
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Stable Learning via Sample Reweighting

Zheyan Shen,1 Peng Cui,1 Tong Zhang,2 Kun Kuang1,3

1Tsinghua University, 2The Hong Kong University of Science and Technology
3Zhejiang University

shenzy17@mails.tsinghua.edu.cn, cuip@tsinghua.edu.cn,
tongzhang@tongzhang-ml.org, kkun2010@gmail.com

Abstract

We consider the problem of learning linear prediction models
with model misspecification bias. In such case, the collinear-
ity among input variables may inflate the error of parameter
estimation, resulting in instability of prediction results when
training and test distributions do not match. In this paper we
theoretically analyze this fundamental problem and propose a
sample reweighting method that reduces collinearity among
input variables. Our method can be seen as a pretreatment of
data to improve the condition of design matrix, and it can then
be combined with any standard learning method for param-
eter estimation and variable selection. Empirical studies on
both simulation and real datasets demonstrate the effective-
ness of our method in terms of more stable performance across
different distributed data.

Introduction

We consider the classical problem of predicting a target
y using a linear combination of p input variables x =
[x1, . . . , xp] ∈ R

p. In practice many machine learning meth-
ods can be used for such purpose. However, the performance
of most machine learning methods deteriorate when the dis-
tribution of the test data deviates from that of the training
data. This is because the traditional learning methods rely
on a fundamental assumption that the data drawn at training
time are from the same underlying distribution as the test
data. In many real situations, however, this assumption can
be violated since we have no prior knowledge on the test
data which will be generated in the future. Therefore, a large
bunch of learning methods which assume the availability of
the test data distribution (e.g. transfer learning (Pan, Yang,
and others 2010)) are not readily applicable at such scenarios.

In this paper, we consider the stable learning problem
that directly addresses this fundamental issue. The goal of
stable learning is to learn a predictive model that performs
uniformly well on any data point x. We actually need two as-
sumptions: (1) There exists a stable structure between target
y and predictor xp which keeps invariant across the whole dis-
tribution. (2) There also exist spurious associations brought
by external biases which could be unstable across different
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environments. It is common in practice that, due the different
time spans, regions and strategies we collect the data, there
usually exist such spurious associations. If we only leverage
the stable structure for prediction, we can ensure good pre-
diction performance even when the unknown test distribution
significantly differs from the training distribution.

The main challenge of stable learning is that in real applica-
tions, we can not expect to choose a completely correct model
for the underlying application problem. We show in this pa-
per that if an incorrect model is used at the training time
(which is inevitable in practice), the existence of collinear-
ity among variables (i.e. linear dependence between two or
more input variables) can inflate a small misspecification
error arbitrarily large, thus causes instability of prediction
performance across different distributed test data. Therefore,
how to reduce collinearity is of paramount importance in the
stable learning problem.

Collinearity (Alin 2010; Farrar and Glauber 1967) can also
be regarded as an ill-conditioning (Fildes 1993) or lack of
orthogonality for the design matrix X. It brings challenges
to evaluate the individual importance of variables in a linear
model since their contributions are interchangeable. As a long
standing problem in statistics, considerable efforts have been
made on collinearity. The major way to handle collinearity
is performing variable selection. Mutual information based
methods like (Kononenko 1994; Raileanu and Stoffel 2004;
Ding and Peng 2005; Peng, Long, and Ding 2005) can be
seen as a pretreatment of data. They basically chooses a sub-
set of variables that are representative and discriminative for
response variable by maximizing the correlation between
selected variables and response while minimizing the corre-
lation among selected variables. Another strand of methods
are based on regularization techniques, which get significant
attention because they simultaneously achieve good perfor-
mance on parameter estimation and variable selection. Distin-
guished by different assumptions on the variables’ structure,
the approach of (Zou and Hastie 2005; Lorbert et al. 2010;
Grave, Obozinski, and Bach 2011) designs penalty terms
by constraining the correlated variables to be either all se-
lected or not selected at all as ”clusters”, and the approach
of (Chen et al. 2013; Takada, Suzuki, and Fujisawa 2018;
Zhou, Jin, and Hoi 2010) chooses only one variable within
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a single cluster. The performances of these methods depend
highly on the correct hypothesis on the structure of variables.
When there are inactive variables or multiple active variables
in the correlated clusters, these methods would suffer from
either loss of information or inclusion of inactive variables,
resulting in unstable behaviors over changing distributions.

In this paper, we focus on the stable learning problem of
linear models under model misspecification. We first pro-
vide a theoretical analysis on the worst estimation error
brought by misspecification bias and demonstrate its direct
connection to collinearity. In order to alleviate the collinear-
ity among variables, we propose a novel sample reweighting
scheme. We theoretically prove that there exist a set of sample
weights which can make the design matrix near orthogonal
in an idealized situation. Accordingly, we propose a Sam-
ple Reweighted Decorrelation Operator (SRDO) to reduce
collinearity in practice. Specifically, we construct an uncorre-
lated design matrix X̃ from original X as the ’oracle’, and
learn the sample weights w(x) by estimating the density ra-
tio of underlying uncorrelated distribution D̃ and original
distribution D.

This method can be regarded as a general data pretreat-
ment method that improves the condition of the underlying
design matrix for prediction purpose. The learned sample
weights can be easily integrated into standard linear regres-
sion methods such as ordinary least squares regression, Lasso
and logistic regression for classification task to improve their
stability across different distributed test data.

The main contributions of our paper are as follows:
• We investigate the stable learning problem of linear mod-

els with model misspecification under changing test dis-
tributions. This problem is fundamental and of paramount
importance to real applications which require model ro-
bustness and stability. We do not assume the availability
of the test data distributuion, which is more realistic at
practice.

• We theoretically prove the direct connection of prediction
stability and the collinearity between variables, and pro-
pose a novel Sample Reweighted Decorrelation Operator
(SRDO) to reduce the collinearity of design matrix.

• SRDO is a general data pretreatment method that can be
easily integrated into a wide range of classical methods
for parameter estimation, variable selection and prediction,
and the extensive experiments on both synthetic and real
datasets demonstrate its superior performances in both pre-
diction stability and accuracy under changing distributions.

Problem and Method

Notations. In this paper, we let n denote the sample size, p
denote the dimension of observed variables. For any ma-
trix A ∈ R

n×p, let Ai, and A,j represent the ith row
and the jth column in A, respectively. For any vector
v = (v1, v2, · · · , vm)�, let ‖v‖1 =

∑m
i=1 |vi| and ‖v‖22 =∑m

i=1 v
2
i .

We first define the stable learning problems as follows:
Problem 1. (Stable Learning) : Given the target y and p
input variables x = [x1, . . . , xp] ∈ R

p, the task is to learn a

predictive model which can achieve uniformly small error
on any data point.

In this paper, we study the above problem in the scope of
linear models for regression and classification.

Stable Linear Models for Regression

We consider the linear regression problem with model mis-
specification. Specifically, we can assume the target y is
generated by following from:

y = x�β1:p + β0 + b(x) + ε, (1)

where x ∈ R
p is input vector, b(x) is a bias term that depends

on x, such that |b(x)| ≤ δ, and ε is zero-mean noise with
variance σ2.

In stable learning, we assume the linear part of generation
model is stable and invariant to unknown distribution shift
while the misspecification bias b(x) could be unstable. In
such sense, we want to estimate β as accurately as possible.
Along with the property that the bias term b(x) is uniformly
small for all x, we can make reliable prediction for all x.
In particular, a change of distribution does not matter for
prediction purpose.

Given training data {(x1, y1) , . . . , (xn, yn)}, where the
design matrix X is drawn from a distribution D. We assume
that ‖xi‖2 ≤ 1. The standard approach of least squares re-
gression solves the following problem:

β̂ = argmin
β

n∑
i=1

(
x�
i β1:p + β0 − yi

)2
(2)

Let γ2 be the smallest eigenvalue of the centered covariance
matrix n−1

∑
i (xi − x) (xi− x)�, where x = n−1

∑
i xi.

The approach considered in this paper is motivated by the
following theoretical result, which shows the effect of model
mis-specification bias even when the sample size is infinity.
Proposition 1. Consider the least squares solution when the
sample size is infinity:

β̂ = argmin
β

E(x,y)

(
x�β1:p + β0 − y

)2
. (3)

The estimation bias caused by the worst case perturbation
error |b(x)| ≤ δ can be as bad as ‖β̂ − β‖2 ≤ 2(δ/γ) + δ,
where γ2 is the smallest eigenvalue of E(x−Ex)(x−Ex)�.

Proof. Let Δβ = β − β̄ and Δβ̂ = β̂ − β̄. We have

Δβ̂ = argmin
Δβ

Ex(x
�Δβ1:p +Δβ0 − b(x))2. (4)

At the optimal solution, we have Δβ̂0 = Exb(x) −
Exx

�Δβ̂1:p. By eliminating β0, and let x̃ = x − Ex, and
b̃(x) = b(x)−Exb(x), we have

Δβ̂1:p = arg min
Δβ1:p

(x̃�Δβ1:p − b̃(x))2. (5)

It follows that
Δβ̂1:p = (Ex̃x̃�)−1Eb̃(x)x̃. (6)

This implies that ‖Δβ̂1:p‖2 ≤ δ/γ. Moreover, it implies that
|Δβ̂0| ≤ δ + δ/γ. We thus obtain the desired bound.
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From Proposition 1, we observe that the worst case estima-
tion error goes to infinity when γ goes to zero. This implies
that when the variables are highly collinear, the ordinary
least squares method produces a poor solution even when the
training data size is very large (or infinity).

So the problem of stable learning is to find stable β̂ such
that in the infinite sample case, for the worst |b(x)| ≤ δ, the
estimation error is ‖β̂ − β‖2 = O(δ) and independent of γ.
This means we tolerate bias caused by collinearity.

To tackle with collinearity, we propose a sample reweight-
ing scheme as follows in the infinite sample case:

β̂ = argmin
β

E(x)∼Dw(x)
(
x�β1:p + β0 − y

)2
, (7)

where w(x) is the sample weight which is to be learned.
This is equivalent to

β̂ = argmin
β

E(x)∼D̃

(
x�β1:p + β0 − y

)2
, (8)

where
pD̃(x)

pD(x)
= w(x). (9)

For D̃ to be a valid distribution, we have Ex∼D[w(x)] = 1.
The goal of sample reweighting is to improve γ̃, where γ̃2

is the smallest eigenvalue of

E(x)∼D̃(x−Ex∼D̃x)(x−Ex∼D̃x)�,

with x drawn from D̃.
However, if Ex∼Dw(x)2 is large, then we have a penalty

in the finite sample error caused by the random noise ε. In
fact, in the weighted least squares model, when n → ∞, by
Slutsky’s theorem, we have

√
n(β̂ − β̄)

d−→ N(0,Q), (10)

where

Q = E
[
w(xi)xix

�
i

]−1
E
[
w(xi)

2xix
�
i ε2i

]
E
[
w(xi)xix

�
i

]−1
,

then similar to the analysis in Proposition 1, the finite sample
estimation error caused by random noise ε is bounded by

O
(
n−1/2

√
Ex∼Dw(x)2σ/γ̃

)
. (11)

By combining this result with Proposition 1, the total estima-
tion error ‖β̂−β‖2 (caused by both the bias b(x) and random
noise ε) in the finite sample case is:

O(δ/γ̃) +O
(
n−1/2

√
Ex∼Dw(x)2σ/γ̃

)
, (12)

when n is large. The first term on the right hand side is bias,
which is independent of the training sample size n, and the
second term is the square root of the variance, which depends
on n. Reweighting can reduce the bias term, but increases the
variance term in general. Therefore in the small sample case,
where n is not large, there is a tradeoff.

If we can make γ̃ close to 1, then the estimation bias
brought by b(x) will become O(δ/γ̃) = O(1) as we can

assume the misspecification error δ to be a measurable and
bounded ”systematic” error and could be seen as a constant
value for a specific system. Thus the total bias is

‖β̂ − β‖2 = O(1) +O
(
n−1/2

√
Ex∼Dw(x)2σ

)
, (13)

which becomes irrelevant to collinearity and achieves stable
prediction we have discussed.

The following proposition shows that under the idealized
situation, it is possible to find weights w so that the design
matrix becomes near orthogonal (after centering) when the
sample size n → ∞.
Proposition 2. Let pu(x) be the uniform distribution on X =
X1 × · · · × Xp ⊂ Rp, and assume that Ex∼pu(x)‖x‖22 < ∞.
Assume that each variable xj ∈ Xj , and the vector x = [xj ]
has density p(x) on X such that 0 < 2γ0 ≤ pu(x)/p(x) ≤
γ1/2. For all ξ > 0, and ζ > 0, there exists N such that for
all n > N , with probability larger than 1 − ζ, there exists
and w such that ‖w‖1 = 1, γ0/n ≤ ‖w‖∞ ≤ γ1/n, and

|n−1
∑
i

wi(xi,j − cj)(xi,k − ck)| ≤ ξ, (14)

where cj = n−1
∑

i ci,j is the mean of each variable j and
j 	= k.

Proof. Let w(x) = pu(x)/p(x). For each pair 1 ≤ j 	= k ≤
p, we know that for x = [x1, . . . , xp] ∈ X ,

Ex∼p(x)w(x)(x
k −Exk)(xj −Exj) = 0. (15)

We also know that

Ex∼p(x)w(x) = 1.

Therefore by the law of large numbers, there exists N such
that with probability larger than 1 − ζ/p2, when we draw
xi = [xi,1, . . . , xi,p] from p(x) for i = 1, . . . , n, we can set
wi = w(xi)/

∑
j w(xj), and then∣∣∣∣∣

1

n

n∑
i=1

wi(xi,j − cj)(xi,k − ck)

∣∣∣∣∣ ≤ ξ, (16)

and
1

n

∑
j

w(xj) ∈ [0.5, 2].

Taking union bound over pairs of (i, j), we obtain the desired
result.

Assume we standardize all the variables, then the sam-
ple covariance matrix becomes correlation matrix R and
Proposition 2 shows that the off-diagonal elements of sample
covariance matrix could be bounded arbitrarily small by ξ
with the sample weight w(x).

Let M = R − Ip, by the Gershgorin circle thorem, we
can get γ2 ≥ 1 − ‖M‖∞ = 1 − (p − 1)ξ. Therefore, by
reducing the pairwise correlation between variables (a.k.a.
the off-diagonal elements of R), we can adjust the smallest
eigenvalue to be nearly 1.

Inspired by the Proposition 2, we propose a Sample
Reweighted Decorrelation Operator (SRDO) to reduce the
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collinearity of design matrix. First, we use design matrix X
to generate a column-decorrelated one X̃ by performing ran-
dom resampling column-wisely, which breaks down the joint
distribution of variables in X into p independent marginal
distributions in X̃. Then we can learn the sample weight by
density ratio estimation (Sugiyama, Suzuki, and Kanamori
2012) to transfer the original X ∼ D to X̃ ∼ D̃.

Specifically, we set X̃ as positive samples (Z = 1) while X
as negative samples (Z = 0) and fit a probabilistic classifier.
Via Bayes theorem, density ratio is given by:

w(x) =
pD̃(x)

pD(x)
=

p(x|D̃)

p(x|D)
=

p(D̃)

p(D)

p(Z = 1|x)
p(Z = 0|x) . (17)

Note that the prior p(D̃)
p(D) is constant over all the samples so

we can just omit it. To achieve a unit mean of w(x), we
can further divide w(x) by its mean 1

n

∑n
i=1 w(xi). The

algorithm of Sample Reweighted Decorrelation Operator
(SRDO) can be summarized as follows:

Algorithm 1 Sample Reweighted Decorrelation Operator
(SRDO)

Require: Design Matrix X
1: for i = 1 . . . n do
2: Initialize a new sample x̃i ∈ R

p with empty vector
3: for j = 1 . . . p do
4: Draw the jth feature of new sample x̃i,j from X,j

at random
5: end for
6: end for
7: Set x̃i as positive samples and xi as negative samples,

then train a binary classifier.
8: Set w(x) = p(Z=1|x)

p(Z=0|x) for each sample xi in X, where
p(Z = 1|x) is the probability of sample x been drawn
from D̃ estimated by the trained classifier.

Ensure: A set of sample weights w(x) which can deccore-
late X

Stable Linear Models for Classification

In addition to regression, the idea of sample reweighting can
also be applied to classification problems. For simplicity, we
consider the binary classification using logistic regression.

In binary classification, we have β�x ∈ R and y ∈ {±1}.
The overall loss function is

n∑
i=1

ln
(
1 + exp

(−β�xiyi
))

. (18)

Given an approximate solution β̃ and let p̃i = p̃ (xi) =

1/
(
1 + exp

(
−β̃�xi

))
, we can use Taylor expansion at

this solution to approximate the loss function as the following
weighted least squares:

n∑
i=1

p̃i (1− p̃i)
(
β�xi − zi

)2
, (19)

where zi is the effective response define by

zi ≡ g(β�xi) + (y − β�xi)g
′(β�xi), (20)

and g(x) ≡ log x
1−x .

Instead of making the covariance matrix of X as close
as identity, we want the weighted covariance matrix to be
decorrelated. So we can still use the aforementioned methods
to estimate w(x) with minor modification as follows:

p̃(x)(1− p̃(x))w(x) =
p(Z = 1|x)
p(Z = 0|x) . (21)

In practice, we can ignore those samples which can be pre-
dicted accurately by approximate solution with high confi-
dence to reduce the variance of sample weights w(x). We
can then solve a weighted logistic regression as follows:

n∑
i=1

w (xi) ln
(
1 + exp

(−β�xiyi
))

. (22)

Experiments

In this section, we evaluate the effectiveness of our algorithm
through simulation study and two real world datasets for
regression and classification.

Baselines

For regression task, we compare the performance of our
method with OLS, Lasso (Tibshirani 1996), Elastic Net (Zou
and Hastie 2005), ULasso (Chen et al. 2013) and IILasso
(Takada, Suzuki, and Fujisawa 2018). The previous three
baselines are classic methods for general purpose, while
ULasso and IILasso are specifically designed for tackling
collinearity and can be formulated as extensions to Lasso:

• Uncorrelated Lasso (ULasso)

min ‖Y −Xβ‖22 + λ1‖β‖1 + λ2β
TCβ,

where C ∈ R
p×p with each element Cjk = r2jk, and

rjk = 1
n |XT

,jX,k|.
• Independently Interpretable Lasso (IILasso)

min ‖Y −Xβ‖22 + λ1‖β‖1 + λ2|β|TR|β|,
where R ∈ R

p×p with each element Rjk = |rjk|/(1 −
|rjk|), and rjk = 1

n |XT
,jX,k|.

For classification task, we substitute log-likelihood loss for
square loss in baselines. The above methods have several
hyper-parameters and we tune all the parameters by cross
validation. We apply the SRDO on ordinary least squares in
regression tasks and on logistic regression in classification
tasks to generate our results.

In our experiments, we consider the case of n > p. While
for the opposite case, one may want to use shrinkage esti-
mators like Ledoit-Wolf (Ledoit and Wolf 2004). Due to the
limited space, we just show a few settings, complete experi-
ments and implementations could be found at 1.

1https://github.com/Silver-Shen/Stable Linear Model Learning
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Figure 1: Estimation and prediction results on simulation data generated by n = 1000, p = 10, s = 2, ρtrain = 0.8 and
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Simulation Study

Experimental Setting In simulation study, we generate
the design matrix X from a multivariate normal distribution
X ∼ N(0,Σ), by specifying the structure of covariance ma-
trix Σ. We can simulate different correlation structures of X.
Specifically, we let Σ = Diag

(
Σ(1), · · · ,Σ(q)

)
to be a block

diagonal matrix whose element Σ(l) ∈ R
s×s was Σ(l)

jk = ρ(l)

for j 	= k and Σ
(l)
jk = 1 for j = k. So there will be q groups

among all the p variables, and each group contains s = p
q

correlated variables. Then we generate bias term b(X) with
b(X) = Xv, where v is the eigenvector of centered covari-
ance matrix n−1

∑
i (xi − x) (xi− x)� corresponding to its

smallest eigenvalue γ2. Finally, we generate the response
variable Y as follows:

Y = Xβ + b(X) +N (0, 1). (23)

We evaluate the estimation performance by absolute error
(β error) defined as ‖β − β̂‖1. During the training process,
we run the experiment for 30 times and report the average
β error as estimation error. For prediction, we choose the
most accurate estimation in training and calculate root mean

square error (RMSE) 1
n

√∑n
i=1(Yi − Ŷi), we also carry out

this procedure for 30 times and average the results. Particu-
larly, in stable learning we want to evaluate the performance
of methods in the changing distributions of different test en-
vironments. To do so, we train all the methods with fixed
ρtrain and generate different test environments by varying
the ρ in test data. Then we report the average prediction error
over various test environments to indicate prediction accuracy
and its standard deviation to indicate prediction stability. A
stable model is expected to produce not only small average
prediction error but also small variance across different test
scenarios.

Results We conduct extensive experiments with different
settings on n, p, s, and ρtrain. Due to the limitation of space,
we only report a part of experimental settings and results,
and more empirical results could be found in supplementary

material. From figure 1 and Table 1, we have the following
observations and analysis:

• Ordinary least squares suffers from collinearity in terms of
error inflation and yields the worst performance in most of
settings, which is consistent with our theoretical analysis.

• Lasso does not differentiate itself with OLS much because
of the dense β we used in simulation. The weakest sig-
nal has a magnitude of 0.2 which is comparable to the
largest one, so it is typically hard for coefficients shrinkage
mechanism to work in such setting.

• Elastic Net performs slightly better than the other baselines
due to its involvement of l2 regularization in the collinear
case, which has been discussed in (Tibshirani 1996; Zou
and Hastie 2005).

• ULasso and IILasso can not quite solve the problem of
collinearity in this experiment because they assume a
sparse structure within correlated groups (i.e. there ex-
ists only one active variables among several correlated
variables), which is not satisfied here.

• From Figure 1, we can find SRDO achieves smallest esti-
mation error under strong correlations between variables,
and a more stable prediction performance in different test
settings, which achieves the goal of stable learning. Note
that in the right end of Figure 1 (b), all the methods gen-
erate comparable results, which coincides with I.I.D. as-
sumption in that the strong collinearity in training data still
persists in test data. However, as the discrepancy of train-
ing and test distribution getting larger (from the right end
to the left end), the performance of baselines deteriorate
rapidly.

• From Table 1, we can find that when collinearity in training
data becomes stronger, our method gains more improve-
ment over baselines in all aspects including estimation
error, prediction error and prediction stability. We also no-
tice that our method is generally affected by sample size
n. It typically performs well in large data, in relatively
small sample setting, however, SRDO may suffer from

5696



Table 1: Results of different methods when varying sample size n and correlation ρ of training data.

Scenario 1: varying correlation ρ (n = 1000, p = 10, s = 2)

ρ ρ = 0.5 ρ = 0.7 ρ = 0.9
Methods β error RMSE (STD) β error RMSE (STD) β error RMSE (STD)

OLS 1.528 1.173(0.047) 1.896 1.261(0.101) 2.964 1.476(0.213)
Lasso 1.520 1.173(0.047) 1.892 1.263(0.102) 2.939 1.484(0.217)

Elastic Net 1.515 1.171(0.046) 1.884 1.263(0.102) 2.938 1.483(0.217)
ULasso 1.527 1.173(0.047) 1.898 1.260(0.100) 2.950 1.480(0.215)
IILasso 1.534 1.177(0.049) 1.897 1.260(0.100) 2.957 1.476(0.213)

Our 1.402 1.141(0.027) 1.759 1.130(0.023) 2.544 1.225(0.065)
Scenario 2: varying sample size n (p = 10, s = 2, ρ = 0.9)

n n = 500 n = 2000 n = 10000
Methods β error RMSE (STD) β error RMSE (STD) β error RMSE (STD)

OLS 3.241 1.382(0.153) 3.184 1.613(0.263) 3.168 1.574(0.243)
Lasso 3.232 1.384(0.154) 3.179 1.600(0.257) 3.145 1.560(0.236)

Elastic Net 3.234 1.383(0.154) 3.166 1.596(0.255) 3.137 1.559(0.235)
ULasso 3.181 1.382(0.153) 3.182 1.608(0.260) 3.165 1.577(0.244)
IILasso 3.226 1.383(0.154) 3.184 1.607(0.260) 3.159 1.575(0.243)

Our 3.421 1.385(0.126) 2.810 1.384(0.150) 2.762 1.269(0.093)

variance inflation in terms of parameter estimation, which
counteracts the benefit brought by bias reduction.

These results demonstrate the superior capability of our
method in handling the negative effects aroused by strong
collinearity among variables.
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Figure 2: Prediction performances over various built peri-
ods of house. All the models are trained on the first period
built year ∈ [1900, 1919] and tested on all the six periods.

Real World Regression Experiments

Dataset and Experimental Setting In this experiment, we
use a real world regression dataset (Kaggle) of house sales
prices from King County, USA, which includes the houses
sold between May 2014 and May 2015 . The outcome vari-
able is the transaction price of the house and each sample
contains 16 predictive variables such as the built year of
the house, number of bedrooms, number of bathrooms, and

square footage of home etc. We normalize all the predictive
variables to get rid of the influence by their original scales.

To test the stability of different algorithms, we simulate dif-
ferent ”environments” according to the built year of the house.
It is fairly reasonable to assume the distribution of predictors
as well as their collinearity may vary along the time, due to
the changing popular style of architectures. Specifically, the
houses in this dataset were built between 1900∼2015 and we
split the dataset into 6 periods, where each period approxi-
mately covers a time span of two decades. We train all the
methods on the first period where built year ∈ [1900, 1919]
with cross validation, and test them on all the six periods
respectively.
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Figure 3: Average performance and stability over various
built periods of house.

Results From Figure 2 we can find that our method
achieves not only the smallest average error but also a bet-
ter stability over different test environments compared with
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(a) AUC over different test environments.
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Figure 4: Classification performance across various users’ age groups. All the models are trained on Age ∈ [20, 30) and tested
on all the five groups.

other baselines. The results coincide with our assumption that
the data gathered through a long time span would undergo
changes in collinearity patterns. So the removal of collinear-
ity yields a more stable model of changing distributions. OLS
performs the worst due to its nature of sensitivity to collinear-
ity which leads to large estimation variance. Meanwhile, Elas-
ticNet and Lasso gain a notable margin against OLS as they
involve the l1 and l2 regularization for sparseness and vari-
ance reduction, which is usually favorable in real applications.
Note that ULasso and IILasso, report different performances
compared with Lasso. A plausible reason is that IILasso im-
pose stronger penalty on the correlation between variables
than ULasso by using Rjk = |rjk| / (1− |rjk|) instead of
Rjk = r2jk in ULasso, where rjk = 1

n

∣∣X�
j Xk

∣∣ is the abso-
lute sample correlation. And the over penalty results in the
over-sparsity of selected models.

From Figure 3, we can find a clear error inflation along
the time axis for all the methods. Note that the models are
trained in period 1. The longer time interval from period 1,
the larger distribution shifting may incur, meaning more chal-
lenging prediction tasks. The results show that our method
performs much better than baselines in period 3-6, and also
produce comparable performances with baselines in the first
two periods without obvious distribution change. Therefore,
in practical use, our algorithm is more reliable, especially
when one expects to encounter obvious environment changes
in test scenarios.

Real World Classification Experiments

Dataset and Experimental Setting WeChat Ads is an on-
line advertising dataset collected from Tencecnt WeChat App
during September 2015 which contains the user feedback
over advertisement flow. For each advertisement, there are
two types of feedbacks: ”Like” and ”Dislike”. For each user,
there are 56 features characterizing his/her profile including
(1) demographic attributes, such as age and gender, (2) num-
ber of friends, (3) device (iOS or Android), and (4) the user’s

various custom settings on WeChat App.
To test the stability of different algorithms, we simulate

different environments via stratification over user’s age since
we consider age as a vital factor which may affect one’s
personal interest, online behavior etc. Specifically, we split
the dataset into 5 subsets by user’s age, including Age ∈
[20, 30), Age ∈ [30, 40), Age ∈ [40, 50), Age ∈ [50, 60)
and Age ∈ [60, 100). We train all the methods on users with
Age ∈ [20, 30) via cross validation, and test them on all the
five age groups respectively.

Results We plot the classification performance in terms of
AUC for each method in Figure 4. We can find that gener-
ally the performance of all the methods would degrade when
tested on people from different groups, which is fairly rea-
sonable in that the online behavior patterns are considerably
different for people with different age. Similar to the pre-
vious regression experiments, our method generally helps
when the distribution shifting is large and more robust to
the discrepancy between training and test distribution. One
plausible reason why overall improvement of AUC is mod-
erate compared with regression task is that the collinearity
problem of this dataset is not as severe as the hosue sales data,
which incurs less inflation of estimation bias for traditional
methods.

Conclusion and Discussion

In this paper, we investigated the stable learning problem
for linear regression with model misspecification bias. We
proposed a method to reduce the effect of collinearity in
the training data via sampling reweighting. We theoretically
showed that there exists an optimal set of sample weights that
can make the design matrix nearly orthogonal in idealized
situations. In more realistic situations, the empirical results
show that our method can improve the stability of linear
models when the test data differs from the training data. Our
method is a general data pretreatment method, which can
be seamlessly integrated into classical linear models such as
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ordinary least squares and logistic regression. It provides a
unified approach to alleviate the problem of collinearity for
statistical estimation.
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