3 81.7 77.3 81.7 77.3 81.7
TVIN 82.0 86.1 82.2 86.5 86.2 90.9 88.3 91.0

Table 7: Test performance on target domain Moore-15 trans-
ferred from the source domain NEWS-9 with varying number
of transferred actions.

Related Work

In Reinforcement Learning (RL), the agent act in the
world and learn a policy from trial and error. RL algo-
rithms in (Sutton and Barto 2005; Schulman et al. 2015;
Levine et al. 2016) use these observations to improve the
value of the policy. Recent works investigate policy architec-
tures that are specifically tailored for planning under uncer-
tainty. VINs (Tamar et al. 2016) take a step in this direction
by exploring better generalizing policy representations. The
Predictron (Silver et al. 2017), Value Prediction Network (Oh,
Singh, and Lee 2017) also learn value functions end-to-end
using an internal model, implemented with recurrent neural
networks (RNNs) (Mikolov et al. 2010) acting as the transi-
tion functions over abstract states. However, none of these
abstract planning-based models have been considered for
transfer. Our work investigates the generalization properties
of the pre-trained policy and proposes the TVIN model for
knowledge transfer.

A wide variety of methods have also been studied in the
context of RL transfer learning(Taylor and Stone 2009). Pol-
icy distillation (Hinton, Vinyals, and Dean 2015; Chen et al.
2017) aims to compress the capacity of a deep network via
efficient knowledge transfer . It has been successfully applied
to deep reinforcement learning problems (Rusu et al. 2016).
Recently, successor features and generalised policy improve-
ment, has been introduced as a principled way of transferring
skills (Barreto et al. 2018). Also (Abel et al. 2018) consid-
ers value-function-based transfer in RL. However the key
to our approach is that the Q-functions for specific actions
learned from the source domain can be transferred to the
corresponding VI module in the target domain. we also build
a mapping between feature spaces in the source and target
domains, transfer Q-networks related to similar actions from
the source to the target domain and build policy networks for
dissimilar actions which are learned from scratch.

Conclusions

We propose a novel transfer learning approach TVIN to learn
a planning-based policy for the target domain with different
feature spaces and action spaces by leveraging pre-trained
knowledge from source domains. In addition, we exhibit
that such a transfer network TVIN leads to better perfor-
mance when the training data is limited in the target do-
main. In this paper we assume the pairs of possible similar
actions is provided beforehand. In the future, it would be
interesting to exactly learn the action similarities based on
Web search (Zhuo et al. 2011; Zhuo and Yang 2014) or lan-
guage model learning (Tian, Zhuo, and Kambhampati 2016;
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Feng, Zhuo, and Kambhampati 2018) before employing the
transfer method.
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