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Abstract

Making an erroneous decision may cause serious results in
diverse mission-critical tasks such as medical diagnosis and
bioinformatics. Previous work focuses on classification with
a reject option, i.e., abstain rather than classify an instance
of low confidence. Most mission-critical tasks are always ac-
companied with class imbalance and cost sensitivity, where
AUC has been shown a preferable measure than accuracy
in classification. In this work, we propose the framework of
AUC optimization with a reject option, and the basic idea
is to withhold the decision of ranking a pair of positive and
negative instances with a lower cost, rather than mis-ranking.
We obtain the Bayes optimal solution for ranking, and learn
the reject function and score function for ranking, simulta-
neously. An online algorithm has been developed for AUC
optimization with a reject option, by considering the convex
relaxation and plug-in rule. We verify, both theoretically and
empirically, the effectiveness of the proposed algorithm.

Introduction

Making an erroneous decision may cause serious results
in many mission-critical tasks such as medical diagnostic
(Hamid et al. 2017), biometric verification (Golfarelli, Maio,
and Malton 1997), myoelectric pattern-recognition control
(Robertson, Englehart, and Scheme 2018), and so on. For
example, in an electronic nose system, researchers may be
totally exposed to toxic or dangerous chemicals when the
system makes an incorrect prediction (Hatami and Chira
2013), and for a mobile robot, an imprecise localization may
bring about large deviation of navigation route (Marinho et
al. 2018). The mission-critical studies have received much
attention as machine learning techniques go to more real
applications (Hatami and Chira 2013; Hamid et al. 2017;
Robertson, Englehart, and Scheme 2018).

A classical solution for mission-critical tasks is to con-
sider the classification with a reject option, also known as
selective classification (Golfarelli, Maio, and Malton 1997;
Bounsiar, Grall, and Beauseroy 2006; Bartlett and Wegkamp
2008; Grandvalet et al. 2009; Hamid et al. 2017; Robertson,
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Englehart, and Scheme 2018; Marinho et al. 2018). The ba-
sic idea is to abstain an uncertain instance with a lower cost
so as to avoid mis-classification, and the cost is often more
acceptable in practice. Relevant research could be traced
back to Chow’s rule (Chow 1970), where the Bayes deci-
sion is provided to tradeoff the optimal error versus reject
rate. Most previous studies concern the reduction of clas-
sification error, which is equivalent to the improvement of
predictive accuracy of classifiers.

Many mission-critical tasks are always accompanied with
class imbalance and cost sensitivity, where the number of
one class may overwhelm the others, and the minor class
receives primary interest with higher cost. For example, in
medical diagnosis, the number of healthy persons is much
larger than that of patients, whereas the cost of erroneously
diagnosing a patient as healthy may be much higher than
that of diagnosing a healthy person as a patient. The Area
Under the ROC Curve (or short for AUC) is preferable to
accuracy as an evaluation measure in diverse tasks such as
class-imbalance learning and cost-sensitive learning (Cortes
and Mohri 2004; Gao et al. 2016; Liu et al. 2018), and
various algorithm have been developed for AUC optimiza-
tion (Freund et al. 2003; Zhao et al. 2011; Gao et al. 2016;
Liu et al. 2018). However, it remains open for mission-
critical tasks to take AUC into consideration.

This work tries to study AUC as an evaluation measure for
mission-critical tasks, and the main contributions are sum-
marized as follows:
• We propose the framework of AUC optimization with a

reject option for mission-critical tasks, and present the
Bayes optimal solution. The optimal score function for
ranking and the reject function are also provided based on
the conditional probability of data distribution.

• From the Bayes optimal solution, we develop an online
algorithm for AUC optimization with a reject option by
using plug-in rule and convex surrogate loss, and learn the
score function and the reject function simultaneously. Our
algorithm is guaranteed theoretically with regret bounds.

• We finally present extensive empirical studies to verify
the effectiveness of the proposed algorithm by comparing
with state-of-the-art algorithm on AUC optimization and
classification with a reject option.
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Related Work

Classification with a reject option has been a classical frame-
work to deal with mission-critical tasks. The basic idea is to
provide an option to reject an instance with a lower cost,
rather than mis-classification. Chow (1957; 1970) provided
the Bayes optimal decision from the trade-off between error
rate and rejection.

Various SVMs-style variants have been developed for
classification with a reject option (Fumera and Roli 2002;
Bounsiar, Grall, and Beauseroy 2006; Bartlett and Wegkamp
2008; Grandvalet et al. 2009). Cortes, DeSalvo, and Mohri
(2016) introduced a general framework of classification with
a reject option. Recent years have witnessed the reject op-
tion in deep neural networks (Geifman and El-Yaniv 2017).
Tortorella (2005) and Pietraszek (2005) studied an optimal
rejection rule based on the ROC curve.

The studies on AUC could date back to the 1970’s in
signal detection theory (Egan 1975). AUC has been an
important performance measure for ranking (Metz 1978;
Ferri, Hernández-Orallo, and Flach 2011). Herschtal and
Raskutti (2004) proposed the RankOpt algorithm based on
gradient descent method, and some variants of traditional al-
gorithms have been developed for AUC optimization, such
as boosting (Freund et al. 2003; Rudin and Schapire 2009)
and SVM (Brefeld and Scheffer 2005; Joachims 2005).

Zhao et al. (2011) proposed an online AUC optimization
algorithm based on reservoir sampling. Gao et al. (2016)
proposed an online AUC optimization algorithm using the
consistent square loss. Ying, Wen, and Lyu (2016) further
built on a saddle point formulation for a consistent square
loss and proposed a stochastic algorithm with convergence
analysis. Based on this saddle point formulation, Natole,
Ying, and Lyu (2018) and Liu et al. (2018) proposed new
stochastic algorithms with tighter regret bounds.

The rest of the paper is organized as follows. We begin
with the some preliminaries, and propose the framework of
AUC optimization with a reject option. We then develop the
AUCRO algorithm with theoretical guarantees. We finally
conduct extensive experiments and conclude this work.

Preliminaries

Let X ⊂ R
m and Y = {−1,+1} be the instance and la-

bel space, respectively, and assume that D is an underlying
(unknown) distribution over joint space X × Y . Denote by

η(x) = Pr[y = +1|x]
the conditional probability of positive instances according
to distribution D. We can also express distribution D with
triplet (D+,D−, p), where D+(x) = Pr[x|y = +1],
D−(x) = Pr[x|y = −1] and p = Pr[y = +1].

Notice that the distribution D is unknown in practice, and
what we can observe is a training sample Sn of size n, i.e.,

Sn = {(x+
1 ,+1), (x+

2 ,+1), · · · , (x+
n+
,+1),

(x−
1 ,−1), (x−

2 ,−1), · · · , (x−
n− ,−1)},

where each element is drawn independently and identically
(i.i.d) from distribution D. Here, we denote by n+ and n−

the cardinality of positive and negative instances in training
sample Sn, respectively, and n = n− + n+.

Let f : X → R be a score function. Given a sample Sn,
the AUC w.r.t. function f is defined as

AUC(f, Sn) = 1− 1

n+n−

n+∑
i=1

n−∑
j=1

�(f,x+
i ,x

−
j ),

where the ranking loss �(f,x+
i ,x

−
j ) is given by

�(f,x+
i ,x

−
j ) = I[f(x+

i ) < f(x−
j )] +

1

2
I[f(x+

i ) = f(x−
j )].

Here, I[·] is the indicator function which returns 1 if the argu-
ment is true and 0 otherwise. Essentially, AUC is equivalent
to the Wilcoxon-Mann-Whitney statistic (Yan et al. 2003).

AUC Optimization with a Reject Option

For AUC optimization with a reject option, we introduce an
augmented function r : R × R → {0, 1}, and make a reject
option by setting

r(f(x+
i ), f(x

−
j )) = 0.

In such case, there is no definitive ranking between x+
i and

x−
j . We further introduce the loss function for AUC with a

reject option as follows:

L(r, f,x+
i ,x

−
j ) = �(f,x+

i ,x
−
j )r(f(x

+
i ), f(x

−
j ))

+ d(1− r(f(x+
i ), f(x

−
j )))

=
(
�(f,x+

i ,x
−
j )− d

)
r(f(x+

i ), f(x
−
j )) + d

where d is the cost of a reject option. For convenience, we
introduce a constant

κ = d/(1− d). (1)

Our goal is to optimize the empirical risk over the training
data Sn defined below:

R(f, Sn) =
1

n+n−

n+∑
i=1

n−∑
j=1

L(r, f,x+
i ,x

−
j ).

Based on the Bayes optimal solution from Theorem 1 (to be
shown in the next section), we consider the reject function
as follows:

r
(
f(x+

i ), f(x
−
j )

)
= I

[
f(x−

j )

f(x+
i )

>
1

κ

]
+ I

[
f(x−

j )

f(x+
i )

< κ

]
,

and the score function f is given by

f(x) = 1− 1/η(x).

We restrict d ∈ (0, 1/2], which is similar to the scenario
in classification with a reject option (Herbei and Wegkamp
2006; Bartlett and Wegkamp 2008), and we reject pairwise
instances for smaller d. The problem can be degenerated to
the traditional AUC optimization without any reject option
as for d = 1/2.

5685



By plugging the reject function r(·, ·) into loss function
L(r, f,x+

i ,x
−
j ), we have

L(r, f,x+
i ,x

−
j ) =

(1− d)I

[
f(x−

j )

f(x+
i )

< κ

]
+ dI

[
f(x−

j )

f(x+
i )

<
1

κ

]
.

We can not directly optimize the loss function L since
the class-conditional probability η(x) is unknown. For this
problem, we consider plug-in rules (Herbei and Wegkamp
2006; Devroye, Györfi, and Lugosi 2013), where an empiri-
cal conditional probability η̂ (x) is estimated to approximate
the true conditional probability η (x).

In this work, we focus on logistic regression for plug-
in rule to estimate η (x) as in the work of (Herbei and
Wegkamp 2006), that is,

η̂ (x) =
ew

�x+b

1 + ew�x+b
.

Substituting into the score function f , we have

f (x) = −e−(w�x+b). (2)

This follows that

R(f, Sn) =

n+∑
i=1

n−∑
j=1

dI
[
lnκ+w�(x+

i − x−
j ) ≤ 0

]
n+n−

+

n+∑
i=1

n−∑
j=1

(1− d)I
[− lnκ+w�(x+

i − x−
j ) ≤ 0

]
n+n−

. (3)

For non-convex loss function in Eqn. (3), we exploit the
surrogate loss functions as follows:

L(w) =

n+∑
i=1

n−∑
j=1

1

2n+n−

{
dψ

(
lnκ+w�(x+

i − x−
j )

)

+(1− d)ψ
(
− lnκ+w�(x+

i − x−
j )

)}
+
λ

2
‖w‖2, (4)

where λ is a regularization parameter and ψ is a convex sur-
rogate loss function.

We adopt the square loss in Eqn. (4) as in the works of
(Gao and Zhou 2015; Gao et al. 2016), i.e.,

L(w) =
λ

2
‖w‖2 +

n+∑
i=1

n−∑
j=1

d
(
1− lnκ−w�(x+

i − x−
j )

)2

2n+n−

+

n+∑
i=1

n−∑
j=1

(1− d)
(
1 + lnκ−w�(x+

i − x−
j )

)2

2n+n− .

Motivated from (Gao et al. 2016), we rewrite the loss
function L(w) as a sum of losses for each individual training
instance

∑T
t=1 Lt(w), where Lt(w) is equal to

λ

2
‖w‖2 +

t−1∑
i=1

I [yi �= yt] d
(
1− lnκ− ytw�(xt − xi)

)2
2 |{i ∈ [t− 1] : yiyt = −1}|

+

t−1∑
i=1

I [yi �= yt] (1− d)
(
1 + lnκ− ytw�(xt − xi)

)2
2 |{i ∈ [t− 1] : yiyt = −1}| .

Algorithm 1 The AUCRO Algorithm
Input:

Training instances {(xt, yt)}Tt=1, the regularization pa-
rameter λ > 0 and stepsizes {ηt}Tt=1.

Initialization:
Set T+

0 = T−
0 = 0, c+0 = c−0 = 0, w0 = 0 and

Γ+
0 = Γ−

0 = [0]m×m.
1: for t = 1, 2, . . . , T do
2: Receive a training instance (xt, yt);
3: if yt = 1 then
4: T+

t = T+
t−1 + 1 and T−

t = T−
t−1;

5: c+t = c+t−1 +
1

T+
t

(xt − c+t−1) and c−t = c−t−1;

6: Update Γ+
t using Eqn. (8);

7: Calculate the gradient ∇Lt(wt−1);
8: else
9: T−

t = T−
t−1 + 1 and T+

t = T+
t−1;

10: c−t = c−t−1 +
1

T−
t

(xt − c−t−1) and c+t = c+t−1;

11: Update Γ−
t using Eqn. (9);

12: Calculate the gradient ∇Lt(wt−1);
13: end if
14: wt = wt−1 − ηt∇Lt(wt−1)
15: end for

Notice that this is an unbiased estimation to L(w). We de-
note by T+

t and T−
t the number of positive and negative in-

stances in sequence St, respectively. We also set Lt(w) = 0
for the case T+

t T
−
t = 0. For yt = 1, we have the gradient

∇Lt(w) = λw + xtx
�
t w − αxt

+
∑

i:yi=−1

(
αxi + (xix

�
i − xix

�
t − xtx

�
i )w

)
/T−

t , (5)

where α = 1− lnκ(2d− 1). We further denote by

c−t =
∑

i:yi=−1

xi/T
−
t ,

Γ−
t =

∑
i:yi=−1

(
xix

�
i − c−t

[
c−t

]�)
/T−

t ,

the mean and covariance matrix of negative class, respec-
tively. Then, Eqn. (5) can be simplified as

∇Lt(w) = λw + α(c−t − xt)

+ (c−t − xt)(c
−
t − xt)

�
w + Γ−

t w. (6)

Similarly, we calculate the gradient for yt = −1 as follows:

∇Lt(w) = λw − α(c+t − xt)

+ (c+t − xt)(c
+
t − xt)

�
w + Γ+

t w, (7)

where

c+t =
∑

i:yi=1

xi/T
+
t ,

Γ+
t =

∑
i:yi=1

(
xix

�
i − c+t

[
c+t

]�)
/T+

t .

5686



Algorithm 1 presents the detailed description of AUC op-
timization with a Reject Option (AUCRO). Specifically, we
update Γ+

t (Line 6) or Γ−
t (Line 11) for each iteration, re-

spectively, as follows:

Γ+
t = Γ+

t−1 + c+t−1

[
c+t−1

]� − c+t
[
c+t

]�
+
(
xtx

�
t − Γ+

t−1 − c+t−1

[
c+t−1

]�)
/T+

t , (8)

Γ−
t = Γ−

t−1 + c−t−1

[
c−t−1

]� − c−t
[
c−t

]�
+
(
xtx

�
t − Γ−

t−1 − c−t−1

[
c−t−1

]�)
/T−

t . (9)

We finally use the stochastic gradient descent to update the
classifier as follows:

wt = wt−1 − ηt∇Lt(wt−1),

where ηt is the stepsize for each t-th iteration.

Main Theoretical Analysis

This section presents theoretical analysis. We first provide
the Bayes optimal solution for optimal ranking, as well as
the reject function. Define the expected risk with respect to
distribution D as follows:

R(f,D) = Ex+∼D+,x−∼D−L(r, f,x+,x−).

Theorem 1. Given distribution D, the Bayes optimal func-
tion f∗ is defined by

f∗ (x) = 1− 1/η (x),

that is, we have R(f,D) ≥ R(f∗,D) for any score function
f : X → R. Here, we assume η(x) ∈ (0, 1) without loss of
generality. We also have the corresponding reject function,
for each positive instance x+ and negative one x−,

r
(
f(x+

i ), f(x
−
j )

)
= I

[
f(x−

j )

f(x+
i )

>
1

κ

]
+ I

[
f(x−

j )

f(x+
i )

< κ

]
where the κ is defined by Eqn. (1).

Proof. Recall that our optimization objective is given by

argmin
f

Ex1∼D+,x2∼D−L(r, f,x1,x2).

Without changing the optimal Bayes solution, the optimiza-
tion objective can be transformed as

argmin
f

E
(x1,y1),(x2,y2)∼D2

[
I [y1 > y2]L(r, f,x1,x2)

+ I [y2 > y1]L(r, f,x2,x1)
]
.

It is easy to observe that the reject function r is symmetric,
and we have

r
(
f(x1), f(x2)

)
= r

(
f(x2), f(x1)

)
= 0

if there is no definitive ranking between x1 and x2. We also
denote by

r = r
(
f(x1), f(x2)

)
= r

(
f(x2), f(x1)

)
.

Table 1: Benchmark datasets
dataset #instance #feature dataset #instance #feature

diabetes 768 8 a9a 32,561 123
fourclass 862 2 w8a 49,749 300
german 1,000 24 connect-4 67,557 126
splice 3,175 60 acoustic 78,823 50
letter 20,000 16 covtype 581,012 54

This follows that

argmin
f

E
(x1,y1),(x2,y2)∼D2

[
d(1− r)(a+ b− 2ab)

+ ra(1− b)�(f,x1,x2) + rb(1− a)�(f,x2,x1)
]

where a = η(x1) and b = η(x2). Minimize the above for-
mula, and it is easy to obtain

r
(
f(x1), f(x2)

)
= r

(
f(x2), f(x1)

)
= 0

when κ ≤ (1− 1/b)/(1− 1/a) ≤ 1/κ. It is easy to find the
Bayes optimal solution f∗

f∗ (x) = 1− 1

η (x)

and the reject function r is given by

r
(
f(x1), f(x2)

)
= I

[
f(x2)

f(x1)
>

1

κ

]
+ I

[
f(x2)

f(x1)
< κ

]
.

We also have the Bayes risk

R∗ = E
x+∼D+,x−∼D−

[
min{η(x+), η(x−), dη(x+)

+ dη(x−) + (1− 2d)η(x+)η(x−)} − η(x+)η(x−)
]
.

This completes the proof.

Remark: f∗(x) = 1− 1/η(x) is not the only Bayes opti-
mal solution, whereas it is helpful for our later analysis. No-
tice that the reject option takes effect only for d ∈ (0, 1/2],
that is why we restrict the range of d in the previous section.
Without loss of generality, we assume η(x) ∈ (0, 1) for any
x ∈ X in the above proof.

In the rest of this work, we present the convergence anal-
ysis of the proposed AUCRO algorithm. We first introduce a
lemma for smooth functions from (Nesterov 2003)[Theorem
2.1.5] as follows:
Lemma 2. Given a linear function space W ⊆ R

m, if a
function g : W → R is β-smooth, then, for every w,w′ ∈
W , we have

g(w)− g(w′) ≤ 〈∇g(w′),w −w′〉+ 1

2
β‖w −w′‖2.

Define w∗ = argminw
∑

t Lt(w). The following theo-
rem guarantees the convergence of Algorithm 1.
Theorem 3. For ‖xt‖ ≤ 1 (t ∈ [T ]), ‖w∗‖ ≤ D and
TL∗ =

∑T
t=1 Lt(w∗), we have∑

t
Lt(wt−1)−

∑
t
Lt(w∗) ≤ 2θD2 +D

√
2θTL∗

where θ = 4 + λ and ηt = 1/(θ +
√
θ2 + 2θTL∗/D2).
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Table 2: Comparison of the testing AUC values (mean±std.) on benchmark datasets
Compared methods AUCRO

dataset FSAUC OPAUC OAMseq OAMgd d=0.5 d=0.48 d=0.46 d=0.44 d=0.42
diabetes .8143±.0235 .8335±.0319 .8035±.0243 .8305±.0232 .8318±.0232 .8549±.0232 .8768±.0233 .8960±.0231 .9129±.0220
fourclass .8318±.0311 .8279±.0239 .8295±.0303 .8317±.0303 .8303±.0269 .8534±.0264 .8769±.0254 .9004±.0224 .9248±.0197
german .7791±.0392 .7911±.0281 .7762±.0356 .7547±.0302 .7896±.0332 .8146±.0346 .8385±.0352 .8613±.0350 .8826±.0343
splice .9088±.0087 .9240±.0084 .8965±.0130 .8905±.0145 .9243±.0078 .9435±.0072 .9591±.0063 .9714±.0053 .9810±.0044
letter .8106±.0064 .8116±.0046 .7455±.0128 .7826±.0146 .8108±.0040 .8404±.0040 .8687±.0039 .8956±.0039 .9204±.0038
a9a .8977±.0037 .9002±.0034 .8637±.0044 .8507±.0114 .8994±.0034 .9206±.0033 .9390±.0031 .9548±.0028 .9680±.0024
w8a .9482±.0058 .9657±.0046 .8858±.0133 .9336±.0145 .9703±.0038 .9816±.0029 .9884±.0021 .9928±.0013 .9954±.0009

connect-4 .8589±.0029 .8585±.0026 .7351±.0124 .7986±.0135 .8578±.0027 .8831±.0027 .9058±.0026 .9259±.0024 .9435±.0022
acoustic .8017±.0038 .8018±.0026 .7765±.0046 .7661±.0121 .8010±.0030 .8370±.0033 .8636±.0033 .8844±.0030 .9006±.0031
covtype .8230±.0014 .8235±.0009 .6770±.0231 .7459±.0272 .8232±.0014 .8494±.0014 .8734±.0014 .8953±.0013 .9155±.0012

Proof. Since we have defined Lt(w) = 0 for T+
t T

−
t = 0

above, this easy case will not be analyzed. Here we only
consider the general case T+

t T
−
t = 0 in our proof. Recall

aforementioned Lt(w) and it is easy to calculate the gradient

∇Lt(w) = λw −
∑t−1

i=1 I [yi = yt]

|{i ∈ [t− 1] : yiyt = −1}|
×
{
d
(
1− lnκ− ytw

�(xt − xi)
)
yt(xt − xi)+

(1− d)
(
1 + lnκ− ytw

�(xt − xi)
)
yt(xt − xi)

}
.

For w,w′ ∈ W and ‖xt‖ ≤ 1,we have

‖∇Lt(w
′)−∇Lt(w

′)‖ ≤ θ‖w′ −w‖,
which implies that Lt is θ-smooth. Denote by

wt∗ = argmin
w

Lt(w),

and this gives ∇Lt(wt∗) = 0 from the convex and differen-
tiable loss Lt. Based on Lemma 2, we have

0 ≤ Lt(wt∗) ≤ min
c

[
Lt

(
wt−1 − c∇Lt(wt−1)

)] ≤

min
c

[
Lt(wt−1)−c‖∇Lt(wt−1)‖2+1

2
θc2‖∇Lt(wt−1)‖2

]
= Lt(wt−1)− 1

2θ
‖∇Lt(wt−1)‖2. (10)

From the convexity of function Lt−1, we have

Lt(wt−1)− Lt(w∗) ≤ 〈∇Lt(wt−1),wt−1 −w∗〉. (11)

Also, we have

‖wt −w∗‖2 = ‖wt−1 − ηt∇Lt(wt−1)−w∗‖2
= ‖wt−1 −w∗‖2 − 2ηt〈∇Lt(wt−1),wt−1 −w∗〉

+ η2t ‖∇Lt(wt−1)‖2. (12)

By using Eqns. (10) and (11) in Eqn. (12), we have

(1− θηt)Lt(wt−1)− Lt−1(w∗)

≤ 1

2ηt
‖wt−1 −w∗‖2 − 1

2ηt
‖wt −w∗‖2.

Summing over t = 1, · · · , T and rearranging, we obtain

T∑
t=1

(1− θηt)Lt(wt−1)−
T∑

t=1

Lt−1(w∗)

≤ 1

2η1
‖w0 −w∗‖2 − 1

2ηT
‖wT −w∗‖2

+

T−1∑
t=1

(
1

2ηt+1
− 1

2ηt
)‖wt −w∗‖.

By setting ηt = η, we have

1

2η1
‖w0 −w∗‖2 − 1

2ηT
‖wT −w∗‖2 ≤ 1

2η
‖w∗‖ ≤ D2

2η
.

From w0 = 0 and ‖w∗‖ ≤ D, we finally get

T∑
t=1

Lt(wt−1)−
T∑

t=1

Lt(w∗) ≤ 1

1− θη

(
D2

2η
+ θηTL∗

)
.

By setting

η = 1/(θ +
√
θ2 + 2θTL∗/D2)

and simple derivations, the theorem holds as desired.

Remark: This theorem presents an O(1/T ) convergence
rate for the AUCRO algorithm if the distribution is separa-
ble, i.e., L∗ = 0, and anO(1/

√
T ) convergence rate for gen-

eral case. Besides, the convergence rate can be improved to
O(log T/T ) by exploring the strongly convexity of Lt(wt).
Here we consider the standard and suboptimal regret analy-
sis on exploiting the smoothness of Lt(wt) for simplicity.

Experiments

We evaluate the performance of our method on ten bench-
mark datasets, as summarized in Table 11. We compare our
method with state-of-the-art AUC optimization algorithms
without a reject option. We then compare our method with
conventional rejection algorithms that reject instances of low
confidence. We finally analyze the parameter influence.

The features have been scaled to [−1, 1] for all datasets.
Multi-class datasets have been transformed into binary ones
by randomly partitioning classes into two groups, where
each group contains almost the same number of classes.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/
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Figure 1: The curves of reject-rate vs AUC on benchmark datasets

Comparisons with AUC Approches

We compare our method with four state-of-the-art algo-
rithms on AUC optimization as follows:
• FSAUC: An AUC optimization algorithm which builds

on a saddle point formulation for the consistent square
loss (Liu et al. 2018);

• OPAUC: An online AUC optimization algorithm which
employ the consistent square loss. (Gao et al. 2016);

• OAMseq: An online AUC optimization algorithm based
on reservoir sampling which updates the model w.r.t. the
sequence of pairwise instances (Zhao et al. 2011);

• OAMgd: An online AUC optimization algorithm based on
reservoir sampling which updates model with gradient de-
scent approach (Zhao et al. 2011).
Two trials of 5-fold cross-validation is executed on train-

ing sets to decide the learning rate ηt ∈ 2[−12: 10] and the
regularized parameter λ ∈ 2[−10: 2] for our algorithm. For
FSAUC, we tune the initial stepsize η1 ∈ 2[−10: 10] and
the parameter R ∈ 10[−1: 5], as recommended in (Liu et
al. 2018). For OPAUC, stepsize ηt is decided within the
range 2[−12: 10] and the regularization parameter λ is de-
cided within the range 2[−10: 2] as recommended in (Gao et
al. 2016). For OAMseq and OAMgd, the buffer sizes are fixed
to be 100 and the penalty parameter C is decided within
2[−10: 10] as recommended in (Zhao et al. 2011).

The performance of compared methods are evaluated by
five trials of 5-fold cross-validation, where AUC values are
obtained by averaging over these 25 runs, as summarized in
Table 2. Firstly, when reject cost d = 0.5, that is to say
when our method does not reject any pairwise instances,
our method achieve better AUC than OAMseq and OAMgd
and the performance is comparable to FSAUC and OPAUC.
Secondly, when reject cost d < 0.5, that is to say when our
method begin to reject some uncertain pairwise instances,
the AUC achieved goes up as reject cost d goes down. On
the other hand, FSAUC, OPAUC, OAMseq and OAMgd have
no ability to reject uncertain pairwise instances.

Comparisons with Rejection Approaches

Conventional algorithms on classification with a reject op-
tion abstain uncertain instances without prediction. Since
our method is the first to reject making a rank, to show the
effectiveness of our method, we make comparisons with re-
jection approaches LR-R and SVM-BW in enhancing AUC:

• LR-R: A rejection algorithm which is embedded with
plug-in rule (logistic regression rule) to decide whether
to reject an instance or not (Herbei and Wegkamp 2006);

• SVM-BW: An SVM-based algorithm using a generalized
hinge loss which allow the classifier to reject instances
according to the distance to the classification hyperplane
(Bartlett and Wegkamp 2008).
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We evaluate the performance of AUCRO and conven-
tional rejection methods on ‘reject-rate v.s. AUC’ curve.
This is inspired by (Nadeem, Zucker, and Hanczar 2009) that
proposed ‘reject-rate v.s. accuracy’ curve. In the compar-
isons of conventional rejection methods, the method getting
higher accuracy under the same reject rate is better. More
specifically, the more area under the curve, the better the
method is. This way of comparison is similar to AUC com-
parison as AUC is the area under the ‘ROC-AUC curve’. So
here we compare the area under ‘reject-rate v.s. AUC’ curve
to show the effectiveness of our method.

For AUCRO, parameters are tuned in the same way
as aforementioned. For LR-R, two trials of 5-fold cross-
validation is executed on training sets to decide the regu-
larized parameter λ ∈ 2[−10: 10]. For SVM-BW, we tune
the regularization parameter λ ∈ 2[−10: 10] and choose the
linear kernel as kernel function.

The performance of compared methods are evaluated by
five trials of 5-fold cross-validation, where AUC values and
corresponding reject rates are obtained by averaging over
these 25 runs. The ‘reject-rate v.s. AUC’ curves on bench-
mark datasets are drawn in Figure 1. It can be observed
that when the same percentage of instances are rejected,
our method achieves higher AUC and higher growth rate.
When the reject rate is zero, though AUCRO is an online
algorithm, it gets comparable AUC to the other two batch
algorithms. Note that AUCs of the dataset w8a never grow
up and change slowly in LR-R and SVM-BW. We think that
w8a is a severely class-imbalanced dataset where instances
in majority class is dozens of times more than in minority
class such that conventional univariate rejection algorithms
cannot improve AUC with rejecting instances. However, our
method can process such severely imbalanced datasets well.

Figure 2: Influence of stepsize ηt

Figure 3: Influence of regularization parameter λ

Parameter Analysis

We analyze the influence of parameters in this section. Since
different reject cost d lead to curves of similar shape in the

Figure 4: Influence of iterations

analysis of ηt and λ, we only show the case d = 0.47 in the
figure for simplicity. And due to page limit, we only present
the results of several datasets for the study of each parame-
ter, but the trends are similar on other datasets.

Figure 2 shows that there is a relatively big range ηt ∈
[2−12, 2−4] where AUCRO achieves good results with d =
0.47. When ηt is set to values larger than 2−4, the perfor-
mance drops off dramatically. Figure 3 shows that AUCRO
is relatively not sensitive to the regularization parameter λ.
It can be seen that when λ is set to a big value, AUCRO may
get slightly higher AUC. That’s because larger λ prefers a
smaller ‖w‖2, accompanied with similar scores and higher
reject rate. Figure 4 shows the influence of the number
of iterations for AUCRO, FSAUC, OPAUC, OAMseq and
OAMgd. When d = 0.5, AUCRO converges faster and more
smoothly than FSAUC, OAMseq and OAMgd, and gets a
comparable convergence rate to OPAUC. When d < 0.5,
AUCRO converges even faster and there lies the difference
that AUCRO achieves high AUC before the convergence due
to the zero initialization of w which leads to high reject rates
in the initial iterations.

Conclusion

This work introduces the framework for AUC optimization
with a reject option. We present the Bayes rule for optimal
ranking and interpret the design of the reject function. We
then present an online algorithm for AUC optimization with
a reject option based on plug-in rule and convex relaxation
of surrogate loss. We verify the effectiveness of the proposed
algorithm empirically and theoretically. An interesting work
in the future is to consider different reject option into AUC
optimization with tighter regret bound, and we could also
apply reject option in the deep neural networks for ranking.
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