
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Quadruply Stochastic Gradient Method for Large Scale
Nonlinear Semi-Supervised Ordinal Regression AUC Optimization

Wanli Shi,1 Bin Gu,1,2∗ Xiang Li,3 Heng Huang4,2

1School of Computer & Software, Nanjing University of Information Science & Technology, P.R.China
2JD Finance America Corporation

3Computer Science Department, University of Western Ontario, Canada
4Department of Electrical & Computer Engineering, University of Pittsburgh, USA

wanlishi@nuist.edu.cn, jsgubin@gmail.com, lxiang2@uwo.ca, heng.huang@pitt.edu

Abstract

Semi-supervised ordinal regression (S2OR) problems are
ubiquitous in real-world applications, where only a few or-
dered instances are labeled and massive instances remain un-
labeled. Recent researches have shown that directly optimiz-
ing concordance index or AUC can impose a better ranking
on the data than optimizing the traditional error rate in or-
dinal regression (OR) problems. In this paper, we propose
an unbiased objective function for S2OR AUC optimization
based on ordinal binary decomposition approach. Besides, to
handle the large-scale kernelized learning problems, we pro-
pose a scalable algorithm called QS3ORAO using the dou-
bly stochastic gradients (DSG) framework for functional op-
timization. Theoretically, we prove that our method can con-
verge to the optimal solution at the rate of O(1/t), where t
is the number of iterations for stochastic data sampling. Ex-
tensive experimental results on various benchmark and real-
world datasets also demonstrate that our method is efficient
and effective while retaining similar generalization perfor-
mance.

Introduction

Supervised ordinal regression (OR) problems have made
great process in the past few decades, such as (Chu and
Keerthi 2007; Fathony, Bashiri, and Ziebart 2017; Niu et
al. 2016; Gu et al. 2015). However, in various practical
fields, such as facial beauty assessment (Yan 2014), credit
rating (Kim and Ahn 2012), social sciences (Fullerton and
Xu 2012) or more, collecting a large amount of ordinal la-
beled instances is time-consuming, while unlabeled data are
available in abundance. Often, the finite ordinal data are in-
sufficient to learn a good ordinal regression model. To im-
prove the performance of the classifiers, one needs to in-
corporate unlabeled instances into the training process. So
far, semi-supervised ordinal regression (S2OR) problems
have attracted great attention in machine learning commu-
nities, such as (Srijith, Shevade, and Sundararajan 2013;
Seah, Tsang, and Ong 2012).

To evaluate the performance of an OR model, many met-
rics could be used, e.g., the mean absolute error, the mean

∗Corresponding Author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

squared error. However, Waegeman, De Baets and Boullart,
(2008) have shown that OR models which minimize these
errors do not necessarily impose a good ranking on the
data. To handle this problem, many researchers start to use
AUC or concordance index in solving OR problems since
AUC is defined on an ordinal scale, such as (Waegeman,
De Baets, and Boullart 2008; Waegeman and De Baets 2010;
Fürnkranz, Hüllermeier, and Vanderlooy 2009; Uematsu and
Lee 2014). We summarized several representative OR algo-
rithms in Table 1.

However, existing AUC optimization methods focus on
supervised OR problems, and none of them can be applied
to semi-supervised learning problems. The main challenge
is how to incorporate unlabeled instances into the AUC opti-
mization process. For the semi-supervised learning research
field in general, many existing methods, such as (Seah,
Tsang, and Ong 2012; Fujino and Ueda 2016), have lever-
aged the cluster assumptions, which states that similar in-
stances tend to share the same label, to solve this prob-
lem. However, the clustering assumption is rather restric-
tive and may mislead a model towards a biased solution.
Nevertheless, recent works (Sakai, Niu, and Sugiyama 2018;
Xie and Li 2018) have shown that the clustering assumption
is actually unnecessary at least for binary classification prob-
lems. In the same vein, we propose an objective function of
S2OR AUC optimization based on ordinal binary decom-
position without using the clustering assumption. Specifi-
cally, for a k classes OR problem, we use k − 1 hyperlanes
to decompose the orginal problem into k − 1 binary semi-
supervised AUC optimization problems, where the AUC risk
can be viewed as a linear combination of AUC risk between
labeled instances and AUC risk between labeled and un-
labeled instances. Then, the overall AUC risk in S2OR is
equivalent to the mean of AUC for k − 1 subproblems.

Nonlinear data structures widely exist in many real-world
problems, and kernel method is a typical way to solve such
problems. However, kernel-based methods are hardly scal-
able. Specifically, the kernel matrix needs O(n2d) opera-
tions to be calculated and O(n2) to be stored, where n de-
notes the number of training data and d denotes the dimen-
sionality of the data. Besides, the bottlenecks of the com-
putational complexities become more severe in solving pair-

5734

Table 1: Several representative OR algorithms. (D denotes the number of random features, k denotes the number of classes, n
denotes the number of training samples, and t denotes number of iterations.)

Learning setting Algorithm Reference AUC Computational complexity Space complexity

Supervised

ALOR Fathony et al, (2017) No O(n3) O(n2)
SVOREX Chu et al, (2007) No O(n3) O(n2)
VUS Waegeman et al, (2008) Yes O(n3) O(n2)
MultiRank Uematsu and Lee, (2014) Yes O(n3) O(n2)

Semi-supervised

TOR Seah et al, (2012) No O(n3) O(n2)
SSORERM (Tsuchiya et al. 2019) No O(n3) O(n2)
SSGPOR Srijith et al, (2013) No > O(n3) O(n2)
ManifoldOR Liu et al, (2011) No O(n3) O(n2)
QS3ORAO Ours Yes O(Dt2) O(Dn)

wise learning problems such as AUC optimization. In ad-
dition, as required by AUC computation, the OR learning
problem needs to be decomposed into several binary classi-
fication sub-problems, which further increases the problem
size and computational complexity. Thus, the new challenge
is how to scale up kernel-based S2OR AUC optimization.

Recently, Dai et al, (2014) proposed doubly stochastic
gradient (DSG) method to scale up kernel-based algorithms.
Specifically, in each iteration, DSG randomly samples a
data instance and its random features to compute the doubly
stochastic functional gradient, and then the model function
can be updated by using this gradient. However, the origi-
nal DSG cannot be applied to solve the kernel-based S2OR
AUC optimization. On the one hand, optimizing AUC is a
pairwise problem which is much more complicated than the
pointwise problem considered in standard DSG framework.
On the other hand, S2OR optimization problems need to
handle two different types of data, i.e., unlabeled dataset and
the datasets of class i, while standard DSG focuses on min-
imizing the empirical risk on a single dataset with all data
instances labeled.

To address these challenging problems, we introduce mul-
tiple sources of randomness. Specifically, we randomly sam-
ple a positive instance, a negative instance, an unlabeled in-
stance, and their random features in each subproblem to cal-
culate the approximated stochastic gradients of our objec-
tive function in each iteration. Then the ranking function can
be iteratively updated. Since we randomly sample instances
from four data sources in each subproblem, we denote our
method as quadruply stochastic gradient S2OR AUC opti-
mization method (QS3ORAO). Theoretically, we prove that
our proposed QS3ORAO can converge to the optimal so-
lution at the rate of O(1/t). Extensive experimental results
on benchmark datasets and real-world datasets also demon-
strate that our method is efficient and effective while retain-
ing similar generalization performance.
Contributions. The main contributions of this paper are
summarized as follows.

1. We propose an objective function for solving S2OR AUC
optimization problems in an unbiased manner. To the best
of our knowledge, this is the first objective formulation
incorporating the unlabeled data into the AUC optimiza-
tion process in OR problems.

2. To optimize the objective function under the kernel learn-
ing setting, we propose an efficient and scalable S2OR
AUC optimization algorithm, QS3ORAO, based on DSG
framework.

3. We provide the convergence analysis of QS3ORAO,
which indicates that an ideal O(1/t) convergence rate is
possible under certain mild assumptions.

Related Works

Semi-Supervised Ordinal Regression

In real-world applications, labeled instances are often costly
to calibrate or difficult to obtain. This has led to a lot of
efforts to study how to make full use of unlabeled data to
improve the accuracy of classification, such as (Zhang et
al. 2019; Han et al. 2018). Many existing methods incorpo-
rate unlabeled instances into learning propose by using vari-
ous restrictive assumptions. For example, Seah, Tsang and
Ong, (2012) proposed TOR based on cluster assumption,
where the instances share the same label if there are close
to each other. Liu et al, (2011) proposed a semi-supervised
OR method, ManifoldOR, based on the assumption that the
input data are distributed into a lower-dimensional manifold
(Belkin, Niyogi, and Sindhwani 2006). Besides, Srijith et al,
(2013) proposed SSGPOR based on the low density separa-
tion assumption (Chapelle, Scholkopf, and Zien 2009). We
summarized these semi-supervised OR algorithms in Table
1. Note, in our semi-supervised OR AUC method, we do not
need these restrictive assumptions.

Kernel Approximation

Kernel approximation is a common method to scale up
kernel-based algorithms, which can be decomposed into two
categories. One is data-dependent methods, such as greedy
basis selection techniques (Smola and Schölkopf 2000),
incomplete Cholesky decomposition (Fine and Scheinberg
2001), Nyström method (Drineas and Mahoney 2005). In
order to achieve a low generalization performance, these
methods usually need a large amount of training instances
to compute a low-rank approximation of the kernel matrix,
which may have high memory requriement. Another one
is data-independent methods, which directly approximates
the kernel function unbiasedly with some basis functions,

5735

such as random Fourier feature (RFF) (Rahimi and Recht
2008). However, RFF method needs to save large amounts of
random features. Instead of saving all the random features,
Dai et al, (2014) proposed DSG algorithm to use pseudo-
random number generators to generate the random features
on-the-fly, which has been widely used (Shi et al. 2019;
Geng et al. 2019; Li et al. 2017). Our method can be viewed
as an extension of (Shi et al. 2019). However, OR is much
more complicated than binary classification, since OR in-
volves k classes with ordering constraint, while (Shi et al.
2019) only studies binary classification. How the k ordered
classes could be learnt under the DSG framework is a novel
and challenging problem. Theoretically, whether and to what
extent the convergence property remains true is also a non-
trivial problem.

Preliminaries

In this section, we first give a brief review of the AUC op-
timization framework in supervised ordinal regression set-
tings, and then we propose our objective function in S2OR
AUC optimization problems. Finally, we give a brief review
of random Fourier features.

Supervised Ordinal Regression AUC Optimization

Let x ∈ R
d be a d-dimensional data instance and y =

{1, · · · , k} be the label of each instance. Let p(x, y) be
the underlying joint distribution density of {x, y}. In super-
vised OR problems, the labeled datasets of each class can be
viewed as drawn from the conditional distributional density
p(x|y) as follows,

Dj = {xj
i}nj

i=1 ∼ p(x|y = j), j = 1, · · · , k.
Generally speaking, the vast majority of existing ordinal

regression models can be represented as ,

h(x) =

{
1, if f(x) < b1
j, if bj−1 < f(x) < bj , j = 2, · · · , k − 1
k, if f(x) > bk−1

,

where b1 < · · · < bk−1 denote the thresholds and f : Rd �→
R is commonly referred as a ranking function (Waegeman,
De Baets, and Boullart 2008). The model h means that we
need to consider k−1 parallel hyperplanes, f(x)−bj , which
decompose the ordinal target variables into k−1 binary clas-
sification subproblems. Therefore, the problem of calculat-
ing the AUC in OR problems can be transformed to that of
calculating AUC in k − 1 binary subproblems.

In binary classification, AUC means the probability that a
randomly sampled positive instance receive a higher ranking
than a randomly drawn negative instance. Thus, to calculate
AUC in j-th subproblem, we need to define which part is
positive. Fortunately, in OR problems, instances can natu-
rally be ranked by their ordinal labels. Therefore, for the j-th
binary classification hyperplane, the first consecutive j cate-
gories, 1, · · · , j, can be regarded as negative, and the rest of
the classes, j + 1, · · · , k, can be regarded as positive. Then
we obtain two new datasets as follows,

Dj
n = D1 ∪ · · · ∪ Dj ∼ pj− =

∑j
i=1 θip(x|y = i)∑j

i=1 θi
,

Dj
p = Dj+1 ∪ · · · ∪ Dk ∼ pj+ =

∑k
i=j+1 θip(x|y = i)∑k

i=j+1 θi
,

where θi denotes class prior of each class. Then AUC in each
binary subproblem can be calculated by

AUC = 1− Exj
p∼pj

+

[
Exj

n∼pj
−

[
l01

(
f(xj

p), f(x
j
n)
)]]

,

where l01(u, v) =
1

2
(1− sign(u− v)) and Ex∼p(·) denotes

the expectation over distribution p(·). The zero-one loss can
be replaced by squared pairwise loss function ls(u, v) =
(1 − u + v)2 (Gao and Zhou 2015; Gao et al. 2013). While
in real-world problems, the distribution is unknown and one
usually uses the empirical mean to replace the expectation.
Thus, the second term can be rewritten as

Rj
PN = Exj

p∈Dj
p

[
Exj

n∈Dj
n

[
l01

(
f(xj

p), f(x
j
n)
)]]

, (1)

where Ex∈D denotes the empirical mean on the dataset D.
Equation (1) can be viewed as AUC risk between posi-
tive and negative instances. Obviously, maximizing AUC is
equivalent to minimizing AUC risk RPN.

According to (Waegeman, De Baets, and Boullart 2008),
the goal of AUC optimization in OR problems is to train a
ranking function f which can minimize the overall AUC risk
of k − 1 subproblems,

Rα =
1

k − 1

k−1∑
j=1

Rj
PN. (2)

Semi-Supervised Ordinal Regression AUC
Optimization

In semi-supervised OR problems, the unlabeled data can be
viewed as drawn from the marginal distribution p(x) as fol-
lows,

Du = {xu
i }nu

i=1 ∼ p(x), (3)

where p(x) =
∑k

j=1 θjp(x|y = j). For the j-th subprob-
lem, the unlabeled data can be viewed as drawn from distri-
bution pj(x) = πjpj++(1−πj)pj−, where πj =

∑k
i=j+1 θi.

The key idea to incorporate the unlabeled instances into
the binary AUC optimization process is to treat the unla-
beled instances as negative and then compare them with pos-
itive instances; treat them as positive and compare them with
negative data (Wang et al. 2015). Thus, the AUC risk Rj

PU
between positive and unlabeled instances and the AUC risk
Rj

NU between unlabeled and negative instances can be de-
fined as follow,

Rj
PU = Exj

p∈Dj
p

[
Exj

u∈Du

[
l01

(
f(xj

p), f(x
j
u)
)]]

, (4)

Rj
NU = Exj

u∈Du

[
Exj

n∈Dj
n

[
l01

(
f(xj

u), f(x
j
n)
)]]

, (5)

Xie and Li, (2018) have shown that Rj
PU and Rj

NU are equiv-
alent to Rj

PN with a linear transformation as follows,

Rj
PN = Rj

PU +Rj
NU − 1

2
. (6)

5736

Thus, the AUC risk Rj
PNU for the j-th binary semi-

supervised problem is

Rj
PNU = γjRj

PN + (1− γj)

(
Rj

PU +Rj
NU − 1

2

)
, (7)

where the first term is the AUC risk computed from the
labeled instances only, the second term is an estimation
AUC risk using both labeled and unlabeled instances and
γj is trade-off parameter. Similar to Equation (2), the over-
all AUC risk for the k− 1 hyperplanes in the S2OR problem
can be formulated as follows,

Rμ =
1

k − 1

k−1∑
j=1

Rj
PNU. (8)

To avoid overfitting caused by directly minimizing Equa-
tion (8), a regularization term is usually added as follows,

L(f) = λ

2
‖ f ‖2H +

1

k − 1

k−1∑
j=1

Rj
PNU, (9)

where ‖ · ‖H denotes the norm in RKHS H, λ > 0 is regu-
larization parameter .

Random Fourier Feature

For any continuous, real-valued, symmetric and shift-
invariant kernel function k(x, x′), according to Bochner
Theorem (Rudin 2017), there exists a nonnegative Fourier
transform function as k(x, x′) =

∫
Rd p(ω)e

jωT (x−x′)dω,
where p(w) is a density function associated with k(x, x′).
The integrand ejω

T (x−x′) can be replaced with cosωT (x −
x′) (Rahimi and Recht 2008). Thus, the feature map for m
random features of k(x, x′) can be formulated as follows.

φω(x) =
√

1/D[cos(ωT
1 x), · · · , cos(ωT

mx),

sin(ωT
1 x), · · · , sin(ωT

mx)]T ,

where ωi is randomly sampled according to the density func-
tion p(ω). Obviously, φT

ω (x)φω(x
′) is an unbiased estimate

of k(x, x′).

Quadruply Stochastic Gradient Method
Based on the definition of the ranking function f ∈ H,
we can obtain ∇f(x) = k(x, ·), and ∇ ‖ f ‖2H= 2f .
To calculate the gradient of objective function, we use the
squared pairwise loss ls(u, v) function to replace zero-one
loss l01(u, v). Then we can obtain the full gradient of our
objective function w.r.t. f as follows,

∇L =
1

k − 1

k−1∑
j=1

(γj
E
x
j
p∈Dj

p
[E

x
j
n∈Dj

n
[l′1(f(x

j
p), f(x

j
n))k(x

j
p, ·)

+ l′2(f(x
j
p), f(x

j
n))k(x

j
n, ·)]]

+ (1− γj)(E
x
j
p∈Dj

p
[E

x
j
u∈Du

[l′1(f(x
j
p), f(x

j
u))k(x

j
p, ·)

+ l′2(f(x
j
p), f(x

j
u))k(x

j
u, ·)]]

+ E
x
j
u∈Du

[E
x
j
n∈Dj

n
[l′1(f(x

j
u), f(x

j
n))k(x

j
u, ·)

+ l′2(f(x
j
u), f(x

j
n))k(x

j
n, ·)]])) + λf

where l′1(u, v) denotes the derivative of ls(u, v) w.r.t. the
first argument in the functional space, l′2(u, v) denotes the
derivative of ls(u, v) w.r.t. the second argument in the func-
tional space.

Stochastic Functional Gradients

Directly calculating the full gradient is time-consuming. In
order to reduce the computational complexity, we update the
ranking function using a quadruply stochastic framework.
For each subproblem, we randomly sample a positive in-
stance xj

p from Dj
p, a negative instance xj

n from Dj
n and an

unlabeled instance xu from Du in each iteration.
For convenience, we use lji , i = 1, · · · , 6, to denote

the abbreviation of l′1(f(x
j
p), f(x

j
n)), l′2(f(x

j
p), f(x

j
n)),

l′1(f(x
j
p), f(x

j
u)), l′2(f(x

j
p), f(x

j
u)), l′1(f(x

j
u), f(x

j
n)),

l′2(f(x
j
u), f(x

j
n)) in j-th subproblem, respectively. Then the

stochastic gradient of Equation (8) w.r.t f can be calculated
by using these random instances,

ξ(·) = 1

k − 1

k−1∑
j=1

(γj(lj1k(x
j
p, ·) + lj2k(x

j
n, ·))

+ (1− γj)(lj3k(x
j
p, ·) + lj4k(x

j
u, ·)

+ lj5k(x
j
u, ·) + lj6k(x

j
n, ·))) (10)

Kernel Approximation

When calculating the gradient ξ(·), we still need to calculate
the kernel matrix. In order to further reduce the complex-
ity, we introduce random Fourier features into gradient ξ(·).
Then we can obtain the following approximated gradient,

ζ(·) = 1

k − 1

k−1∑
j=1

(γj(lj1φω(x
j
p)φω(·) + lj2φω(x

j
n)φω(·))

+ (1− γj)(lj3φω(x
j
p)φω(·) + lj4φω(x

j
u)φω(x)

+ lj5φω(x
j
u)φω(·) + lj6φω(x

j
n)φω(·))) (11)

Obviously, we have ξ(·) = Eω[ζ(·)]. Besides, since four
sources of randomness of each subproblem, xj

p, xj
n, xj

u, ω,
are involved in calculating gradient ζ(·), we can denote the
approximated gradient ζ(·) as quadruply stochastic func-
tional gradient.

Update Rules

For convenience, we denote the function value as h(x) while
using the real gradient ξ(·), and f(x) while using the ap-
proximated gradient ζ(·). Obviously, h(x) is always in the
RKHS H while f(x) may be outside H. We give the update
rules of h(·) as follows,

ht+1(·) = ht(·)− ηt∇L(h) =
t∑

i=1

aitξ
i(·), ∀ t > 1

where ηt denotes the step size in t-th iteration, ait =

−ηt
∏t

j=i+1(1− ηjλ) and h1
0(·) = 0.

5737

Since ζ(·) is an unbiased estimate of ξ(·), they have the
similar update rules. Thus, the update rule by using ζj(·) is

ft+1(·) = ft(·)− ηt∇L(f) =
t∑

i=1

aitζ
i(·), ∀ t > 1

where f1
0 (·) = 0.

In order to implement the algorithm in a computer pro-
gram, we introduce sequences of constantly-changing coef-
ficients {αi}ti=1. Then the update rules can be rewritten as

f(x) =

t∑
i=1

αiφω(x), (12)

αi = − ηi
k − 1

k−1∑
j=1

(γj(lj1φw(x
j
p) + lj2φw(x

j
n))

+ (1− γj)(lj3φw(x
j
p) + lj4φw(x

j
u)

+ lj5φw(x
j
n) + lj6φw(x

j
u))), (13)

αj = (1− ηiλ)αj , for j = 1, · · · , i− 1, (14)

Calculate the Thresholds

Since the thresholds are ignored in AUC optimization, an
additional strategy is required to calculate them. As all the
function values f(x) of labeled instances are already known,
the thresholds can be calculated by minimizing the follow-
ing equation, which penalizes every erroneous threshold of
all the binary subproblems (Fathony, Bashiri, and Ziebart
2017).

min
b

LAT =

nl∑
i=1

⎛
⎝

yi−1∑
j=1

(f(xi)− bj)
2 +

k∑
j=yi

(bj − f(xi))
2

⎞
⎠ ,

where nl denotes the number of labeled instances and bk =
∞. Obviously, it is a Linear Programming problem and can
be easily solved. Besides, the solution has following prop-
erty (Proof in Appendix).

Lemma 1 Let b∗ = [b∗1, · · · , b∗k−1] be the optimal solution,
we have that b∗ is unique and b∗1 < · · · < b∗k−1.

Algorithms

The overall algorithms for training and prediction are sum-
marized in Algorithm 1 and 2. Instead of saving all the ran-
dom features, we following the pseudo random number gen-
erator setting of (Dai et al. 2014) with seed i to generate ran-
dom features in each iteration. We only need to save the seed
i and keep it aligned between training and prediction, then
we can regenerate the same random features. We also use
the coefficients to speed up calculating the function value.
Specifically, each iteration of the training algorithm executes
the following steps.

1. Randomly Sample Data Instances: We can randomly
sample a batch instances from class i, · · · , k and unla-
beled dataset respectively, and then conduct the data of
k−1 subproblems instead of sampling instances for each
subproblem.

2. Approximate the Kernel Function: Sample ωi ∼ p(ω)
with random seed i to calculate the random features on-
the-fly. We keep this seed aligned between prediction and
training to regenerate the same random features.

3. Update Coefficients: We compute the current coefficient
αi in i-th loop, and then update the former coefficients
αj for j = 1, · · · , i− 1.

Algorithm 1 QS3ORAO

Input: p(ω), φω(x), l(u, v), λ, γi, σ, k, t.
Output: {αi}ti=1, b1, · · · , bk−1

1: for i = 1, ..., t do
2: for j = 1, · · · , k − 1 do
3: Sample xj

p from Dj+1 ∪ · · · ∪ Dk.
4: Sample xj

n from D1 ∪ · · · ∪ Dj .
5: Sample xj

u ∼ Du.
6: end for
7: Sample ωi ∼ p(ω) with seed i.
8: for j = 1, · · · , k − 1 do
9: f(xi) =Predict(xi, {αj}i−1

j=1, {βj}i−1
j=1).

10: end for

11: αi = − ηi
k − 1

∑k−1
j=1 (γ(l

j
1φw(x

j
p)+lj2φw(x

j
n))+(1−

γ)(lj3φw(x
j
p) + lj4φw(x

j
u) + lj5φw(x

j
n) + lj6φw(x

j
u)))

12: αj = (1− ηjλ)αj for j = 1, ..., i− 1.
13: end for
14: Minimize LAT to find threshold b1, · · · , bk−1.

Algorithm 2 f(x) =Predict(x, {αi}ti=1)

Input: p(ω), φω(x)
Output: f(x)

1: Set f(x) = 0.
2: for i = 1, ..., t do
3: Sample ωi ∼ p(ω) with seed i.
4: f(x) = f(x) + αiφω(x)
5: end for

Convergence Analysis

In this section, we prove that QS3ORAO converges to the
optimal solution at the rate of O(1/t). We first give several
assumptions which are common in theoretical analysis.

Assumption 1 There exists an optimal solution f∗ to the
problem (9).

Assumption 2 (Lipschitz continuous). The first order
derivative of ls(u, v) is L1-Lipschitz continous in terms of
u and L2-Lipschitz continous in terms of v.

Assumption 3 (Bound of derivative). Assume that, we have
|l′1(u, v)| ≤ M1 and |l′2(u, v)| ≤ M2, where M1 > 0 and
M2 > 0.

Assumption 4 (Bound of kernel function). The kernel func-
tion is bounded, i.e., k(x, x′) ≤ κ, where κ > 0.

5738

Assumption 5 (Bound of random features norm). The ran-
dom features norm is bounded, i.e., |φω(x)φω(x

′)| ≤ φ.

Then we prove that ft can converge to the optimal solu-
tion f∗ based on the framework in (Dai et al. 2014). Since ft
may outside the RKHS, we use ht as an intermediate value
to decompose the error between ft and f∗:

|ft(x)− f∗(x)|2 ≤ 2|ft(x)− ht(x)|2 + 2κ ‖ ht − f∗ ‖2H,

where the first term can be regarded as the error caused by
random features and the second term can be regarded as the
error caused by randomly sampling data instances. We first
give the bound of these two errors in Lemma 2 and Lemma
4 respectively. All the detailed proofs are in Appendix.

Lemma 2 (Error due to random features) Assume χ de-
note the whole training set. For any x ∈ χ, we have

Ext
p,x

t
n,x

t
u,wt

[|ft(x)− ht(x)|] ≤ B2
1,t+1, (15)

where B2
1,t+1 := M2(κ + φ)2

∑t
i=1 |ait|, M =

1

k − 1

∑k−1
j=1 (2− γj)(M1 +M2), and B1,1 = 0.

Lemma 3 Suppose ηi =
θ

i
(1 ≤ i ≤ t) and θλ ∈ (1, 2) ∪

Z+. We have |ait| ≤
θ

t
and

∑t
i=1 |ait|2 ≤ θ2

t
.

Remark 1 According to Lemmas 2 and 3, the error caused
by random features has the convergence rate of O(1/t) with
proper learning rate and θλ ∈ (1, 2).

Lemma 4 (Error due to random data) Set ηt =
θ

t
, θ >

0, such that θλ ∈ (1, 2) ∪ Z+, we have

Ext
p,x

t
n,x

t
u,ωt

[‖ht+1 − f∗‖2H
] ≤ Q2

1

t
, (16)

where Q1=max

{
‖f∗‖H,

Q0+
√

Q2
0+(2θλ−1)(1+θλ)2θ2κM2

2θλ−1

}
,

Q0 =
√
2κ1/2(κ + φ)LMθ2 and L =

1

k − 1

∑k−1
j=1 (2 −

γj)(L1 + L2).

According to Lemma 2 and Lemma 4, we can bound the
error between ft and f∗.

Theorem 1 (Convergence in expectation) Let χ denote
the whole training set in semi-supervised learning problem.

Set ηt =
θ

t
, θ > 0, such that θλ ∈ (1, 2) ∪ Z+. ∀x ∈ χ, we

have

Exp
t ,x

n
t ,x

u
t ,ωt

[|ft+1(x)− f∗(x)|2] ≤ 2C2 + 2κQ2
1

t
,

where C2 = (κ+ φ)2M2θ2.

Remark 2 Theorem 1 means that for any given x, the evalu-
ated value of ft+1 at x will converge to that of f∗ at the rate
of O(1/t). This rate is the same as that of standard DSG
even though our problem is much more complicated and has
multiple sources of randomness.

Table 2: Datasets used in the experiments.

Name Features Samples classes

Discretized

3D 3 434,874 5
Sgemm 14 241,600 5
Year 90 463,715 5
Yolanda 100 400,000 5

Real-world

Baby 1000 160,792 5
Beauty 1000 198,502 5
Clothes 1000 278,677 5
Pet 1000 157,836 5

Experiments

In this section, we present the experimental results on var-
ious benchmark and real-world datasets to demonstrate the
effectiveness and efficiency of our proposed Q3ORAO.

Experimental Setup

We compare the AUC results and running time of Q3ORAO
with other methods summarized as follows,

1. SVOREX: Supervised OR algorithm proposed in (Chu
and Keerthi 2007).

2. M-PNU-AUC: Multi class version of PNU-AUC (Sakai,
Niu, and Sugiyama 2018), which focuses on binary semi-
supervised AUC optimization.

3. M-SAMULT: Multi class version of SAMULT (Xie and
Li 2018), which focuses on binary semi-supervised AUC
optimization.

We implemented QSG-ORS2AO, SVOREX and SA-
MULT in MATLAB. We used the MATLAB code from
https://github.com/t-sakai-kure/PNU as the implementation
of PNU-AUC. Originally, both PNU-AUC and SAMULT fo-
cus on binary semi-supervised AUC optimization problems.
We extend them to multi-class version by using a multiclass
training paradigm. Specifically, similar to our binary decom-
position in our method, we use PNU-AUC and SAMUlT to
training k − 1 classifiers, fj(x), j = 1, · · · , k − 1, Then
we calculate the average AUC of unlabeled by Equation (2).
We denote these multiclass versions as M-PNU-AUC and
M-SAMULT. For all algorithms, we use the squared pair-
wise loss function l(u, v) = (1− u+ v)2 and Gaussian ker-
nel k(x, x′) = exp(σ ‖ x − x′ ‖2). The hyper-parameters
(λ and σ) were chosen via 5-fold cross-validation from the
region {(λ, γ)|2−3 ≤ λ ≤ 23, 2−3σ ≤ 23}. The trade-off
parameters {γj} for k− 1 subproblems were searched from
0 to 1 at intervals of 0.1.

Note all the experiments were run on a PC with 56
2.2GHz cores and 80GB RAM and all the results are the
average of 10 trials.

Datasets

Table 2 summarizes 4 regression datasets collected from
UCI, LIBSVM repositories and 4 real-world datasets from
Amazon product datasets1. We discretize the regression
datasets into equal-frequency bins. For real-world datasets,

1http://jmcauley.ucsd.edu/data/amazon/

5739

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(a) 3D

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(b) Sgemm

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(c) Year

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(d) Yolanda

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(e) Baby

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(f) Beauty

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(g) Clothes

1 2 3 4 5 7.5 10
Unlab. Samples 104

100

102

104

T
ra

in
in

g
ti

m
e(

se
c)

QS3ORAO
M-SAMULT
M-PNU-AUC

(h) Pet

Figure 1: The training time of QS3ORAO, M-SAMULT and M-PNU-AUC against different sizes of unlabeled samples, where
the sizes of labeled samples are fixed at 500. (The lines of M-SAMULT and M-PNU-AUC are incomplete because their imple-
mentations crash on larger training sets.)

3D Sgemm Year Yolanda Baby BeautyClothes Pet
0.4

0.6

0.8

1

A
U

C

SVOREX
M-SAMULT
M-PNU

QS3ORAO

Figure 2: The boxplot of AUC results on unlabeled
datasets for SVOREX, M-PNU-AUC, M-SAMULT and our
QS3ORAO.

we first use TF-IDF to process text data, and then reduce
the data dimensions to 1000 by using SVD. To conduct
the experiments for semi-supervised problems, we randomly
sample 500 labeled instances and drop labels of the rest in-
stances. All the data features are normalized to [0, 1] in ad-
vance.

Results and Disscussion

Figure 2 presents the AUC results on the unlabeled dataset
of these algorithms. The results show that in most cases, our
proposed QS3ORAO has the highest AUC results. In ad-
dition, we also compare the AUC results with supervised
method SVOREX which uses 500 labeled instances to train
a model. Obviously, our semi-supervised learning method
has higher AUC than SVOREX, which demonstrate that
incorporating unlabeled instances can improve the perfor-
mance.

Figure 1 presents the training time against different size
of unlabeled samples. The two lines of M-SAMULT and M-
PNU-AUC are incomplete. This is because these two meth-
ods need to save the whole kernel matrix, and as unlabeled
data continues to increase, they are all out of memory. In
contrast, QS3ORAO only need to keep m random features in

each iteration. This low memory requirement allows it to do
an efficient training for large scale datasets. Besides, we can
easily find that our method is faster than M-SAMULT and
M-PNU-AUC when the number of unlabeled instances is
larger than 10000. This is because the M-SAMULT and M-
PNU-AUC need O(n3) operations to compute the inverse of
kernel matrix. Differently, QS3ORAO uses RFF to approxi-
mate the kernel function, and each time it only needs O(Dn)
operations to calculate the random features with seed i.

Based on these results, we conclude that QSG-S2AUC is
superior to other state-of-the-art algorithms in terms of effi-
ciency and scalability, while retaining similar generalization
performance.

Conclusion

In this paper, we propose an unbiased objective function of
semi-supervised OR AUC optimization and propose a novel
scalable algorithm, QS3ORAO to solve it. We decompose
the original problem by k − 1 parallel hyperplanes to k − 1
binary semi-supervised AUC optimization problems. Then
we use a DSG-based method to achieve the optimal solution.
Even though this optimization process contains four sources
of randomness, theoretically, we prove that QS3ORAO has
a convergence rate of O(1/t). The experimental results on
various benchmark datasets also demonstrate the superiority
of the proposed QS3ORAO.

Acknowledgments

This work was supported by Six talent peaks project (No.
XYDXX-042) and the 333 Project (No. BRA2017455) in
Jiangsu Province and the National Natural Science Founda-
tion of China (No: 61573191).

5740

References

Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. Journal of machine learning
research 7(Nov):2399–2434.
Chapelle, O.; Scholkopf, B.; and Zien, A. 2009. Semi-
supervised learning. IEEE Transactions on Neural Networks
20(3):542–542.
Chu, W., and Keerthi, S. S. 2007. Support vector ordinal
regression. Neural computation 19(3):792–815.
Dai, B.; Xie, B.; He, N.; Liang, Y.; Raj, A.; Balcan, M.-F. F.;
and Song, L. 2014. Scalable kernel methods via doubly
stochastic gradients. In Advances in NIPS, 3041–3049.
Drineas, P., and Mahoney, M. W. 2005. On the nyström
method for approximating a gram matrix for improved
kernel-based learning. journal of machine learning research
6(Dec):2153–2175.
Fathony, R.; Bashiri, M. A.; and Ziebart, B. 2017. Adver-
sarial surrogate losses for ordinal regression. In Advances in
NIPS, 563–573.
Fine, S., and Scheinberg, K. 2001. Efficient svm training
using low-rank kernel representations. Journal of Machine
Learning Research 2(Dec):243–264.
Fujino, A., and Ueda, N. 2016. A semi-supervised auc op-
timization method with generative models. In ICDM, 883–
888.
Fullerton, A. S., and Xu, J. 2012. The proportional odds
with partial proportionality constraints model for ordinal re-
sponse variables. Social science research 41(1):182–198.
Fürnkranz, J.; Hüllermeier, E.; and Vanderlooy, S. 2009.
Binary decomposition methods for multipartite ranking.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 359–374. Springer.
Gao, W., and Zhou, Z.-H. 2015. On the consistency of auc
pairwise optimization. In IJCAI, 939–945.
Gao, W.; Jin, R.; Zhu, S.; and Zhou, Z.-H. 2013. One-pass
auc optimization. In International Conference on Machine
Learning, 906–914.
Geng, X.; Gu, B.; Li, X.; Shi, W.; Zheng, G.; and Huang,
H. 2019. Scalable semi-supervised svm via triply stochastic
gradients. In IJCAI.
Gu, B.; Sheng, V. S.; Tay, K.; Romano, W.; and Li, S. 2015.
Incremental support vector learning for ordinal regression.
IEEE Transactions on Neural Networks and Learning Sys-
tems 26:1403–1416.
Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In Ad-
vances in NIPS, 8527–8537.
Kim, K.-j., and Ahn, H. 2012. A corporate credit rating
model using multi-class support vector machines with an
ordinal pairwise partitioning approach. Computers & Op-
erations Research 39(8):1800–1811.
Li, X.; Gu, B.; Ao, S.; Wang, H.; and Ling, C. X. 2017.

Triply stochastic gradients on multiple kernel learning. In
UAI.
Liu, Y.; Liu, Y.; Zhong, S.; and Chan, K. C. 2011. Semi-
supervised manifold ordinal regression for image ranking.
In Proceedings of the 19th ACM international conference
on Multimedia, 1393–1396. ACM.
Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; and Hua, G. 2016.
Ordinal regression with multiple output cnn for age estima-
tion. In Proceedings of the CVPR, 4920–4928.
Rahimi, A., and Recht, B. 2008. Random features for large-
scale kernel machines. In Advances in NIPS, 1177–1184.
Rudin, W. 2017. Fourier analysis on groups. Courier Dover
Publications.
Sakai, T.; Niu, G.; and Sugiyama, M. 2018. Semi-supervised
auc optimization based on positive-unlabeled learning. Ma-
chine Learning 107(4):767–794.
Seah, C.-W.; Tsang, I. W.; and Ong, Y.-S. 2012. Transduc-
tive ordinal regression. IEEE transactions on neural net-
works and learning systems 23(7):1074–1086.
Shi, W.; Gu, B.; Li, X.; Geng, X.; and Huang, H. 2019.
Quadruply stochastic gradients for large scale nonlinear
semi-supervised auc optimization. In IJCAI.
Smola, A. J., and Schölkopf, B. 2000. Sparse greedy matrix
approximation for machine learning.
Srijith, P.; Shevade, S.; and Sundararajan, S. 2013. Semi-
supervised gaussian process ordinal regression. In Joint Eu-
ropean conference on machine learning and knowledge dis-
covery in databases, 144–159. Springer.
Tsuchiya, T.; Charoenphakdee, N.; Sato, I.; and Sugiyama,
M. 2019. Semi-supervised ordinal regression based on em-
pirical risk minimization. CoRR abs/1901.11351.
Uematsu, K., and Lee, Y. 2014. Statistical optimality in mul-
tipartite ranking and ordinal regression. IEEE transactions
on pattern analysis and machine intelligence 37(5):1080–
1094.
Waegeman, W., and De Baets, B. 2010. A survey on roc-
based ordinal regression. In Preference learning. Springer.
127–154.
Waegeman, W.; De Baets, B.; and Boullart, L. 2008. Roc
analysis in ordinal regression learning. Pattern Recognition
Letters 29(1):1–9.
Wang, S.; Li, D.; Petrick, N.; Sahiner, B.; Linguraru, M. G.;
and Summers, R. M. 2015. Optimizing area under the roc
curve using semi-supervised learning. Pattern recognition
48(1):276–287.
Xie, Z., and Li, M. 2018. Semi-supervised auc optimization
without guessing labels of unlabeled data.
Yan, H. 2014. Cost-sensitive ordinal regression for
fully automatic facial beauty assessment. Neurocomputing
129:334–342.
Zhang, C.; Ren, D.; Liu, T.; Yang, J.; and Gong, C. 2019.
Positive and unlabeled learning with label disambiguation.
In Proceedings of IJCAI-19, 4250–4256.

5741

