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Abstract

Visual aesthetic assessment has been an active research field
for decades. Although latest methods have achieved promising
performance on benchmark datasets, they typically rely on a
large number of manual annotations including both aesthetic
labels and related image attributes. In this paper, we revisit
the problem of image aesthetic assessment from the self-
supervised feature learning perspective. Our motivation is
that a suitable feature representation for image aesthetic
assessment should be able to distinguish different expert-
designed image manipulations, which have close relationships
with negative aesthetic effects. To this end, we design two
novel pretext tasks to identify the types and parameters of
editing operations applied to synthetic instances. The features
from our pretext tasks are then adapted for a one-layer linear
classifier to evaluate the performance in terms of binary
aesthetic classification. We conduct extensive quantitative
experiments on three benchmark datasets and demonstrate
that our approach can faithfully extract aesthetics-aware
features and outperform alternative pretext schemes. Moreover,
we achieve comparable results to state-of-the-art supervised
methods that use 10 million labels from ImageNet.

Introduction

With the explosive growth of online visual data, the demand
for image aesthetic assessment (Datta et al. 2006) in many
multimedia applications has been dramatically increased.
Typically, this assessment process seeks to evaluate the
aesthetic level of each image according to certain rules
commonly agreed by human visual perception, ranging
from fine-grained local textures and lighting details to
high-level semantic layout and composition. These highly
subjective and ambiguous perceptual metrics pose formidable
challenges on designing intelligent agents to automatically
and quantitatively measure image aesthetics, especially with
conventional hand-crafted features.

Following the recent advances in deep convolutional neural
networks, researchers have explored various data-driven
learning based approaches for aesthetic assessment and have
reported impressive results in the past few years (Ma, Liu,
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Figure 1: Illustration of our key idea. Some image editing
operations typically have negative aesthetic impact and the
degree of the impact is related to manipulation parameters.

and Chen 2017; Mai, Jin, and Liu 2016; Sheng et al. 2018b;
Talebi and Milanfar 2018), benefiting from several image
aesthetic benchmarks (Murray, Marchesotti, and Perronnin
2012; Kong et al. 2016). However, the inherent shortcomings
of these datasets are still deterring us from continuously
scaling up the volume of training data and improving the
performance: (1) the sizes of existing image aesthetic datasets
are far from enough to feed up latest neural networks with
very deep architectures, since the labor work involved in
manual labeling is prohibitively expensive and developing
aesthetics-invariant data augmentation solution remains an
open problem; (2) meanwhile, subjective human annotations
are often strongly biased towards personal aesthetic prefer-
ence, and thus require excessive amount of data to neutralize
such inconsistency for reliable training.

Due to the poor scalability and consistency of avail-
able aesthetics datasets, it is becoming more and more
attractive to break these bottlenecks of purely supervised
training with unsupervised (Hinton and Salakhutdinov 2006;
Vincent et al. 2008), or more specifically, self-supervised
features (de Sa 1994; Doersch, Gupta, and Efros 2015;
Pathak et al. 2016; Zhang, Isola, and Efros 2016). The
main idea of self-supervision is to design pretext tasks that
are naturally available, contextually relevant, and capable
of providing proxy loss as the training signal to guide the
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learning of features which are consistent with the real target.
As a result, we can significantly broaden the scope of training
data without introducing any further annotation cost.

In the context of image aesthetic assessment, due to the
absence of an in-depth understanding of the human percep-
tion system, designing such a proper self-supervised pretext
task can be challenging. However, although it is difficult
to quantitatively measure the aesthetic score, predicting
the relative influence of certain controlled image editing
operations can be much easier. Therefore, we propose two
key observations to help design the task (see Fig. 1): (1)
some parametric image manipulation operations, such as
blurring, pixelation, and patch shuffling, are very likely to
have consistent negative impact on image aesthetics; (2)
and the degree of impact due to such degradation will
be monotonically increasing with respect to values of the
corresponding operation parameters.

In this work, motivated by the strong correlation between
image aesthetic levels and some degradation operations,
we propose, to the best of our knowledge, the very first
self-supervised learning scheme for image aesthetic assess-
ment. The core idea behind our approach is to extract
aesthetics-aware features with two novel self-supervision
pretext tasks on distinguishing the type and strength of
image degradation operations. To improve the training
efficiency, we also introduce an entropy-based weighting
strategy to filter out image patches with less useful training
signals. The experimental results demonstrate that our self-
supervised aesthetics-aware feature learning is able to achieve
promising performance on available aesthetics benchmarks
such as AVA (Murray, Marchesotti, and Perronnin 2012) and
AADB (Kong et al. 2016), and outperforms a wide range
of commonly adopted self-supervision schemes, including
context prediction (Doersch, Gupta, and Efros 2015), jigsaw
puzzle (Noroozi and Favaro 2016), colorization (Larsson,
Maire, and Shakhnarovich 2017; Zhang, Isola, and Efros
2016), and rotation recognition (Gidaris, Singh, and Ko-
modakis 2018).

In summary, our main contributions include:

• We propose a simple yet effective self-supervised learning
scheme to extract useful features for image aesthetic
assessment without using manual annotations.

• We present an entropy-based weighting strategy to help
strengthen meaningful training signals in manipulated
image patches.

• On three image aesthetic assessment benchmarks, our ap-
proach outperforms other self-supervised counterparts and
even works better than models pre-trained on ImageNet or
Places datasets using a large number of labels.

Related Work

Image aesthetic assessment has been extensively studied
in the past two decades. Conventional solutions use hand-
crafted feature extractors designed with domain expertise to
model the aesthetic aspects of images (Datta et al. 2006;
Ke, Tang, and Jing 2006). More recently, the power of
deep neural networks makes it possible to learn feature
representations that can surpass hand-crafted ones. Typi-

cal approaches include distribution-based objective func-
tions (Talebi and Milanfar 2018; Jin et al. 2018), multi-
level spatially pooling (Hosu, Goldlucke, and Saupe 2019),
attention-based learning schemes (Sheng et al. 2018b), and
attribute/semantics-aware models (Ma, Liu, and Chen 2017;
Pan, Wang, and Jiang 2019). The advance of learning-based
image aesthetic assessment has also inspired a number
of practical solutions for various usage scenarios such as
clothing (Yu et al. 2018) and food (Sheng et al. 2018a).

Self-supervised feature learning can be considered as
one type of unsupervised learning algorithms (de Sa 1994),
which intends to learn useful representations without manual
annotations. Many effective pretext tasks have been proposed
in this direction, such as context prediction (Doersch, Gupta,
and Efros 2015), colorization (Zhang, Isola, and Efros 2016),
split-brain (Zhang, Isola, and Efros 2017), and RotNet (Gi-
daris, Singh, and Komodakis 2018). The representations
learned from self-supervised schemes turn out to be useful
for many downstream tasks, e.g., tracking (Vondrick et
al. 2018), re-identification (Fan et al. 2018), and image
generation (Lucic et al. 2019).

Aesthetics-aware image manipulations can be generally
divided into two categories: (1) Rule-based approaches
leverage empirical knowledge and domain expertise to
enforce well-established photographic heuristics such as
gamma correction and histogram equalization. (2) Data-
driven approaches focus on learning powerful feature rep-
resentations from examples to improve aesthetics in certain
aspects, such as aesthetics-aware image enhancement (Deng,
Loy, and Tang 2018; Hu et al. 2018), image blending (Hung
et al. 2018), and colorization (Zhang, Isola, and Efros 2016).

Our Method

Key Observations

Our self-supervised feature learning approach for image
aesthetic assessment is based on two key observations. First,
experiments in previous work on image aesthetic assessment
benchmarks indicate that inappropriate data augmentation
(e.g., brightness/contrast/saturation adjustment, PCA jitter-
ing) during the training process will result in performance
degradation at the test time (Murray, Marchesotti, and
Perronnin 2012; Kong et al. 2016). Second, it is observed that
a convolutional neural network (CNN) model trained from
manually annotated aesthetic labels can inherently acquire
the ability to distinguish fine-grained aesthetic differences
caused by various image manipulation methods. In Fig. 2, for
instance, some image editing operations (such as Gaussian
blur, downsampling, color quantization, and rotation) can
increase the prediction confidence of aesthetically negative
images, or even turn an aesthetically positive example into a
negative one (as shown in the last row of Fig. 2).

Consequently, we argue that these fine-grained perceptual
quality problems, without manual annotations, are closely
related to the image aesthetic assessment task, for which
meaningful training instances can be constructed via proper
expert-designed image manipulations.
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Original
Gaussian blur

(0.8)
Downsampling

(2X)
Downsampling

(8X)
Quantization
(64 clusters)

Rotation
(180°)

N / 0.534 N / 0.683 N / 0.567 N / 0.651 N / 0.615 N / 0.587

N / 0.538 N / 0.761 N / 0.701 N / 0.715 N / 0.555 N / 0.557

P / 0.620 N / 0.547 N / 0.770 N / 0.739 N / 0.638 P / 0.517

Figure 2: Some learning-free parametric image editing operations can introduce controllable aesthetic degradations on input
images. The aesthetic label (P for positive and N for negative), as well as the corresponding assessment confidence predicted by
a fully supervised model are listed beneath each image.

Table 1: Image editing operations and the parameters adopted
to construct meaningful pretext tasks.

Attribute Operation Parameters

Much noise JPEG compression {60, 10}
Gaussian noise {0.2, 0.8}

Camera Shake Rotation {90, 180, 270}

Soft / Grainy
Downsampling {4, 6}
Quantization {64, 8}
Pixelation {4, 8}

Poor lighting Exposure {0.5, 3.0}
Fuzzy Gaussian blur {0.2, 0.8}

Distracting Patch shuffle {0.1, 0.5}
Mixup {0.1, 0.4}

Selected Image Manipulations

According to empirical knowledge, different image editing
operations have diverse effects on the manipulated out-
put (Ma et al. 2018; Zhang et al. 2018b). Furthermore,
some operations require complex parameter settings (e.g.,
inpainting) and it is often difficult to automatically compare
the output to the input in terms of aesthetic level (e.g.,
grayscale conversion). In our case, however, we need to select
image manipulations with easily controllable parameters and
predictable perceptual quality.

Specifically, as listed in Table 1, we adopt a variety of
image manipulation operations with different parameters
for artificial training instances, including (1) downsampling
by a scaling factor and upsampling back to the original
resolution via bilinear interpolation; (2) JPEG compression
with a percentage number to control the quality level; (3)
Gaussian noise controlled by the variance; (4) Gaussian blur
controlled by the standard deviation; (5) color quantization
into a small number of levels; (6) brightness change based on
a scaling factor; (7) random patch shuffle (Kang et al. 2017);
(8) pixelation based on a patch size; (9) rotation by a certain
degree; and (10) linear blending (mixup (Zhang et al. 2018a))
based on a constant alpha value.

Aesthetics-Aware Pretext Tasks

In this section, we propose our aesthetics-aware pretext task
in a self-supervised learning scheme from two aspects. On
one hand, the ability to categorize different types of image
manipulations can be beneficial to the learning of aesthetics-
aware representation. On the other hand, for the same type
of editing operation, different control parameters can render
various aesthetic levels correspondingly, and the tendency
of quality shift is predictable (Marchesotti, Murray, and
Perronnin 2015). Take JPEG compression for instance, de-
creasing the output image quality parameter always decreases
the aesthetic level. Therefore, by constructing images with
manipulations resulting in predictable degradation behaviors,
we can extract meaningful training signals for the fine-
grained aesthetics-aware pretext tasks.

Degradation identification loss. We denote an image
patch as p, and the manipulation parameter as θt for m(·, θt).
The loss term of our first pretext task, i.e., Ldeg(p, t),
reinforces the model to recognize which operation t has been
applied to p:

Ldeg(p, θt) = − logPt(p;W),

Pt(p;W) = P (t̃ = t |m(p, θt);W),
(1)

where m(p, θt) is the transformed output patch given the im-
age patch p by the parameters θt, and P (t̃ = t |m(p, θt);W)
is the probability predicted by our model W that p has
undergone a degradation operation of type t̃.

For a comprehensive coverage of image attributes (e.g.,
resolution, color, spatial structures), we leverage a variety
of typical manipulation operations T as listed in Table 1.
To take better advantage of synthesized instances, we adopt
parameters that will always induce aesthetic degradation of
observably different patterns. Apart from these distortions,
None operation is also taken into consideration. That is, we
require the model to categorize 22 different classes of editing
operations.
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Figure 3: The diagram of our self-supervised approach. We propose two aesthetic-aware pretext tasks, and apply an entropy-based
weighting scheme to enhance the training efficiency. In this way, we learn useful aesthetic-aware features in a label-free manner.

Triplet loss. Training with Ldeg(p, t) alone is not enough
for the task of aesthetic assessment, since some editing oper-
ations may produce some low-level artifacts that are easy to
detect and will fool the network to learn some trivial features
of no practical semantics (Gidaris, Singh, and Komodakis
2018). Our solution to address this issue is to encode the
information via triplets (p,m(p, θt1),m(p, θt2)), where t1
and t2 are two different parameters of a certain operation in
Tab. 1 (except for rotation and exposure). The two parameters
are specified to create aesthetic distortions with a predictable
relationship, i.e., the edited image patch m(p, θt1) using t1
is aesthetically more positive than m(p, θt2). Therefore, in
an ideal aesthetic-aware representation, the distance between
the original image patch p and m(p, θt1) should be smaller
than the distance between p and m(p, θt2). In this way, we
propose the second task, Ltrp(p, θt1 , θt2):
Ltrp(p, θt1 , θt2) = max{0,D(p, θt1)−D(p, θt2) + 1},

(2)

D(p, θt) =
∣∣∣
∣∣∣h(p,W)− h(m(p, θt),W)

∣∣∣
∣∣∣
2

2
,

where h(p,W) is the normalized feature extracted from the
model W given a patch p.

It should be noted that we do not apply the triplet loss
term from the beginning of the training process, since the
representation learned from Ldeg(p, t) in the early stage
can oscillate drastically and thus may not be suitable for
comparisons of fine-grained features. To combat the training
dynamics, we activate Ltrp(p, θt1 , θt2) after the curve of
Ldeg(p, t) has shown some plateau.

Total loss function. By putting the degradation identifica-
tion loss item and the triplet loss item together, we formulate
a new self-supervised pretext task as below:

L =
1

|B| · |T |
∑

p∈B

∑

t,t1,t2∈T

Ldeg(p, θt)+λ·Ltrp(p, θt1 , θt2),

(3)
where B is a mini-batch made up of |B| patches, T is the
set of all the image manipulations, and λ is a scaling factor
to balance the two terms. The diagram of our proposed self-
supervised scheme is shown in Fig. 3.

Entropy-based weighting. To improve the training effi-
ciency and reduce noisy signals from misleading instances,
we present a simple yet effective entropy-based weighting
strategy. Specifically, after warm up for several epochs, we
apply an entropy-based weight wp for each patch p:

wp = max{1 + α ·
∑

t

Pt(p;W) · logPt(p;W), 0},

where α is used to control the lower bound of wp and we set it
as 5/3 in our experiments. The rationale behind this strategy
is that instances of higher entropy values tend to have more
uncertain visual cues for image aesthetics, and thus should
be assigned with lower weights in the optimization process.

Discussions. Our proposed pretext task is similar to (Doso-
vitskiy et al. 2014; Liu, van de Weijer, and Bagdanov 2017)
in which CNNs are trained to discriminate instances from
different types of data augmentation methods. Different from
these previous methods, we select a set of image manipulation
operations and design our loss function carefully so that the
learned representation can be aware of significant patterns
of visual aesthetics. Besides, instead of building on selected
high quality photos, we conduct pretext task optimization
directly on images from ImageNet (Deng et al. 2009). This
strategy makes our learning scheme more flexible to use.

One might argue that we ignore some global aesthetic
factors, e.g., rule of thirds. The reasons are two folds. First,
global image attributes are more complex to manipulate than
local ones which are considered in our approach. Second,
global factors generally involve semantics which are not
available in the context of self-supervised feature learning.
We are not intended to mimic the statistics of real-world
visual aesthetics, but to propose pretext tasks which are
suitable for visual aesthetic assessment.

Experiments

Baseline Methods

We compare the performance of our method with five typical
self-supervised visual pretext tasks, as listed below:
Context: The context predictor (Doersch, Gupta, and Efros

2015) that predicts the relative positions between two
square patches cropped from one input image.
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Figure 4: The schematic of a self-supervised learning
framework, which we apply in our experiments to evaluate
various pretext tasks for image aesthetic assessment.

Colorization: The image colorization task (Zhang, Isola,
and Efros 2016) requires the model to estimate the color
channels from a gray-scale image.

Split-brain: The cross-channel predictor (Zhang, Isola, and
Efros 2017) estimates one subset of the color channels
from another with constrained spatial regions.

Counting: The primitive counting task (Noroozi, Pirsiavash,
and Favaro 2017) requires the model to generate visual
primitives with their number invariant to transformations
including both scaling and tiling.

RotNet: A rotation predictor (Gidaris, Singh, and Ko-
modakis 2018) is trained to recognize the 2D rotation
applied to input images, i.e., m(·; y) is image rotation and
y ∈ {0◦, 90◦, 180◦, 270◦}.

In our experiments, we use the pre-trained models released
by the authors for reliable and fair comparisons12345.

Additionally, we also testify with three typical pre-training
strategies, including the method pre-trained with 1, 000-way
object labels from ImageNet (Deng et al. 2009) or 365-way
scene labels from Places (Zhou et al. 2017), and the Gaussian
random initialization i.e., without any pretext task.

Training Pipeline

Our entire training pipeline (Fig. 4) contains two parts: a self-
supervised pre-training stage to learn visual features with
unlabeled images and a task adaptation stage to evaluate how
the learned features perform in the task of image aesthetic
assessment.

In the pre-training stage (Fig. 4 left), the first few lay-
ers share the same structure with AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) for fair comparisons. In the

1Context: https://github.com/cdoersch/deepcontext.
2Colorization: https://github.com/richzhang/colorization.
3Split-brain: https://github.com/richzhang/splitbrainauto.
4Counting: https://github.com/gitlimlab/Representation-

Learning-by-Learning-to-Count.
5RotNet: https://github.com/gidariss/FeatureLearningRotNet.

task adaptation stage (Fig. 4 right), following the same
configurations in (Zhang, Isola, and Efros 2017), we freeze
each model learned in the pre-training and leverage similar
linear classifiers to evaluate visual features from each con-
volutional layer for the task of binary aesthetic classification.
The channel number of each convolutional layer is shown
in Fig. 4, and the dimensions of the corresponding fully
connected layers are 9600×2, 9216×2, 9600×2, 9600×2,
and 9216× 2, respectively.

Implementation details. In the pre-training stage, we first
resize the shorter edge of each input image to 256. Then we
randomly crop one patch of resolution 227 × 227 from the
resized image. Next, we randomly choose three manipulation
operations in Tab. 1 to edit each patch. We apply SGD
optimization using a batch size of 64, with the Nesterov
momentum of 0.9 and the weight decay of 5e−4. We begin
with a learning rate of 0.1, dropped it by a factor of 0.2
after every 10 epochs. To eschew training oscillating, we
activate Ltrp(p, t) with λ of 0.02 after the first 30 epochs. The
following adaptation stage shares the same settings except
that the learning-rate starts from 0.01.

Benchmarks for Aesthetic Assessment

Aesthetic Visual Analysis (AVA). The AVA dataset (Mur-
ray, Marchesotti, and Perronnin 2012) contains approxi-
mately 250, 000 images. Each image has about 100 crowd-
source aesthetic ratings in the range of 1 to 10. Following
the common practice in (Ma, Liu, and Chen 2017; Hosu,
Goldlucke, and Saupe 2019), we consider images whose
average aesthetic scores are no less than 5.0 as positive
instances and adopt the same training/test partition, i.e.,
230, 000 images for training and 20, 000 for testing.

Aesthetics with Attributes Database (AADB). The
AADB dataset (Kong et al. 2016) contains 10, 000 images
with aesthetic ratings {r ∈ [0, 1]} and eleven additional
attributes.We follow (Kong et al. 2016) to split the dataset
into three partitions, i.e., 8500, 500, and 1000 images for
training, validation, and testing, respectively. Without loss of
generality, we binarize the aesthetic ratings into two classes
using a threshold of 0.5, similar to AVA.

Chinese University of Hong Kong-Photo Quality Dataset
(CUHK-PQ). The CUHK-PQ dataset (Luo, Wang, and
Tang 2011) contains 17, 690 images with binary aesthetic
labels. Commonly used training/testing partitions on this
dataset include a random 50/50 split and a five-fold split for
cross-validation. We use the former one in our experiments.

Results and Discussions

Evaluation of Unsupervised Features

Our experimental results on the three benchmarks are
reported in Table 2. In each column, the best numbers are
shown in bold font and the second best are highlighted with
an underscore. We can make several interesting observations
from the table.
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Table 2: Task generalization performance (%) of different convolutional layers from models guided by different pretext tasks,
measured for visual aesthetic assessment with linear layers on the AVA, AADB, and CUHK-PQ benchmarks.

Method AVA AADB CUHK-PQ
conv1 conv2 conv3 conv4 conv5 average conv1 conv2 conv3 conv4 conv5 average conv1 conv2 conv3 conv4 conv5 average

ImageNet label 79.3 79.0 79.3 79.1 79.4 79.22 63.6 65.0 64.2 67.5 64.2 64.9 77.8 83.3 84.1 84.2 83.1 82.5
Places label 79.6 79.5 79.2 79.6 79.8 79.54 61.8 63.2 63.4 65.0 65.2 63.72 76.0 82.2 82.5 83.1 81.6 81.08

Without pretext 77.2 77.8 78.0 78.2 78.0 77.84 61.3 58.9 62.1 61.6 64.0 61.58 73.6 72.0 73.3 74.6 73.1 73.32
Context 79.8 79.2 79.2 79.0 79.0 79.24 59.4 59.8 62.4 62.6 63.2 61.48 69.2 75.9 77.9 79.0 78.7 76.16

Colorization 80.0 79.7 79.5 79.2 79.2 79.52 57.0 63.2 66.4 63.4 63.4 62.68 73.5 79.3 80.6 82.4 82.6 79.68
Split-Brain 79.5 79.7 79.5 80.1 79.4 79.64 58.2 64.4 67.8 63.8 65.6 63.96 77.5 83.7 84.7 83.7 84.5 82.82

Counting 53.0 52.2 63.3 65.5 58.8 58.56 61.8 61.3 60.4 62.8 62.3 61.72 75.6 76.0 74.3 72.5 71.8 74.04
RotNet 77.6 73.8 80.3 80.3 80.3 78.46 54.6 57.8 64.2 66.0 66.0 61.72 67.2 66.8 63.6 63.6 63.6 64.96

Ours 78.4 79.9 80.5 80.8 80.6 80.02 62.6 65.9 68.4 68.9 65.8 66.32 77.4 83.4 85.3 85.6 85.1 83.36

Figure 5: The accuracy results of the 3rd conv. block from
different learning schemes in low data adaptation on AADB.

The proposed scheme generally works the best on all
the three benchmarks. It is evident that our approach can
achieve competitive results consistently, compared with other
baselines on the three datasets, especially for the mid-level
layers, e.g., conv4. Self-supervised visual features can even
outperform semantics-related features that are pre-trained
with manual labels from ImageNet or Places. Furthermore,
from the accuracy perspective, our method can be comparable
to or work better than existing self-supervised learning
schemes in image aesthetic assessment.

Mid-level features achieve the best results in task adapta-
tion. By comparing performance of different layers, we can
see the correlation between image aesthetics and network
depth. As shown in all tables, mid-level features (conv3 &
conv4) generally outperform high-level features (conv5) and
low-level ones (conv1 & conv2) in terms of accuracy. The
observations are consistent with (Zhang, Isola, and Efros
2016; Gidaris, Singh, and Komodakis 2018). One possible
explanation is that, during the back propagation process,
conv5 gets more training signals for the pretext task as
compared to conv4. Consequently, conv5 is more likely to
suffer from the overfitting issue, while using conv4 leads to
better generalization performance.

In addition to image attributes used in our pretext tasks,
color is another important factor in image aesthetic assess-
ment. Among other tested pretext tasks, Split-brain (Zhang,
Isola, and Efros 2017) and Colorization (Zhang, Isola, and
Efros 2016) consistently achieve the better results. It indicates

Figure 6: The accuracy results of the 3rd conv. block from
different methods in low data adaptation on CUHK-PQ.

that color and image attributes in Tab. 1 are the key factors
in assessing visual aesthetics. Regarding why RotNet fails
to achieve good results on the CUHK-PQ benchmark, we
suspect that both high-quality images and low-quality ones
in this dataset share similar distributions or visual patterns.

Low Data Adaptation

One practical issue that self-supervised learning schemes are
able to handle is low data adaptation, where very few labels
are available for task adaptation. In our case, we simulate
the low data adaptation regime by using 5% ∼ 50% of
the original training data per class in the task adaptation
stage. The final results are shown in Fig. 5 and Fig. 6. From
these two figures, we can see that our proposed learning
scheme generally outperforms baseline models pre-trained
with 1, 000-ways labels from ImageNet. As the margin
becomes larger when using more manual aesthetic labels
in the task adaptation, our method presents higher efficiency
of data usage compared to the vanilla supervised counterpart.

It is also interesting to note that our method and vanilla
supervised method have similar adaptation performance
when 1% ∼ 10% training data is available. We believe this
fact is due to the complexity of visual aesthetics, i.e., when
aesthetic labels are extremely few, the sampled instances
cannot cover the entire distribution faithfully and thus lead to
poor assessment results.
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Table 3: Results of several methods on AVA benchmark measured in terms of binary classification accuracy of aesthetic labels.

Method Backbone Labels in Aesthetic Results (%)the pre-training label alone
DMA-Net (Lu et al. 2015) AlexNet

∼ 10M

× 75.4
AA-Net (Wang and Shen 2017) VGG × 76.9

(Kong et al. 2016) AlexNet × 77.3
MNA-CNN (Mai, Jin, and Liu 2016) VGG × 77.4

NIMA (Talebi and Milanfar 2018) Inception
√

81.5
Pool-3FC (Hosu, Goldlucke, and Saupe 2019) Inception

√
81.7

A-Lamp (Ma, Liu, and Chen 2017) VGG × 82.5
MPada (Sheng et al. 2018b) ResNet-18

√
83.0

Our pretext task AlexNet 0
√ 82.0

+ non-linear layers ResNet-18 82.8

Adaption Using a Non-Linear Classifier

If we use non-linear layers in the task adaptation stage, we
can achieve results close to state-of-the-art fully supervised
approaches (Ma, Liu, and Chen 2017; Sheng et al. 2018b;
Talebi and Milanfar 2018; Hosu, Goldlucke, and Saupe
2019) which have a test accuracy of 80% ∼ 83% on the
AVA benchmark, as shown in Tab. 3. Note that our method
does not use 10 millions labels from ImageNet during the
pre-training, and we only use aesthetic labels in the task
adaptation stage. Besides, our accuracy is about 69.2% on
the AADB benchmark and 88.5% on the CUHKPQ dataset,
using ResNet-18 as the backbone network. These numbers
are also close to that of the same network pre-trained with
10 millions labels from ImageNet (i.e., i.e., 70.4% on the
AADB and 90.2% on the CUHKPQ). Arguably, we manage
to achieve similar assessment performance using far less
manual labels.

Ablation Study

Pretext tasks. We perform the pre-training with either one
of the two pretext tasks and measure the final assessment
results. It turns out that joint training using both loss terms
generally yields better aesthetic assessment accuracy than
using Ldeg(p, θt) or Ltrp(p, θt1 , θt2) alone. The accuracy
difference is ∼ 0.3% on the AVA dataset and ∼ 0.7%
on the AADB dataset,. We also find that pre-training
with Ltrp(p, θt1 , θt2) alone is prone to undesirable training
dynamics, while the two-stage learning scheme is more stable
and consequently leads to better results.

Image editing operations. We randomly select one oper-
ation in Tab 1 and exclude it from the pre-training stage to
analyze the impact on the final assessment performance. We
can make several observations from the corresponding results
shown in Tab. 4. First, editing operations which are related to
softness, camera shake, and poor lighting are relatively more
significant in learning aesthetic-aware features, compared to
other operations. Second, image manipulations which are
related to distracting, fuzziness, and noise have relatively
smaller margins. This fact indicates that these operations may
create aesthetically ambiguous instances that do not always
provide consistent signals. Interestingly, camera shake has

Table 4: The degradation caused by discarding some image
manipulation operations during the pretext task training.

Attribute AVA AADB
Much noise ∼ 0.1% ∼ 0.3%
Poor lighting ∼ 0.3% ∼ 0.4%
Soft / Grainy ∼ 0.4% 0.5 ∼ 0.8%
Fuzzy ∼ 0.1% ∼ 0.2%
Camera shake 0.3 ∼ 0.5% 0.4 ∼ 0.6%
Distracting ∼ 0.2% 0.3 ∼ 0.4%

the most significant impact on the AVA, while soft/grainy are
the most important ones for the AADB.

Entropy-based weighting. Without our entropy-based
weighting scheme, there will be at least 0.5% down in the
performance after task adaptation. Besides, some undesired
dynamics will occur during the training process. Therefore,
we can strengthen meaningful training signals from manipu-
lated instances and improve training efficiency by assigning
an entropy-based weight to each patch.

Conclusions

In this paper, we propose a novel self-supervised learning
scheme to investigate the possibility of learning useful
aesthetic-aware features without manual annotations. Based
on the correlation between negative aesthetic effects and
several expert-designed image manipulations, we argue that
an aesthetic-aware representation space should distinguish
between results yielded by various operations. To this end,
we propose two pretext tasks, one to recognize what kind
of editing operation has been applied to an image patch,
and the other to capture fine-grained aesthetic variations
due to different manipulation parameters. Our experimental
results on three benchmarks demonstrate that the proposed
scheme can learn aesthetics-aware features effectively and
generally outperforms existing self-supervised counterparts.
Besides, we achieve results comparable to state-of-the-art
supervised methods on the AVA dataset without using labels
from ImageNet. We hope these findings can help us obtain a
better understanding of image visual aesthetics and inspire
future research in related areas.
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