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Abstract

The joint optimization of representation learning and cluster-
ing in the embedding space has experienced a breakthrough in
recent years. In spite of the advance, clustering with represen-
tation learning has been limited to flat-level categories, which
often involves cohesive clustering with a focus on instance re-
lations. To overcome the limitations of flat clustering, we intro-
duce hierarchically-clustered representation learning (HCRL),
which simultaneously optimizes representation learning and
hierarchical clustering in the embedding space. Compared
with a few prior works, HCRL firstly attempts to consider
a generation of deep embeddings from every component of
the hierarchy, not just leaf components. In addition to obtain-
ing hierarchically clustered embeddings, we can reconstruct
data by the various abstraction levels, infer the intrinsic hier-
archical structure, and learn the level-proportion features. We
conducted evaluations with image and text domains, and our
quantitative analyses showed competent likelihoods and the
best accuracies compared with the baselines.

Introduction

Clustering is one of the most traditional and frequently used
machine learning tasks. Clustering models are designed to
represent intrinsic data structures, such as latent Dirichlet
allocation (Blei, Ng, and Jordan 2003). The recent devel-
opment of representation learning has contributed to gen-
eralizing model feature engineering, which also enhances
data representation (Bengio, Courville, and Vincent 2013).
Therefore, representation learning has been merged into the
clustering models, e.g., variational deep embedding (VaDE)
(Jiang et al. 2017). Besides merging representation learning
and clustering, another critical line of research is structuring
the clustering result, e.g., hierarchical clustering.

Autoencoder (Rumelhart, Hinton, and Williams 1985) is a
typical neural network for unsupervised representation learn-
ing and achieves a non-linear mapping from a input space
to a embedding space by minimizing reconstruction errors.
To turn the embeddings into random variables, a variational
autoencoder (VAE) (Kingma and Welling 2014) places a
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Figure 1: Example of hierarchically clustered embeddings
on MNIST with three levels of hierarchy (left), the generated
digits from the hierarchical Gaussian mixture components
(top right), and the extracted level proportion features (bottom
right). We marked the mean of a Gaussian mixture component
with the colored square, and the digit written inside the square
refers to the unique index of the mixture component.

Gaussian prior on the embeddings. The autoencoder, whether
it is probabilistic or not, has a limitation in reflecting the
intrinsic hierarchical structure of data. For instance, VAE
assuming a single Gaussian prior needs to be expanded to
suggest an elaborate clustering structure.

Due to the limitations of modeling the cluster struc-
ture with autoencoders, prior works combine the autoen-
coder and the clustering algorithm. While some early cases
pipeline just two models, e.g., (Huang et al. 2014), a typi-
cal merging approach is to model an additional loss, such
as a clustering loss, in the autoencoders (Xie, Girshick,
and Farhadi 2016; Guo et al. 2017; Yang et al. 2017;
Nalisnick, Hertel, and Smyth 2016; Chu and Cai 2017;
Jiang et al. 2017). These suggestions exhibit gains from uni-
fying the encoding and the clustering, yet they remain at
the parametric and flat-structured clustering. A more recent
development releases the previous constraints by using the
nonparametric Bayesian approach. For example, the infinite
mixture of VAEs (IMVAE) (Abbasnejad, Dick, and van den
Hengel 2017) explores the infinite space for VAE mixtures
by looking for an adequate embedding space through sam-
pling, such as the Chinese restaurant process (CRP). Whereas
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Figure 2: Graphical representation of VaDE (Jiang et al. 2017) (left), VAE-nCRP (Goyal et al. 2017) (center), and neural
architecture of both models (right). In the graphical representation, the white/shaded circles represent latent/observed variables.
The black dots indicate hyper or variational parameters. The solid lines represent a generative model, and dashed lines represent
a variational approximation. A rectangle box means a repetition for the number of times denoted by the bottom right of the box.

IMVAE remains at the flat-structured clustering, VAE-nested
CRP (VAE-nCRP) (Goyal et al. 2017) captures a more com-
plex structure, i.e., a hierarchical structure of the data, by
adopting the nested Chinese restaurant process (nCRP) prior
(Griffiths et al. 2004) into the cluster assignment of the Gaus-
sian mixture model.

Hierarchical mixture density estimation (Vasconcelos and
Lippman 1999), where all internal and leaf components
are directly modeled to generate data, is a flexible frame-
work for hierarchical mixture modeling, such as hierar-
chical topic modeling (Mimno, Li, and McCallum 2007;
Griffiths et al. 2004), with regard to the learning of the inter-
nal components. This paper proposes hierarchically clustered
representation learning (HCRL) that is a joint model of 1)
nonparametric Bayesian hierarchical clustering, and 2) rep-
resentation learning with neural networks. HCRL extends a
previous work on merging flat clustering and representation
learning, i.e., VaDE, by incorporating inter-cluster relation
modelings.

Specifically, HCRL jointly optimizes soft-divisive hierar-
chical clustering in an embedding space from VAE via two
mechanisms. First, HCRL includes a hierarchical-versioned
Gaussian mixture model (HGMM) with a mixture of hierar-
chically organized Gaussian distributions. Then, HCRL sets
the prior of embeddings by adopting the generative processes
of HGMM. Second, to handle a dynamic hierarchy structure
dealing with the clusters of unequal sizes, we explore the
infinite hierarchy space by exploiting an nCRP prior. These
mechanisms are fused as a unified objective function; this
is done rather than concatenating the two distinct models of
clustering and autoencoding.

We developed two variations of HCRL, called HCRL1 and
HCRL2, where HCRL2 extends HCRL1 by the flexible mod-
eling on the level proportion. The quantitative evaluations
focus on density estimation quality and hierarchical clus-
tering accuracy, which shows that HCRL2 have competent
likelihoods and the best accuracies compared with the base-
lines. When we observe our results qualitatively, we visualize
1) the hierarchical clusterings, 2) the embeddings under the
hierarchy modeling, and 3) the generated images from each
Gaussian mixture component, as shown in Figure 1. These
experiments were conducted by crossing the data domains of
texts and images, so our benchmark datasets include MNIST,
CIFAR-100, RCV1 v2, and 20Newsgroups.

Preliminaries

Variational Deep Embedding

VaDE, see Figure 2, is a combination of representation learn-
ing and mixture modeling (Jiang et al. 2017). VaDE defines
the model parameters of κ, μ1:K , and σ2

1:K , which are a
proportion, means, and covariances of mixture components,
respectively. VaDE uses the Gaussian mixture model (GMM)
as the prior, whereas VAE assumes a single standard Gaussian
distribution on embeddings. VaDE uses an amortized infer-
ence as VAE, with a generative and inference networks; L(x)
in Equation 1 denotes the evidence lower bound (ELBO),
which is the lower bound on the log likelihood.

log p(x) ≥ L(x) = Eq

[
log

p(c, z, x)

q(c, z|x)
]

= Eq

[
log

K∏
c=1

κcN (z|μc,σ
2
cIJ)

p(c|z)N (z|μ̃, σ̃2IJ)
+ log p(x|z)

]
. (1)

Variational Autoencoder nested Chinese
Restaurant Process

VAE-nCRP uses the nonparametric Bayesian prior for learn-
ing tree-based hierarchies, the nCRP (Griffiths et al. 2004),
so the representation could be hierarchically organized.
The nCRP prior is the nested version of CRP, and a non-
parametric Bayesian prior for learning a tree structure from
data providing the distribution over hierarchical partitions,
i.e., defines the distributions over children components for
each parent component, recursively in a top-down way. The
variational inference of the nCRP can be formalized by the
nested stick-breaking construction (Wang and Blei 2009),
which is also kept in the VAE setting. The weight, πi, for the
i-th node follows the Griffiths-Engen-McCloskey (GEM) dis-
tribution (Pitman and others 2002), where πi is constructed as
πi = vi

∏i−1
j=1(1− vj), vi ∼ Beta(1, γ) by a stick-breaking

process. Since the nCRP provides the ELBO with the nested
stick-breaking process, VAE-nCRP has a unified ELBO of
VAE and the nCRP as Equation 2.

Given the ELBO of VAE-nCRP, we recognized the po-
tential improvements. First, term (3.1) is for modeling the
hierarchical relationship among clusters, i.e., each child is
generated from its parent. VAE-nCRP trade-off is the direct
dependency modeling among clusters against the mean-field
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approximation. This modeling may reveal that the higher
clusters in the hierarchy are more difficult to train. Second,
in term (3.2), leaf mixture components generate embeddings,
which implies that only leaf clusters have direct summa-
rization ability for sub-populations. Additionally, in term
(3.2), variance parameter σ2

D is modeled as the hyperpa-
rameter shared by all clusters. In other words, only with
J-dimensional parameters, α, for the leaf mixture compo-
nents, the local density modeling without variance parameters
has a critical disadvantage.

L(x) = Eq

[
log

p(v)

q(v|x) + log p(x|z) + log
{p(ζ|v)
q(ζ|x)

p(αpar(p)|α∗)p(αp|αpar(p), σ
2
N )

q(αp,αpar(p)|x)︸ ︷︷ ︸
(3.1)

p(z|αp, ζ, σ
2
D)

q(z|x)︸ ︷︷ ︸
(3.2)

}]
. (2)

For all of these weaknesses, we were able to compensate
with the level proportion modeling and HGMM prior. The
level assignment generated from the level proportion allows
a data instance to select among all mixture components. We
do not need direct dependency modeling between the parents
and their children because all internal mixture components
also generate embeddings.

Proposed Models

Generative Process

We developed two models for the hierarchically clustered
representation learning; HCRL1 and HCRL2. The generative
processes of the presented models resemble the generative
process of hierarchical clusterings, such as the hierarchical
latent Dirichlet allocation (Griffiths et al. 2004). In detail, the
generative process departs from selecting a path ζ, from the
nCRP prior (Phase 1). Then, we sample a level proportion
(Phase 2) and a level, l (Phase 3), from the sampled level
proportion to find the mixture component in the path, and this
component of ζl provides the Gaussian distribution for the
latent representation (Phase 4). Finally, the latent representa-
tion is exploited to generate an observed datapoint (Phase 5).
The first subfigure of Figure 3 depicts the generative process
with the specific notations.

The level proportion of Phase 2 is commonly modeled as
the group-specific variable in the topic modeling. To adapt
the level proportion for our non-grouped setting, we consid-
ered two modeling assumptions on the level proportion: 1)
globally defined the level proportion which is shared by all
data instances, which characterizes HCRL1, and 2) locally
defined, i.e., data-specific level proportion, which is a distinc-
tion of HCRL2 from HCRL1. Similar to the latter assumption,
several recently proposed models also define a data-specific
mixture membership over the mixture components (Zhang et
al. 2018; Ji et al. 2016).

The below formulas are the generative process of HCRL2
with its density functions, where the level proportion is gen-
erated by a data instance. In addition, Figure 3 illustrates

graphical representations of HCRL1 and HCRL2, respec-
tively, and the graphical representations are corresponding
to the described generative process. The generative process
also presents our formalization of our prior distributions, de-
noted as p(·), and variational distributions, denoted as q(·),
by generation phases. The variational distributions are used
for the mean-field variational inference (Jordan et al. 1999)
as detailed in Section .

1. Choose a path ζ ∼ nCRP(ζ|γ)
• p(ζ) =

∏L
l=1 π1,ζ2,...,ζl where π1,ζ2,...,ζl =∏l

l′=1{v1,ζ2,...,ζl′ (
∏ζl′−1

j=1 (1− v1,ζ2,...,j))}
• q(ζ|x) ∝ Sζ �

∑
ζ∈child(ζ) Sζ

2. Choose a level proportion η ∼ Dirichlet(η|α)

• p(η) = Dirichlet(η|α)
• qφη

(η|x) = Dirichlet(η|α̃)

≈ LogisticNormal(η|μ̃η, σ̃
2
ηIL)

where [μ̃η; log σ̃
2
η] = gφη

(x),

α̃l =
1

σ̃2
ηl

(1− 2
L + e

−μ̃ηl

L2

∑
l′ e

−μ̃η
l
′ )

3. Choose a level l ∼ Multinomial(l|η)
• p(l) = Multinomial(η)
• q(l|x) = Multinomial(l|ω)

where ωl ∝ exp
{∑

ζ Sζ

(∑J
j=1− 1

2 log(2πσ
2
ζl,j

)

− σ̃2
zj

2σ2
ζl,j
− (μ̃zj

−μζl,j
)2

2σ2
ζl,j

)
+ ψ(α̃l)− ψ(α̃0)

}
4. Choose a latent representation z ∼ N (z|μζl

,σ2
ζl
IJ)

• p(z) = ∑
ζ,l p(ζ|γ) · ηl · N (z|μζl

,σ2
ζl
IJ)

• qφz
(z|x) = N (z|μ̃z, σ̃

2
zIJ)

where [μ̃z; log σ̃
2
z] = gφz

(x)

5. Choose an observed datapoint x ∼ N (
x|μx,σ

2
xID

)
where [μx; logσ

2
x] = fθ(z)

1

Neural Architecture

The discrepancy in prior assumptions on the level assignment
leads to the different neural architectures. The neural architec-
ture of HCRL1 is a standard variational autoencoder, while
the neural architecture of HCRL2 consists of two probabilis-
tic encoders on z and η, and one probabilistic decoder on z
as shown in the right part of Figure 3. We designed the prob-
abilistic encoder on η for inferring the variational posterior
of data-specific level proportion. The unbalanced architec-
ture originates from our modeling assumption of p(x|z), not
p(x|z,η).

One may be puzzled by the lack of the generative network
of η, but η is used for the hierarchy construction in the
nCRP that is a part of the previous section. In detail, η is
a random variable of the level proportion in Phase 2 of the
generative process. The sampling of η and ζ reflects in the

1We introduce the sample distribution for the real-valued data
instances, and supplementary material Section 6 provides the binary
case as well, which we use for MNIST. The supplementary material
is available at https://github.com/sujin6003/HCRL.
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Figure 3: A simple depiction (far left) of the key notations, where each numbered circle refers to the corresponding Gaussian
mixture component. The graphical representation of HCRL1 (center left), the graphical representation of HCRL2 (center right),
and the neural architecture (far right) of our proposed model, HCRL2. The neural architecture of HCRL2 consists of two
probabilistic encoder networks, gφη

and gφz
, and one probabilistic decoder network, fθ .

selecting a Gaussian mixture component in Phase 4, and
the latent vector z becomes an indicator of a data instance,
x. Therefore, the sampling of η from the neural network is
linked to the probabilistic modeling of x, so the probabilistic
model substitutes for creating a generative network from η
to x.

Considering η in HCRL, the inference network is given,
but the generative network was replaced by the generative
process of the graphical model. If we imagine a balanced
structure, then the generative process needs to be fully de-
scribed by the neural network, but the complex interaction
within the hierarchy makes a complex neural network struc-
ture. Therefore, the neural network structure in Figure 3 may
disguise that the structure misses the reconstruction learn-
ing on η, but the reconstruction has been reflected in the
probabilistic graphical model (PGM) side of learning. This
is also a difference between (VaDE, VAE-nCRP) and HCRL
because VaDE and VAE-nCRP adhere to the balanced autoen-
coder structure. We call this reconstruction process, which
is inherently a generative process of the traditional PGM,
PGM reconstruction (see the decoding neural network part
of Figure 3).

Mean-Field Variational Inference

The formal specification can be a factorized probabilistic
model as Equation 3, which is based on HCRL2. In the case
of HCRL1, ηn should be changed to η and be placed outside
the product over n.

p(Φ,x) =
∏

j /∈MT

p(vj |γ)×
∏

i∈MT

p(vi|γ)×

N∏
n=1

p(ζn|v)p(ηn|α)p(ln|ηn)p(zn|ζn, ln)pθ(xn|zn).

(3)

where Φ = {v, ζ,η, l, z} denotes the set of latent variables,
MT denotes the set of all nodes in tree T , and N is the total
number of data instances. The proportion and assignment
on the mixture components for the n-th data instance are
modeled by ζn as a path assignment; ηn as a level proportion;
and ln as a level assignment. v is a Beta draw used in the
stick-breaking construction. We assume that the variational

distributions of HCRL2 are as Equation 4 by the mean-field
approximation. In HCRL1, we also assume the mean-field
variational distributions, and therefore, ηn should be replaced
by η and be outside the product over n.

q(Φ|x) =
∏

j /∈MT

p(vj |γ)×
∏

i∈MT

q(vi|ai, bi)×

N∏
n=1

q(ζn|xn)qφη
(ηn|xn)q(ln|ωn,xn)qφz

(zn|xn). (4)

where ai, bi are the parameters of the Beta distribution that
was used for the stick-breaking process of nCRP. qφη

(ηn|xn)

and qφz
(zn|xn) should be noted because these two varia-

tional distributions follow the amortized inference of VAE.
q(ζ|x) ∝ Sζ �

∑
ζ∈child(ζ) Sζ is the variational distribu-

tion over path ζ, where child(ζ) means the set of all full
paths that are not in T but include ζ as a sub path. Because
we specified both generative and variational distributions,
we define the ELBO of HCRL2, L = Eq

[
log p(Φ,x)

q(Φ|x)
]
, in

Equation 5. Supplementary material Section 6 enumerates
the full derivation in detail. We report that the Laplace ap-
proximation with the logistic normal distribution is applied
to model the prior, α, of the level proportion, η. We choose
a conjugate prior of a multinomial, so p(ηn|α) follows the
Dirichlet distribution parametrized by α. To configure the
inference network on the Dirichlet prior, the Laplace approx-
imation is used (MacKay 1998; Srivastava and Sutton 2017;
Hennig et al. 2012).

(5)

L(x) = Eq

[
log

p(v)

q(v|x) + log
p(η)

q(η|x)

+ log
∏
ζ,l

p(ζ|v)
q(ζ|x)

p(l|η)
q(l|x)

p(z|μζl
,σ2

ζl
)

q(z|x) + log p(x|z)
]
.

Training Algorithm of Clustering Hierarchy

HCRL is formalized according to the stick-breaking process
scheme. Unlike the CRP, the stick-breaking process does not
represent the direct sampling of the mixture component at
the data instance level. Therefore, it is necessary to devise a
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heuristic algorithm for operations, such as GROW, PRUNE,
and MERGE, to refine the hierarchy structure. Section 3
of the supplementary material provides details about each
operation. In the below description, an inner path and a full
path refer to the path ending with an internal node and a leaf
node, respectively.

Algorithm 1 Training for Hierarchically Clustered Represen-
tation Learning

Require: Training data x; number of epochs, E; tree-based
hierarchy depth, L; period of performing GROW, tgrow;
minimum number of epochs locking the hierarchy, tlock

Ensure: T (E),ω, {ai, bi,μi,σ
2
i }i∈M

T (E)

1: μζ1:L
,σ2

ζ1:L

← Initialize L Gaussian of a single path ζ

2: T (0) ← Initialize the tree-based hierarchy having ζ
3: t← 0
4: for each epoch e = 1, · · · , E do
5: Update the weight parameters using ∇L(x)
6: {ai, bi,μi,σ

2
i }i∈M

T (e−1)
← Update node-specific

parameters using ∇a,b,μ,σ2L(x)
7: Update other variational parameters using∇L(x)
8: if mod(e, tgrow) = 0 then

9: T (e),Q← GROW
10: end if
11: if T (e) = T (e−1) and t ≥ tlock then
12: T (e),Q← PRUNE
13: if T (e) = T (e−1) then T (e),Q←MERGE
14: end if
15: if T (e) �= T (e−1) then t← 0 else t← t+ 1
16: end for

• GROW expands the hierarchy by creating a new branch
under the heavily weighted internal node. Compared with
the work of (Wang and Blei 2009), we modified GROW
to first sample a path, ζ

∗
, proportional to

∑
n q(ζn = ζ

∗
),

and then to grow the path if the sampled path is an inner
path.

• PRUNE cuts a randomly sampled minor full path, ζ
∗
,

satisfying
∑

n q(ζn=ζ
∗
)∑

n,ζ q(ζn=ζ)
< δ, where δ is the pre-defined

threshold. If the removed leaf node of the full path is the
last child of the parent node, we also recursively remove
the parent node.

• MERGE combines two full paths, ζ
(i)

and ζ
(j)

, with sim-
ilar posterior probabilities, measured by J(ζ

(i)
, ζ

(j)
) =

qiq
T
j /|qi||qj |, where qi = [q(ζ1 = ζ

(i)
), · · · , q(ζN =

ζ
(i)
)].

Algorithm 1 summarizes the overall algorithm for HCRL.
The tree-based hierarchy T is defined as (N,P), where N and
P denote a set of nodes and paths, respectively. We refer to the
node at level l lying on path ζ, as N(ζ1:l) ∈ N. The defined
paths, P, consist of full paths, Pfull, and inner paths, Pinner, as a
union set. The GROW algorithm is executed for every specific
iteration period, tgrow. After ellapsing tlock iterations since

performing the GROW operation, we begin to check whether
the PRUNE or MERGE operation should be performed. We
prioritize the PRUNE operation first, and if the condition of
performing PRUNE is not satisfied, we check for the MERGE
operation next. After performing any operation, we initialize
t to 0, which is for locking the changed hierarchy during
minimum tlock iterations to be fitted to the training data.

Experiments

Datasets and Baselines

Datasets We used various hierarchically organized bench-
mark datasets, such as CIFAR-100, RCV1 v2, 20News-
groups, as well as a flat structured benchmark dataset, MNIST.
Supplementary Section 10 illustrates the details of the data
pre-processing.

Baselines We completed our evaluation in two aspects: 1)
optimizing the density estimation, and 2) clustering the hier-
archical categories.

First, we evaluated HCRL1 and HCRL2 from the den-
sity estimation perspective by comparing it with diverse flat
clustered representation learning models, such as Variational
Autoencoder (VAE) (Kingma and Welling 2014), Variational
Deep Embedding (VaDE) (Jiang et al. 2017), Improved Deep
Embedded Clustering (IDEC) (Guo et al. 2017), Deep Clus-
tering Network (DCN) (Yang et al. 2017), Infinite Mixture of
Variational Autoencoders (IMVAE) (Abbasnejad, Dick, and
van den Hengel 2017); and VAE-nCRP.

Second, we tested HCRL1 and HCRL2 from the accuracy
perspective by comparing it with multiple divisive hierarchi-
cal clusterings, such as VAE-nCRP, Hierarchical K-means
(HKM) (Nister and Stewenius 2006), Mixture of Hierarchi-
cal Gaussians (MOHG) (Vasconcelos and Lippman 1999),
Recursive Gaussian Mixture Model (RGMM), and Recur-
sive Scalable Sparse Subspace Clustering by Orthogonal
Matching Pursuit (RSSCOMP). More details can be found in
Supplementary Section 11.

Quantitative Analysis

We used two measures to evaluate the learned representations
in terms of the density estimations: 1) negative log likelihood
(NLL), and 2) reconstruction errors (REs). Autoencoder mod-
els, such as IDEC and DCN, were tested only for the REs.
The NLL is estimated with 100 samples. Table 1 indicates
that HCRL is best in the NLL and is competent in the REs
which means that the hierarchically clustered embeddings
preserve the intrinsic raw data structure.

Additionally, we evaluated hierarchical clustering accura-
cies by following (Xie, Girshick, and Farhadi 2016), except
for MNIST that is flat structured. Table 2 points out that
HCRL2 has better micro-averaged F-scores compared with
every baseline. HCRL2 is able to reproduce the ground truth
hierarchical structure of the data, and this trend is consistent
when HCRL2 compared with the pipelined model, such as
VaDE with a clustering model. The result of the compar-
isons with the clustering models, such as HKM, MOHG,
RGMM, and RSSCOMP, is interesting because it experi-
mentally proves that the joint optimization of hierarchical
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Table 1: Test set performance of the negative log likelihood (NLL) and the reconstruction errors (REs). Replicated ten times, and
the best in bold. P † < 0.05 (Student’s t-test). Model-L# means that the model trained with the #-depth hierarchy.

MNIST CIFAR-100 RCV1 v2 20Newsgroups
Model NLL REs NLL REs NLL REs NLL REs

VAE (Kingma and Welling 2014) 230.71 10.46 1960.06 57.54 2559.46 1434.59 2735.80 1788.22
VaDE (Jiang et al. 2017) 217.20 10.35 1921.85 53.60 2558.32 1426.38 2733.46 1782.86
IDEC (Guo et al. 2017) N/A 12.75 N/A 64.09 N/A 1376.26 N/A 1660.61†
DCN (Yang et al. 2017) N/A 11.30 N/A 44.26 N/A 1361.98 N/A 1691.17
IMVAE 296.57 10.69 1992.83 40.45† 2566.01 1387.02 2722.81 1718.08
(Abbasnejad, Dick, and van den Hengel 2017)
VAE-nCRP-L3 (Goyal et al. 2017) 718.78 32.67 2969.62 198.66 2642.88 1538.42 2712.28 1680.56
VAE-nCRP-L4 (Goyal et al. 2017) 721.00 32.53 2950.73 198.97 2646.48 1542.81 2713.58 1680.71
HCRL1-L3 209.59† 9.28† 1864.69† 55.12 2562.79 1418.30 2732.10 1792.13
HCRL1-L4 212.31† 8.31† 1860.22† 55.56 2555.84 1404.23 2727.49 1754.94
HCRL2-L3 203.24† 8.70† 1843.40† 50.44 2554.50† 1395.05 2726.75 1828.71
HCRL2-L4 203.91† 8.16† 1849.13† 50.47 2535.43† 1353.34 2702.88 1711.30

Table 2: Hierarchical clustering accuracies with F-scores, on CIFAR-100 with a depth of three, RCV1 v2 with a depth of four,
and 20Newsgroups with a depth of four. Replicated ten times, and a confidence interval with 95%. Best in bold.

Model CIFAR-100 RCV1 v2 20Newsgroups

HKM (Nister and Stewenius 2006) 0.162±0.008 0.256±0.068 0.410±0.043

MOHG (Vasconcelos and Lippman 1999) 0.085±0.038 0.103±0.014 0.040±0.012

RGMM 0.169±0.012 0.274±0.052 0.435±0.037

RSSCOMP (You, Robinson, and Vidal 2016) 0.146±0.023 0.266±0.055 0.295±0.047

VAE-nCRP (Goyal et al. 2017) 0.201±0.008 0.413±0.024 0.558±0.027

VaDE (Jiang et al. 2017) + HKM 0.164±0.012 0.331±0.066 0.485±0.056

VaDE (Jiang et al. 2017) + MOHG 0.166±0.016 0.423±0.093 0.492±0.071

VaDE (Jiang et al. 2017) + RGMM 0.181±0.013 0.386±0.062 0.410±0.065

VaDE (Jiang et al. 2017) + RSSCOMP 0.192±0.021 0.272±0.044 0.291±0.043

HCRL1 0.199±0.016 0.437±0.029 0.566±0.048

HCRL2 0.225±0.014 0.455±0.030 0.601±0.097

clustering in the embedding space improves hierarchical clus-
tering accuracies. HCRL2 also presented better hierarchical
accuracies than VAE-nCRP. We conjecture the reasons for
the modeling aspect of VAE-nCRP: 1) the simplified prior
modeling on the variance of the mixture component as just
constants, and 2) the non-flexible learning of the internal
components.

The performance gain of HCRL2 compared to HCRL1
arises from the detailed modeling of the level proportion.
The prior assumption that the level proportion is shared by
all data may give rise to the optimization biased towards
the learning of leaf components. Specifically, a lot of data
would be generated from the leaf components with the high
probability since the leaf components have small variance,
which causes the global level proportion to focus the high
probability on the leaf level.

Qualitative Analysis

MNIST In Figure 1, the digits {4, 7, 9} and the digits
{3, 8} are grouped together with a clear hierarchy, which
was consistent between HCRL2 and VaDE. Also, some digit
images {0, 4, 2} in a round form are grouped, together, in
HCRL2. In addition, among the reconstructed digit images
from the hierarchical mixture components, the digit images
generated from the root have blended shapes from 0 to 9,

which is natural considering the root position. As shown in
Figure 1, similarly shaped digit images are hierarchically
clustered, and the specific hierarchical clustering results are
partly visualized in Figure 4. Additionally, we reconstructed
images by feeding the mean embedding vectors for the Gaus-
sian mixture components, and the images are enumerated
with the corresponding mixture components like the right top
subfigure of Figure 1. Figure 4 suggests that HCRL captures
the more intrinsic structure of MNIST; and HCRL shows that
the branches in the hierarchy learned more distinguishing
features than VAE-nCRP.

CIFAR-100 Figure 5 shows the hierarchical clustering re-
sults on CIFAR-100, which are inferred from HCRL2. Given
that there were no semantic inputs from the data, the color
was dominantly reflected in the clustering criteria. However,
if one observes the second hierarchy, the scene images of the
same sub-hierarchy are semantically consistent, although the
background colors are slightly different.

RCV1 v2 and 20Newsgroups Figure 6 shows the embed-
ding of RCV1 v2. VAE and VaDE show no hierarchy, and
close sub-hierarchies are distantly embedded. Since the flat
clustered representation learning focuses on isolating clusters
from each other, the distances between different clusters tend
to be uniformly distributed. However, when constructing a hi-
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(a) HCRL (b) VAE-nCRP

(c) HCRL (d) VAE-nCRP

Figure 4: Comparison of the hierarchical clustering (a, b) and the reconstructed images (c, d) on MNIST. The result learned from
HCRL shows that digit images of similar shape are hierarchically clustered without any help of external knowledge. We obtained
the reconstructed images by feeding the mean vectors for each Gaussian mixture component into the bottleneck z.

Figure 5: Example extracted sub-hierarchies on CIFAR-100

(a) VAE (Kingma
and Welling 2014)

(b) VaDE
(Jiang et al. 2017)

(c) VAE-nCRP
(Goyal et al. 2017) (d) HCRL1 (e) HCRL2 (f) Topic sub-

hierarchies on
20Newsgroups

Figure 6: Hierarchical clustering results on text datasets. (a,b,c,d,e) Comparison of embeddings on RCV1 v2, plotted using
t-SNE (Maaten and Hinton 2008). We mark the mean of a mixture component with a numbered square, colored by {red (root),
green (internal), blue (leaf)}. The edges between components are connected if the components are having the direct parent-child
relationship. (f) the topic hierarchy from 20Newsgroup

5782



erarchy, the distance of two clusters in the same sub-hierarchy
needs to be reduced. VAE-nCRP guides the internal mixture
components to be agglomerated at the center, and the cause of
agglomeration is the generative process of VAE-nCRP, where
the parameter of the internal components are inferred with-
out direct information from data, which is a key weakness
of VAE-nCRP. HCRL1 and HCRL2 show a relatively clear
separation without the agglomeration. Figure 6 also shows
the example sub-hierarchies on 20Newsgroups. We observe
relatively more general contents in the internal clusters than
in the leaf clusters of each internal cluster.

Conclusion

In this paper, we have presented a hierarchically clustered rep-
resentation learning framework for the hierarchical mixture
density estimation on deep embeddings. HCRL aims at encod-
ing the relations among clusters as well as among instances to
preserve the internal hierarchical structure of data. We have
introduced two models called HCRL1 and HCRL2, whose
the main differentiated features are 1) the crucial assumption
regarding the internal mixture components for having the
ability to generate data directly, and 2) the level selection
modeling. HCRL2 improves the performance of HCRL1 by
inferring the data-specific level proportion through the unbal-
anced autoencoding neural architecture. From the modeling
and the evaluation, we found that our proposed models en-
able the improvements due to the high flexibility modeling
compared with the baselines.
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