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Abstract

Modern methods for learning over graph input data have
shown the fruitfulness of accounting for relationships among
elements in a collection. However, most methods that learn
over set input data use only rudimentary approaches to ex-
ploit intra-collection relationships. In this work we introduce
Deep Message Passing on Sets (DMPS), a novel method that
incorporates relational learning for sets. DMPS not only con-
nects learning on graphs with learning on sets via deep ker-
nel learning, but it also bridges message passing on sets and
traditional diffusion dynamics commonly used in denoising
models. Based on these connections, we develop two new
blocks for relational learning on sets: the set-denoising block
and the set-residual block. The former is motivated by the
connection between message passing on general graphs and
diffusion-based denoising models, whereas the latter is in-
spired by the well-known residual network. In addition to
demonstrating the interpretability of our model by learning
the true underlying relational structure experimentally, we
also show the effectiveness of our approach on both synthetic
and real-world datasets by achieving results that are compet-
itive with or outperform the state-of-the-art. For readers who
are interested in the detailed derivations of serveral results
that we present in this work, please see the supplementary
material at: https://arxiv.org/abs/1909.09877.

Introduction

Significant effort in machine learning has been devoted to
methods that operate over fixed-length, finite vectors. These
methods ultimately perform some variant of a classic func-
tional estimation task where one maps one fixed input vec-
tor x ∈ R

d to another fixed output vector y ∈ R
p via an

estimated function f̂ : Rd �→ R
p. Notwithstanding the im-

pressive progress of these approaches, the world we live in
is filled with data that does not come neatly pre-packaged
into fixed finite vectors. Instead, often data is observed and
reasoned over in collections such as sets. For instance, when
performing object detection on point clouds, one assigns a
label (the object type) based on the underlying shape that is
inferred collectively using all observed points (as opposed
to labelling any one individual 3d point). In these, and many
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other tasks, one seeks to assign an output response to an en-
tire set of elements in which the elements can themselves
be related to each other in a complex manner. Based on
this need for analysis approaches that can operate on sets
relationally, we develop a machine learning (ML) estima-
tion technique that incorporates relational learning for set-
structured data.

Set-structured data in its general form presents fundamen-
tal challenges to many existing machine learning methods.
First, an appropriate method should be invariant to the order
of the elements in the input set; i.e., different permutations
should not influence the final response since the underlying
instance is an unordered set. Second, a method should al-
low input sets of variable cardinalities; i.e., we should be
able to associate a single label with a variable number of
set elements. Both of these challenges render traditional ap-
proaches based on ordered inputs of fixed dimension (e.g.,
vectors or images of given sizes) like standard multilayer
perceptrons (MLP) inapplicable. Some rectifications have
been proposed to cope with these challenges without di-
rectly addressing them. For example, one can train a re-
current neural network (RNN) to adapt to variable-sized in-
put sets. However, there is no guarantee that a network can
learn to be permutation invariant (Vinyals, Bengio, and Kud-
lur 2015), especially in the context of input sets with large
cardinality and small sample sizes. Hence, in this work we
instead consider deep learning (DL) architectures that are
specifically constructed to handle set-structured data.

Architectures that handle set-structured data exist. These
techniques use, for instance, global-pooling operations (Qi
et al. 2016) and intermediate equivariant mappings (Zaheer
et al. 2017) to produce estimators that are invariant to per-
mutations. While these architectures are asymptotically uni-
versal, they are notably limited in the intra-set dependencies
they model. For instance, processing each set element inde-
pendently using an MLP and aggregating features via max
pooling to produce a set-level feature representation, as pro-
posed in (Qi et al. 2016), may have difficulty capturing pair-
wise relations among the set elements. This indicates that
the effectiveness of such methods may be limited for com-
plex real-world data with finite samples. Hence, we propose
to explicitly incorporate relational learning on elements of
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(a) DMPS with the Set-denoising Block (b) Set-denoising Block (c) Set-residual Block

Figure 1: An overview of DMPS coupled with the set-denoising block as an illustrative example, and magnified views of the set-
denoising block and the set-residual block. We briefly explain each figure here. (a): Given a set of objects, {x1, x2, · · · , xn}, we
first extract feature representations of the set elements, {φ0

1, φ
0
2, · · · , φ0

n}, through, for example, a convolution neural network
if the set elements are images. We estimate the underlying latent graph of the set using the extracted features via deep kernel
learning (Wilson et al. 2015). We then apply a predefined number (k, in this case) of set-denoising blocks, which can be
replaced by the message passing step or the set-residual block, to the extracted features in order to produce meaningful final
feature representations that encode complex interactions among set elements. Lastly, we use a set pooling operation to generate
a set-level feature representation for downstream tasks; (b): We first process the feature matrix, X , with a message passing step
to produce XMP , and then compute a weighted sum between X and XMP with a learnable diffusion coefficient γ. Lastly we
process the added matrix through a linear layer followed by a non-linear operator; (c): We still process the feature matrix, X ,
with a message passing step to produce Xresi. Instead of adding Xresi immediately back to X , we process Xresi with a linear
layer followed by a non-linear operator first, and then add the resulting feature matrix to X .

an input set, a proven strategy for better learning (Santoro et
al. 2017), by first constructing a latent graph that appropri-
ately reflects the underlying relational structure of the input
set, and then applying the message passing scheme on the
constructed graph to leverage such relational information.
Although not the first work that can be interpreted as consid-
ering relational information for modeling set-structured data
through graphs (e.g. an alternative interpretation of Vaswani
et al. (2017) given in Battaglia et al. (2018)), we explicitly
represent the relational structure of input sets via learned la-
tent graphs, and more importantly, place sensible resections
on such graphs that are more consistent with the graph learn-
ing literature, facilitate the interpretability of our approach,
and allow for the natural development and interpretation of
our approach from a diffusion point of view.

Main Contributions In this paper, we further relational
learning on sets with our framework Deep Message Passing
on Sets (DMPS). Our main contributions are: 1) we unite
learning on graphs with learning on sets through deep ker-
nel learning, allowing for flexible relational learning on sets;
2) we develop two novel blocks, the set-denoising block and
the set-residual block, to further facilitate learning interac-
tions among set elements; 3) in addition to demonstrating
the interpretability of our approach by successfully learning
the true underlying relational structures, we show the effec-
tiveness of our approach on both synthetic and real-world
datasets by achieving results that are competitive with or
outperform the state-of-the-art.

Background

This section introduces background material relevant for the
development of our DMPS approach.

General Formulation of Valid Set Functions

Given an input set X = {x1, x2, · · · , xn}, most permutation
invariant functions that operate on sets studied in recent liter-
ature (Zaheer et al. 2017; Qi et al. 2016; Ilse, Tomczak, and
Welling 2018) belong to the following class of functions:

F(f) = {f : f(X) = κ (pool{φX(S1), . . . , φX(Sm)})} ,
(1)

where Si for 1 ≤ i ≤ m is a subset of the power set of X, m
is the number of such subsets being modeled, φX is a func-
tion that acts on the power set of X , pool is a permutation
invariant pooling operation that produces a set-level repre-
sentation for downstream tasks, and κ is another function
that transforms the set-level representation into the output
space of the model. Most methods in the literature differ in
the choice of φX . To explicitly encode interactions among
set elements, we will construct a function φ̂X that acts on a
nontrivial subset of X using a message passing scheme.

Message Passing on Graphs

Representation learning on graphs is an active research area
(Hamilton, Ying, and Leskovec 2017). We focus on the mes-
sage passing scheme. Consider a graph G = {V,E}, where
V is the set of vertices and E is the set of edges. We assume
that each node v has a node feature hv and each edge be-
tween two vertices, say v and w, has an edge feature evw.
Message passing on graphs can be summarized in terms of
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a message passing phase and a readout phase (Gilmer et al.
2017). In the message passing phase we update each ht

v as

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (propagate neighborhood)

ht+1
v = Ut(m

t+1
v , ht

v) (update the feature vector)
where Mt and Ut are the feature aggregation and update
functions, respectively, N(v) denotes the neighborhood of
v, and t enumerates the message passing step. In the readout
phase, we produce a graph-level feature representation from
the node features for downstream tasks with f̂ as

f̂ = R ({h(v)|v ∈ V })
where R is the readout function. To ensure the message pass-
ing scheme is permutation invariant with respect to graph
isomorphisms, an example of a trio of Mt, Ut, and R can be
a function that computes a weighted average of the neigh-
borhood features based on the edge weights, a concatenation
operator, and a sum operator, respectively.

Deep Message Passing on Sets

We bridge learning on graphs and learning on sets with
the message passing scheme, by first learning an underly-
ing latent graph that represents the connectivity of the set
elements, and then applying message passing to this la-
tent graph to incorporate relational learning into learning
on sets (see Fig. 1a for an illustration). In this way, DMPS
leverages relational information to encode input sets in con-
trast to more traditional approaches (Zaheer et al. 2017;
Qi et al. 2016), where each set element is either processed
through some rudimentary equivariant transformations or in
an independent manner.

Latent Graph Learning

Message passing on graphs is based on neighborhood struc-
tures and edge weights of the graphs. Our goal is to lever-
age relational information to encode elements in an input
set via message passing, a natural way to capture the intra-
dependencies among the elements if a graph that appropri-
ately underpins the input set exists. However, unlike graph
data, we generally do not know a-priori what neighbors a
particular set element has and how strongly it is connected
to these neighbors. Instead we need to infer such a graph
structure from the set itself, ideally in an end-to-end fashion
that is optimized jointly with the message passing scheme
and a downstream task objective. To this end, we propose to
learn edge weights among set elements, say xi and xj , via
a similarity function, ei,j = s(xi, xj), where the similarity
function itself is learned through the deep kernel learning
scheme (Wilson et al. 2015). Specifically, deep kernel learn-
ing uses a shared multilayer perceptron network (MLP) to
transform set elements into a feature space in which a ker-
nel function is applied to the resulting feature representa-
tions, i.e. s(xi, xj) = kσ (MLP(xi),MLP(xj)) where kσ is
a valid kernel function with an adaptive hyperparameter σ.
Following this kernel strategy, we effectively use an infinite
number of adaptive basis functions to estimate the similari-
ties among set elements.

Message Passing on Sets

We simplify message passing on graphs to adapt to our set-
ting:

Definition 1. Given a set X = {x1, x2, . . . , xn} where
xi ∈ Rp for all i, we define message passing on sets as an
iterative updating procedure that updates each set element
as a weighted sum of the entire set xi ←−

∑n
j=1 wi,jxj ,

where
∑

j wi,j = 1, ∀i : 1 ≤ i ≤ n, and wi,j ≥ 0,
∀i, j : 1 ≤ i, j ≤ n.

More compactly, we have Xt+1 = WXt where t denotes
the time step, Xt+1, Xt ∈ Rn×p, and W ∈ Rn×n

+ is
an adaptive, row-normalized stochastic matrix constructed
using the deep kernel learning scheme. More specifically,
given an input set, we first construct the kernel matrix K
where Ki,j = s(xi, xj) using the learned similarity func-
tion. We then obtain W by applying the Softmax oper-
ator to K to ensure the rows of K sum up to one, allow-
ing us to interpret W as the weighted, row-normalized ad-
jacency matrix of the underlying (fully-connected) latent
graph. If one possesses prior knowledge about the set ele-
ments, choosing an appropriate threshold, say δ, and setting
the entries of W that are smaller than δ to zero would re-
sult in a sparser graph. Furthermore, if one were to stack,
for example, k message passing steps (i.e, 1 ≤ t ≤ k + 1),
the estimated weight matrix, W , of the learned latent graph
is shared across the stacked k steps. This is to say, although
W is jointly estimated with other parameters, it is not step-
specific, i.e., the underlying latent graph is assumed to be
static. Stacking multiple message passing steps thus can be
interpreted as propagating information from each set ele-
ment’s multi-hop neighbors to encode higher-order informa-
tion. As shown in our experiments, such learned W is capa-
ble of representing the relational structure of each input set
in an intuitive way, allowing for a deeper understanding of
the data in hand while leading to more effective learning re-
sults. Next, we develop some concepts that are needed to
introduce the set-denoising block.

Diffusion on General Graphs

We present the update equation that explains message pass-
ing and motivates the set-denoising block from a diffusion
point-of-view. We refer interested readers to the supplemen-
tary material for a more detailed treatment. We first define
the discretized Dirichlet energy for graphs as

E({xi}) = C

2

∑
(i,j)∈E

wi,j ||xi − xj ||22, (2)

where xi denotes the feature vector of node i, wi,j is the
weight of the edge connecting nodes i and j, and C is a con-
stant. It is crucial to note that, intuitively, performing mes-
sage passing on graph moves the feature vectors of the nodes
“closer” to each other, which in turn is equivalent to mini-
mizing Eq. (2) (i.e. a weighted sum of feature vector dif-
ferences measured by the L2 norm). Differentiating Eq. (2)
with respect to xi, discretizing time with an Euler-forward
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approximation, and rearranging the terms, we obtain

xt+1
i = (1− δtC

∑
j

wi,j)x
t
i + δtC

∑
j

wi,jx
t
j , (3)

= (1− δtC)xt
i + δtC

∑
j

wi,jx
t
j . (4)

where δt denotes the time step.
Hence, the update rule is a convex combination of the cur-

rent node feature xt
i and the update feature obtained by the

message passing step. Subject to time-step constraints on δt,
larger δt will result in a smoother solution. If we choose the
constant C and the time step δt such that Cδt = 1, we re-
cover the message passing step. This observation offers us
another interpretation of DMPS: message passing with the
weight matrix W is equivalent to diffusing each set element
based on the entire set, i.e, updating each set element by a
weighted average of the entire set.

Set-denoising and Set-residual Blocks

Recall that beyond first-order relations, stacking a desired
number of message passing steps allows us to take higher-
order interactions among set elements into account. While
enhancing the model’s capability of capturing complex re-
lational signals, such stacking results in deeper networks,
which can potentially cause problems in terms of over-
smoothing the feature representations and other common
difficulties in training deep networks. Based on the previ-
ously derived update equation (4) and the residual network
(He et al. 2016), we propose to address both concerns by in-
troducing the set-denoising block and the set-residual block.
Before detailing the architectures of those two blocks, we
elaborate on the intuitions behind them:

• It is well-known that a discretized diffusion process with
Neumann boundary conditions on a graph converges to a
steady state (i.e. all node features being the same) with
enough time steps. In our setting, by stacking n message
passing steps we effectively are “running” the discretized
diffusion process on the latent graph over n time-steps.
Although accounting for interactions among set elements
is crucial, it is also indispensable to retain meaningful dis-
tinctions among them (e.g, all set elements sharing the
same feature representation when the diffusion process
has converged is obviously not ideal for learning). It is
thus important to avoid over-smoothing when stacking
message passing steps, a critical observation that is at-
tested by one of our experimental studies.

• Ideally, the architectures of either the set-denoising block
or the set-residual block should alleviate the concerns of
vanishing gradient or difficulty of learning the identity
mapping when building a deep network.

Now we formally introduce the two proposed set blocks

• Set-denoising Block: As depicted in Fig. 1b, we first
apply message passing to the feature matrix X , result-
ing in XMP. The original feature matrix X is then com-
bined with XMP via a convex combination. This convex
combination is based on a learnable diffusion coefficient

Algorithm 1: Deep Message Passing on Sets with the
Set-denoising Block

Result: Final label prediction ŷ;
Input: {x1, x2, . . . , xn}: a set of objects; k: the number
of set-denoising blocks desired;

Learnable Parameters: Ht, ∀t : 1 ≤ t ≤ k: parameters
of the linear layers; γ: the diffusuion coefficient;

Initialization: t = 1;
—Extract p-dimensional numerical feature of each set

element xi and form a feature matrix X ∈ Rn×p;
—Construct the weight matrix W from the feature
matrix X using deep kernel learning;

while t ≤ k do

Xt+1 = (1− γ)Xt + γWXt;
Xt+1 = τ

(
Xt+1Ht

)
;

t = t+ 1;
end

x = pool(Xk);
ŷ = κ(x)

γ ∈ (0, 1), which corresponds to δtC in the discretized
anisotropic heat equation (4). In other words, we do not
explicitly choose the constant C and the step size δt in (4);
instead we either fix γ upfront or jointly learn it with other
model parameters. It is worth noting that if γ is learnable,
we effectively allow our model to adaptively adjust the
optimal degree of smoothing. We choose γ to be the same
for each block, though making γ block-specific is possi-
ble. The linear layer followed by a non-linear operator at
the end serve to further increase the expressiveness of the
learned features.
• Set-residual Block: Fig. 1c is directly motivated by the

residual network (He et al. 2016): assuming there exists
an optimal feature matrix for learning, Xoptim, it might be
easier for the network to learn the difference, Xoptim−X ,
through message passing as opposed to learn the optimal
feature matrix Xoptim from scratch. Moreover, the archi-
tecture of the set-residual block alleviates some common
problems that come with training a deep network (He et
al. 2016).

Deep Message Passing on Sets (DMPS)

As a concrete example, Algorithm 1 outlines Deep Mes-
sage Passing on Sets (DMPS) coupled with the set-denoising
block, where τ is an element-wise non-linear operator,
pool is a set pooling operator, and κ is a function (e.g a
fully-connected layer) that transforms the set-level feature
representation into the output space.

Analysis

Notice that with or without the set-denoising/set-residual
blocks, the message passing step in DMPS is permutation
equivariant with respect to the set elements. Since the com-
position of a permutation equivariant operation and a valid
set pooling operation is permutation invariant, we have the
following proposition
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Proposition 2. DMPS is permutation invariant to the order
of the elements in the input set.

Additionally, being able to approximate any valid set func-
tion is desirable for a model. Building upon the results in
Zaheer et al. (2017) and Qi et al. (2016), we have

Proposition 3. DMPS is an universal approximator for any
permutation invariant function.

Proof. See supplementary material.

Related Work

Relational and Non-local Reasoning

• Relational Reasoning: Our proposed approach fits and
generalizes the relation network (Santoro et al. 2017). To
elaborate, if we do not perform any feature transformation
after message passing and define the set pooling operator
as the sum operator, a model comprised of one message
passing step would result in f(X) = κ

(∑
i,j wi,jx

T
j H1

)

where xT
j is the j-th row of the feature matrix X . This

agrees with the form suggested in Santoro et al. (2017) if
we let gθ(xi, xj) = wi,jx

T
j H1. Therefore, our proposed

network can be seen as a generalization of the relation net-
work in the sense that stacking multiple message passing
steps or set blocks enables us to learn high-order relations
among the set elements.

• Non-local Networks: While non-local relational reason-
ing, whose main objective is to extend the frameworks
of local learning schemes like the convolution operator
or the fully-connected layer to allow for non-local learn-
ing, has been proposed in earlier work (Wang et al. 2017),
DMPS is an extension of that to set-structured data where
our goal is to leverage non-trivial relations among set el-
ements. We also proposed a new way of learning the sim-
ilarity function, s(xi, xj), that infers pairwise relations,
namely deep kernel learning. Last but not least, in order to
further strengthen the flexibility of our model, we coupled
DMPS with the set-denoising and set-residual blocks, mo-
tivated by the diffusion dynamics and the residual net-
work, respectively, whereas Wang et al. (2017) only con-
sidered residual connections.

Learning Deep Networks

The network proposed by He et al. (2016) allows for sen-
sible training of deep networks, an advantage that is inher-
ited by the set-residual block. While the set-denoising block
shares certain structural similarities with the highway net-
work (Srivastava, Greff, and Schmidhuber 2015), it was in-
troduced in a different context, namely through the lens of
diffusion on graphs and the avoidance of over-smoothing. In
retrospect, the connection between diffusion dynamics and
the set-denoising block established in this work provides an-
other useful interpretation of the highway network in terms
of relational learning. Last but not least, the set-denoising
and set-residual blocks are introduced specifically to handle
set-structured data, an attribute that is beyond the scope of
the residual network or the highway network.

Learning on Latent Graphs of Sets

We now refer back to Eqn. 1. A special case of φX , as it
can be seen in Qi et al. (2016) for example, acts on set
elements independently. Notwithstanding, this can still be
considered a trivial form of message passing on a latent
graph whose edge set is empty, including the approaches in
Qi et al. (2016) and Zaheer et al. (2017) as special cases.
Franceschi et al. (2019) considers the challenge of jointly
learning a probabilistic graph structure (to represent the re-
lational structure of the given data points) and the param-
eters of the model in a semi-supervised setting in which a
prior relational structure is corrupted or completely missing,
by casting the two estimation problems in terms of a bilevel
programming optimization task. The set transformer (Lee et
al. 2019), by directly applying the transformer (Vaswani et
al. 2017) on set-structured data, essentially uses a different
W for every message passing step, and there are effectively
many different W ’s at each step, since each attention head
uses different keys/values. Unlike the transformer, DMPS
places sensible restrictions on W that are well-motivated:
they are based on physics (diffusion dynamics) and graph
learning (static latent graph). Furthermore, it is worth em-
phasizing that DMPS only learns one latent graph (i.e. a sin-
gle W as opposed to multiple W ’s). Such design choice is
critical because not only it allows for more intuitive and less
ambiguous analysis/visualization, and leads to fewer free pa-
rameters and potentially better generalization given limited
data, but it also suits data for which one latent graph suffices
for the purpose of capturing the underlying relational struc-
ture better, explaining the experimental advantage of DMPS
over the set transformer in the experiments that we conduct.

Experiments

We apply DMPS and its extensions to a range of synthetic-
toy and real-world datasets. For each experiment, we com-
pare our methods against, to the best of our knowledge,
the state-of-the-art results for that dataset. Unless other-
wise specified, three message passing steps, set-denoising
blocks, or set-residual blocks are stacked to form the final
model. Furthermore, we adopt the following abbreviations
in this section: ET—equivariant transformation (Zaheer et al.
2017); V-DMPS—vanilla DMPS, i,e the block component
being the message passing step; R-DMPS—the block com-
ponent being the set-residual block; D-DMPS w/(FDC or
LDC)—the block component being the set-denoising block
with (fixed or learnable, respectively) diffusion coefficient;
and UG—uniform graph, i.e a fully-connected, undirected
graph with equal weights for all edges.

Classifying Gaussian Sets

In this experiment we investigate a traditional problem of
classifying random samples drawn from two different mul-
tivariate Gaussian distributions with the same mean and dif-
ferent covariance matrices. We create sets of real numbers
by drawing the set elements as vector random samples from
one of the two Gaussian distributions. The latent graph un-
derlying each set is thus determined by the covariance ma-
trix of its corresponding Gaussian distribution. To use the
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(a) Learned kernel matrix—N(0,Σ) (b) Learned kernel matrix—N(0, I) (c) Test results with different ρ

Figure 2: Fig. (a) and (b) show the learned kernel matrices with input sampled from the respective two normal distributions at
test time, and Fig. (c) depicts how the testing accuracy varies with ρ.

covariance matrix as the ground truth for the latent graph,
our main goal is to test DMPS’s ability to capture and re-
cover the true relational structure that underpins each set.
Given a set X = [X1, X2, . . . , Xp]

T where X ∼ N(μ,Σ), it
is worth emphasizing that the order among the elements in X
does not matter, as X is permutation equivariant with respect
to its mean and covariance. The canonical order is used here
for convenience, although the result would be the same if
one were to permute the order upfront. We next describe the
experiment in more detail.

We sample input sets from two 5-dimensional Gaussian
distributions N(0, I) and N(0,Σ). To further test DMPS’s
capability to apprehend sparse relational signals, we choose
Σ to be the same as the identity matrix except at a (ran-
domly) chosen pair of indices ((2, 4), in this case) in which
Σ2,4 = Σ4,2 = ρ and ρ ∈ [0, 1). This is to say, the only, yet
subtle difference between sets drawn from those two dis-
tributions is that the values of the second and the fourth ele-
ments are positively correlated for sets drawn from N(0,Σ),
a relational information that can only be captured if the el-
ements in the sets are modeled interactively. Fig. 2a and 2b
showcase the latent graphs recovered by DMPS at test time
with input sets sampled from the two chosen distributions,
respectively, and with ρ = 0.95, while Fig. 2c conveys how
the test results vary with different choices of ρ.

We have shown the following advantages of DMPS
through this experiment: a). DMPS is able to take advantage
of non-trivial covariance relations, thus outperforming meth-
ods that do not explicitly take such information into account.
Furthermore, the trend of the curve in Fig. 2c confirms the
intuition that DMPS performs better when the underlying
relational signal gets stronger; b). in contrast to other re-
lational learning methods that focus on sets like Lee et al.
(2019), DMPS is intuitively interpretable in that the kernel
matrix learned through the latent graph learning recovers
the covariance structure of the underlying Gaussian distribu-
tion. This property of DMPS is highly desirable, and is also
consistent with theoretical probability as functional trans-
formations of random variables preserve the independence
and covariance relations among those variables (the network
acts on each set element, i.e each dimension of the Gaussian
random sample, independently before the message passing
step).

Counting Unique Characters

Figure 3: Learned latent graph for a test input set with nine
images categorized by three unique characters. The color
transparency of the edges is proportional to their learned
weights, with heavier-colored edges carrying larger weights.

To test the model’s ability to model set-structured data
relationally, Lee et al. (2019) proposed the task of count-
ing unique characters using the characters dataset (Lake,
Salakhutdinov, and Tenenbaum 2015), where the goal is to
predict the number of unique characters in an input set of
character images. Please refer to the supplementary mate-
rial for detailed experimental setup. Tab. 1 shows the testing
results. We emphasize that we align as much architectural
choices, such as learning rate, number of training batches,
batch size, etc., as we can with Lee et al. (2019) for fair
comparison. We make some additional comments below.

Table 1: Counting unique characters

Architecture Test Accuracy

DeepSets w/ Mean ET 0.4617 ± 0.0076
DeepSets w/ Max ET 0.4359 ± 0.0077
Set Transformer 0.6037 ± 0.0075
V-DMPS w/ UG 0.1357 ± 0.0000
D-DMPS w/ LDC & UG 0.4661 ± 0.0085
V-DMPS 0.6446 ± 0.0174
R-DMPS 0.6600 ± 0.0103
D-DMPS w/ FDC 0.6748 ± 0.0120
D-DMPS w/ LDC 0.6674 ± 0.0080

Firstly, DMPS and its variants outperform other meth-
ods by significant margins, showing the effectiveness of our
proposed model. Secondly, since relational learning is the
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centerpiece of our model, we perform two ablation studies
(V-DMPS w/ UG and D-DMPS w/ LDC & UG) where we
perform message passing on the uniform graph instead of
the learned latent graph. The idea is that regular DMPS and
its variants should outperform models with a fixed uniform
graph if the learned latent graph indeed captures useful re-
lational information. As shown in Tab. 1, V-DMPS w/ UG
performs poorly, while D-DMPS w/ LDC & UG does better
(perhaps because of the less erroneous smoothing induced
by the set-denoising block) it still does not perform as well.
This shows the significance of proper relational learning pro-
vided by regular DMPS and its variants. To further demon-
strate the interpretability of our approach, Fig. 3 shows the
learned latent graph for a test input set with nine images cat-
egorized by three unique characters. We see that the learned
latent graph in which three clusters emerge delineates the
relations among the set elements in a reasonable manner,
underscoring a straightforward intuition that images corre-
sponding to the same character are more closely related.

Point Cloud Classification

Table 2: ModelNet 40 Classification Task

Architecture 100 points 1000 points

DeepSets w/ Max ET 0.82 ± 0.02 0.87 ± 0.01
Set Transformer 0.8454 ± 0.0144 0.8915 ± 0.0144
PointNet++ — 0.907 ±—

V-DMPS 0.8367 ± 0.0047 0.8751 ± 0.0029
R-DMPS 0.8475 ± 0.0036 0.8935 ± 0.0016
D-DMPS w/ FDC 0.8564 ± 0.0031 0.8783 ± 0.0032
D-DMPS w/ LDC 0.8571 ± 0.0062 0.8798 ± 0.0020

We apply DMPS and its variants to the ModelNet40
dataset (Chang et al. 2015), which contains objects that are
represented as sets of 3d points (point clouds) in 40 differ-
ent categories. Our model allows us to directly model sets
of 3d points. For this experiment, we construct input sets
with sizes 100 and 1,000 points per set by uniformly sam-
pling from the mesh representations of the objects. Tab. 2
shows the test performances of our approaches compared
with other state-of-the-art methods that directly operate on
raw point clouds. We make some additional comments be-
low.

Figure 4: Depiction of how the diffusion coefficient γ affects
the test accuracy in the case of 100 points per set.

Firstly, we point out that the task is harder when there

are fewer points in the input set, thus requiring more ef-
ficient relational learning. We observe that D-DMPS w/
LDC outperforms other methods by significant margins in
the case of 100 points in the input set. As for the case of
1000 points, PointNet++ achieved the state-of-the-art among
methods that directly process raw point clouds. Our method
performs on par with the set transformer (Lee et al. 2019),
and outperforms deep sets (Zaheer et al. 2017) by leverag-
ing relational information. Secondly, to investigate the im-
portance of balancing between appropriate message passing
and over-smoothing, we perform a study in which we fix the
diffusion coefficient to various values and see how the test
accuracy varies. Fig. 4 shows the result. As γ ranges from
0 to 1, the model effectively ranges from DeepSets w/o ET
to V-DMPS, with anywhere in-between being D-DMPS w/
FDC at that particular γ. The test accuracy peaks when γ ap-
proaches 0.5, and decreases when γ becomes either too large
or too small. This shows the significance of controlling the
degree of smoothing. Along with the update equation, the
novelty of the set-denoising block is affirmed theoretically
and empirically.

Histopathology Dataset

Table 3: Breast Cancer

Architecture Test Accuracy

Attention 0.745 ± 0.018
Gated Attention 0.755 ± 0.016
V-DMPS 0.800 ± 0.023
R-DMPS 0.818 ± 0.029
D-DMPS w/ FDC 0.846 ± 0.019
D-DMPS w/ LDC 0.836 ± 0.023

The concept of learning on sets also applies well to
weakly-labeled data. In this section we perform experiment
on classifying weakly-labeled real-life histopathology im-
ages provided in the breast cancer dataset (Gelasca et al.
2008). A common approach is to divide an image into
smaller patches and think of the patches as a set of ”small
images” with a single label for the set.

The breast cancer dataset introduced in Gelasca et al.
(2008) consists of 58 weakly-labeled 896×768 H&E im-
ages. An image is labeled malignant if it contains breast
cancer cells; otherwise it is labeled benign. We follow a
similar procedure to pre-process the images as in Ilse, Tom-
czak, and Welling (2018). We divide the images into 32×32
patches, which results in 672 patches per set (i.e., per im-
age). Furthermore, because of the small number of avail-
able images, we perform data augmentation at the training
stage by randomly rotating and mirroring the patches. We
point out that Ilse, Tomczak, and Welling (2018) also ran-
domly adjusted the amount of H&E by decomposing the
RGB color of the tissue into the H&E color space. We com-
pare the performances of DMPS and its variants to the atten-
tion and gated attention models introduced in Ilse, Tomczak,
and Welling (2018). The testing results are shown in Tab. 3.
Despite the framework of multiple instance learning, and
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thus the attention scheme, being particularly suitable to com-
putational histopathology (Kandemir and Hamprecht 2015;
Ilse, Tomczak, and Welling 2018), we see that DMPS and its
variants perform uniformly better by significant margins.

Conclusion and Future Work

In this paper, we introduced DMPS, a set-learning scheme
that explicitly takes interactions among set elements into ac-
count when modeling set-structured data. We also proposed
two variants of message passing on sets, the set-denoising
block and the set-residual block. Although this is a step
towards relational learning on sets, there are many possi-
ble extensions. For example, the message passing scheme
can be interpreted as a gradient descent step based on the
weighted Dirichlet integral with the functional two-norm.
Would one, for example, discretize an energy of the form∫
w(x)‖∇u(x)‖2 dx instead, we would obtain a form of

weighted total-variation message passing. Hence, one inter-
esting future work would be to derive a family of message
passing algorithms by changing the functional two-norm to
the more general functional p-norm and to explore the be-
havior of the resulting message passing schemes.
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