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Abstract

Quantization of deep neural networks is extremely essential
for efficient implementations. Low-precision networks are
typically designed to represent original floating-point coun-
terparts with high fidelity, and several elaborate quantization
algorithms have been developed. We propose a novel training
scheme for quantized neural networks to reach flat minima in
the loss surface with the aid of quantization noise. The pro-
posed training scheme employs high-low-high-low precision
in an alternating manner for network training. The learning
rate is also abruptly changed at each stage for coarse- or fine-
tuning. With the proposed training technique, we show quite
good performance improvements for convolutional neural
networks when compared to the previous fine-tuning based
quantization scheme. We achieve the state-of-the-art results
for recurrent neural network based language modeling with
2-bit weight and activation.

1 Introduction

Deep neural networks (DNNs) are extremely important in
various applications. Most DNNs contain a very large num-
ber of weights, and their real-time execution typically de-
mands a huge number of operations. In particular, many
DNN applications are deployed to mobile and embed-
ded systems that only have limited budgets in terms of
computing and memory. Quantized deep neural networks
(QDNNs) represent the weights and activations with only
a low number of bits as opposed to 32-bit floating-point
format to relieve the complexity problem. Specifically, re-
cent studies indicate that most DNN models are over-
parameterized (Neyshabur et al. 2018), and they do not nec-
essarily demand 32-bit floating-point arithmetic for full per-
formance (Hwang and Sung 2014).

Many previous QDNN optimization algorithms consist of
three steps: training a floating-point network, quantizing the
model, and improving the quantized network by fine-tuning.
As for the fine-tuning, usually low learning rates are used to
limit the deviation from the floating-point model as small
as possible (Hubara et al. 2017; Hwang and Sung 2014;
Xu et al. 2018; Zhou et al. 2017). However, when only very
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low-precision weights are employed, the loss surface may
differ from that with high precision. Therefore, fine-tuning
the QDNN with quantization error feedback is not sufficient
to design well-generalized QDNN.

The generalization capability of a DNN has been actively
discussed (Hochreiter and Schmidhuber 1997a; Jastrzkebski
et al. 2017; Keskar et al. 2017). Hochreiter and Schmidhu-
ber (1997a) related the generalization capability of a DNN
with a flat minimum of the error or loss function. The study
by Jastrzkebski et al. (2017) reveals that the ratio of learning
rate to batch size is a key determinant of flatness of loss sur-
face and generalization. Recent studies schedule the learn-
ing rate to improve the generalization capability (Loshchilov
and Hutter 2017; Smith 2017).

In this study, we propose a QDNN training algorithm that
is intended to avoid sharp minima and reach flat minima in
the discrete weight domain. The proposed approach inten-
tionally changes the learning rate and the precision of the
parameters in an alternating manner to reach a flat mini-
mum despite abrupt increases in the training error. The ex-
periments exhibit particularly good results in the quanti-
zation of parameter-size efficient convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs). The
contributions of the study are as follows:
• We derive that the quantization noise can play a role of

escaping sharp minima in the training of QDNN.
• A high-low-high-low precision (HLHLp) training scheme

is developed to encourage a QDNN arriving at a flat min-
imum that exhibits a high generalization capability.

• The proposed method is applied to the quantization of
RNNs and CNNs. We achieve the results that significantly
exceed those of previous designs for RNNs and competi-
tive results for CNNs.

2 Related Works

2.1 Quantization of Deep Neural Networks

QDNN has been studied for a long time. However, ear-
lier studies typically employed an 8-bit or higher precision
partly because the networks were small and a direct quanti-
zation method was used. Hwang and Sung (2014) and Cour-
bariaux, Bengio, and David (2015) successfully quantized
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the weights of DNNs to 2-bit ternary or 1-bit binary with-
out significantly affecting the performance. It is difficult to
update discrete weights directly because the gradients are
much smaller than quantized weight values. Thus, the quan-
tized weights are obtained by the error feedback quantiza-
tion method. The method retains the high precision weights
to accumulate gradients while the quantized weights are
used in forward and backward propagation (Courbariaux,
Bengio, and David 2015; Hubara et al. 2017; Hwang and
Sung 2014; Xu et al. 2018; Zhou et al. 2017).

Several quantization techniques are developed to optimize
QDNNs, and these techniques mostly try to reduce quanti-
zation errors by considering the distribution of weights. In
particular, various elaborate techniques are developed for
CNNs, which include weight cluster (Park, Ahn, and Yoo
2017), stochastic rounding (Gupta et al. 2015), data distri-
bution (Zhou et al. 2017), fittable quantization scale (Cai
et al. 2017), or trainable quantization (Zhang et al. 2018;
Yang et al. 2019).

Ott et al. (2016) showed that weight binarization
decreases the performance of RNNs and they intro-
duced stochastic and deterministic ternarization, and
pow2-ternarization methods. Parameter-dependent adaptive
threshold (He et al. 2016b) or increasing the size of a neu-
ral network (Kapur, Mishra, and Marr 2017) is also investi-
gated. Other studies formulated an optimization problem to
determine the optimal quantization step size with greedy ap-
proximation (Guo et al. 2017) or alternating multi-bit quan-
tization (Xu et al. 2018). HitNet applies a different quantiza-
tion algorithm to weight and activation (Wang et al. 2018).
Ardakani et al. (2019) quantize only the weights using batch
normalization between inputs and hidden state vectors.

2.2 Flat Minima in Loss Surfaces

Most high performance deep neural networks contain a vast
number of parameters, and thus the training error almost
converges to zero in many cases. The stochastic gradient
descent (SGD) algorithm updates the weights to minimize
the training error. However, neural network training is non-
convex optimization, and low-training error does not nec-
essarily ensure good test performance capability. An early
study proposed that the determination of flat minima in
the loss surface is important to train high-performance net-
works (Hochreiter and Schmidhuber 1997a). Recent studies
suggested that the increased amount of noise in gradients
of a small-batch method aids in reaching a flat minimum
in the loss surface (Jastrzkebski et al. 2017). Conversely,
large-batch training wherein the gradient noise is low re-
quires an increased learning rate to obtain a good perfor-
mance (Keskar et al. 2017).

The learning rate is the most important hyper-parameter
in the SGD-based training. Typically, the learning rate is
designed to monotonically decrease when the training pro-
ceeds. At the early stage of training, the weights should be
updated coarsely, although they require fine-tuning at the fi-
nal stage. However, Smith (2017) and Loshchilov and Hut-
ter (2017) indicated that cyclically increasing and decreas-
ing or warm-restarting the learning rate improves test accu-
racy. It should be noted that the training error is also fluctu-

ating albeit not necessarily decreasing monotonically when
the learning rate is alternating. Understanding flat minima
is very important in QDNN design because quantization is
equivalent to injecting noise to weights, and flat minima im-
ply resiliency in weight distortion.

3 Training QDNN for Improved

Generalization Capability
In this section, we first briefly explain the conventional neu-
ral network quantization algorithm and derive that learning
rate to quantization precision ratio controls the stochastic
noise. We also present a new QDNN training technique that
aids to encourage reaching flat minima in the quantization
domain.

3.1 Analysis of Training with Quantized Weights

The number of bits representing the quantized values is de-
noted as b. b is usually from 1 to 8 and b-bit quantization
can support up to 2b levels. The quantization step size, Δ,
is inversely proportional to the number of levels, 2b. Thus, a
low-precision weight needs a large Δ. When b is 2, a weight
can be represented as 2-bit ternary, which is +Δ, 0, and -
Δ. The b-bit symmetric uniform quantization including the
2-bit quantization can be generalized as follows:

Qb(w) = sign(w) ·Δ · min
{⌊( |w|

Δ
+ 0.5

)⌋
,
(M − 1)

2

}

(1)

where M is 2b − 1. We employ an L2-error minimization
between floating and fixed-point weights to obtain the quan-
tization step size Δ (Hwang and Sung 2014; Rastegari et al.
2016).

Quantization can be interpreted as injecting noise whose
range is between −Δ

2 and +Δ
2 . Thus, the retraining pro-

cess is equivalent to injecting noise to weights, which has
been known to improve the generalization capability (Wen
et al. 2018). As the number of bits, b, decreases, the amount
of noise injection increases. Following the approach pro-
posed in Jastrzkebski et al. (2017), we analyze the relation-
ship between flatness and precision of weights. Specifically,
the weight update procedure in quantization retraining is ex-
pressed as follows:

wt+1 = wt − η∇L(Q(wt)), (2)
where Q(·) is the quantization function, L is the loss, and η
is the learning rate. Loss surface surrounding the local min-
imum w∗ is approximated via the Hessian of L at w∗, and
this is denoted as H:

L(w) ≈ L(w∗) +
1

2
(w −w∗)T ×H× (w −w∗) (3)

∇L(w) ≈ ∇L(w∗) +H× (w −w∗) (4)
We rewrite Equation (2) by using Equation (4) as follows:
wt+1 ≈ wt − ηH× (Q(wt)−w∗) (5)

≈ wt − ηH× (wt +N (0, (c2/22b)I)−w∗) (6)

= wt − ηH× (wt −w∗)− ηHN (0, (c2/22b)I)
(7)

≈ wt − η∇L(wt)−N (0, (η2c2/22b)H2), (8)
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where c is a constant related to models. Therefore, we con-
sider the quantization retraining algorithm as the gradient
descent with noisy gradients (Kleinberg, Li, and Yuan 2018),
and this corresponds to the Gaussian distribution with a co-
variance of (η2c2/22b)H2.

In Appendix A, we derive that the precision of weights b
determines the trade-off between the expected loss and the
squared sum of eigenvalues with

E(L(w)− L(w∗))/Tr(H2) ∝ η/22b. (9)

The eigenvalues of Hessian matrix represent the flatness of
the loss surface around the local minimum. Therefore, we
conclude that the quantization precision also influences the
minima in low-precision domain as well as the three factors
(learning rate, batch size, and gradient covariance) found
in Jastrzkebski et al. (2017).

Based on the above analysis, we propose a new
quantization training scheme, high-low-high-low-precision
(HLHLp) training, that manipulates the learning rate, η, and
quantization precision, b, during training to reach flat min-
ima of the QDNN.

3.2 High-low-high-low-precision Training

The proposed HLHLp optimization employs a multi-step
training scheme, and this consists of floating-point training
of a model from scratch, coarse-tuning on low-precision,
fine-tuning on high-precision, and fine-tuning on low-
precision. It should be noted that the low-precision means
2-bit weight representation, and the high-precision indicates
8-bit or floating-point weight representation. The coarse-
tuning step employs a high learning rate to escape from the
current minimum point while the fine-tuning step proceeds
with a low learning rate or decreasing learning rate. A de-
tailed explanation of each step is given as follows and the
entire algorithm is illustrated in Appendix B.

High-precision Model Training (H-step) The first step
involves training a neural network in floating-point.
Commonly known regularization techniques, such as
dropout (Srivastava et al. 2014), and batch normaliza-
tion (Ioffe and Szegedy 2015) can be employed. The learn-
ing rate is selected to obtain the optimal floating-point per-
formance. Pretrained models can also be used. The initial
learning rate in this step is denoted as ηstep 1.

Coarse-tuning on Low-precision (L-step) The second
step performs retraining to 2-bit QDNN using the pretrained
model from the first step. Activation quantization can also be
employed. The learning rate is αηstep 1, where α is typically
from 0.1 to 0.01 (Shin, Boo, and Sung 2017). We employ
relatively high learning rate in this step for the purpose of
coarse-tuning, as opposed to fine-tuning. The coarse-tuning
aids to escape from sharp minima by increasing the dynam-
ics of η to 22b ratio in Equation (9). The new learning rate for
this step is selected as approximately αηstep 1× Δ2-bit

Δ8-bit
. The ra-

tio is initially designed by considering the quantization step
size ratios of 8-bit and 2-bit precision.

As we derived in Section 3.1, the eigenvalues of Hessian
matrix represent the flatness of the loss surface. However,

computation of the exact Hessian is super inefficient on large
neural networks. To handle this problem, we approximate
the Hessian by a diagonal matrix from the second moment
of gradient v (Kingma and Ba 2014). Since v is an estima-
tor of diag(H2), we can obtain the sum of eigenvalues, s,
exploiting by Tr(

√
v). It should be noted that, to select the

initial parameter of the third step, we measured both s and
the validation error rate during the training. More specifi-
cally, during the training of the current step, we save three
to five model parameters considering validation results 1 and
select the one which has the lowest value of s among them.

Fine-tuning on High-precision (H-step) The third step
performs retraining to 8-bit QDNN using the pretrained
model from the second step. The initial learning rate for this
step is lower than that in the second step. The fine-tuning de-
creases the dynamics of η to 22b ratio in Equation (9). This
step involves descending to the maximum possible extent
from the new local minimum. To select the initial model for
the next step, we evaluate the validation results.

Fine-tuning on Low-precision (L-step) The fourth step
involves fine-tuning from the 8-bit weights obtained at the
third step. The learning rate for this step is not extremely
high and is decreasing. Thus, the final step is intended
for fine-tuning and is similar to that in the conventional
retraining-based method. We can repeat the second and
third steps again. In this case, the total training is repre-
sented as HLHLHLp, and this denotes high-precision train-
ing, low-precision coarse-tuning, high-precision fine-tuning,
low-precision coarse-tuning, high-precision fine-tuning, and
final-tuning on low-precision. Additional HL steps may im-
prove performance but increase training time. In our experi-
ments, performance has converged in HLHLp in most cases.

The proposed HLHLp training scheme can employ var-
ious quantizers such as the uniform quantizer (Hwang and
Sung 2014) and asymmetric quantizer (Zhu et al. 2017). The
experimental results that combine the proposed training al-
gorithm with various quantizers are shown in Section 4.

4 Experimental Results

We evaluate the proposed HLHLp training scheme on
the following three tasks: image classification (CIFAR-
10/CIFAR-100 (Krizhevsky and Hinton 2009), Ima-
geNet (Russakovsky et al. 2015)), language modeling
(PTB (Marcus et al. 1994) and WikiText-2 (Merity et al.
2016)), and speech recognition (WSJ corpus (Paul and
Baker 1992)). The descriptions of these datasets are pro-
vided in Appendix C.

4.1 Image Classification with CNNs

Network and Hyper-parameter Configuration: We eval-
uate our method on CNNs for image classification.
For the CIFAR-10 dataset, we train three different-sized
ResNets (He et al. 2016a), namely ResNet-14, -20, and -
32. Additionally, the same ResNet-20 and -32, and Mo-
bileNetV2 (Sandler et al. 2018) are employed for the

1Accuracy for classification problem or perplexity for language
modeling.
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Table 1: Test accuracy on CIFAR-10 and CIFAR-100 dataset. The numbers in the parenthesis are the accuracy difference
between the floating and the 2-bit models. Both fine-tuning and HLHLp results are an average of five times running.

Dataset CIFAR-10 CIFAR-100
Model ResNet-14 ResNet-20 ResNet-32 ResNet-20 ResNet-32 MobileNetV2

# Params 0.18M 0.27M 0.47M 0.28M 0.48M 2.45M
Float 91.35 92.15 93.65 68.01 69.97 75.98

fine-tuning 89.20 (-2.15) 90.86 (-1.29) 92.32 (-1.33) 64.47 (-3.54) 66.90 (-3.07) 74.97 (-1.01)
HLHLp 90.64 (-0.71) 91.58 (-0.57) 93.05 (-0.60) 66.44 (-1.57) 68.66 (-1.31) 75.51 (-0.47)

CIFAR-100 dataset. All models for both the CIFAR-10
and CIFAR-100 datasets are trained with the same hyper-
parameters as follows. The batch size is 128, and the num-
ber of epochs trained is 175. An SGD optimizer with a mo-
mentum of 0.9 is used. The learning rate starts at 0.1 and
decreases by 0.1 times at the 75th and 125th epochs. Addi-
tionally, L2-loss is added with the scale of 5e-4. We employ
simple symmetric uniform quantizer from Anwar, Hwang,
and Sung (2015). The initial learning rate and the weight
precision change as mentioned in Section 3.2 during HLHLp
training. These changes in learning rate and precision are ap-
plied to all experiments in the rest of this paper.

Furthermore, we conduct the weight quantization of
ResNet-18 on the ImageNet dataset using the proposed
method. We employ a pretrained network as for the full
precision model2. We set the batch size to 256 and conduct
the retrain method for up to 20 epochs for each HLHLp step.

Results on CIFAR-10/CIFAR-100: The experimental re-
sults of the CIFAR-10 and CIFAR-100 datasets are pre-
sented in Table 1. Both the fine-tuned and the HLHLp-
trained QDNNs are inherited from the same full-precision
models. All layers in the models including the first and the
last ones are quantized. In the case of the CIFAR-10 results,
the performances of the 2-bit QDNNs improve when the
HLHLp training is applied. Specifically, the HLHLp training
results on ResNet-14 and ResNet-32 demonstrate 1.44% and
0.73% increase in test accuracy when compared to the ex-
isting fine-tuning method (Anwar, Hwang, and Sung 2015).
The relative performance degradation of the 2-bit ResNet-
32 for the full-precision model is 46% lower (0.6/1.3) when
using the HLHLp training method. This small gap is due to
the sufficiently large model size for the CIFAR-10 dataset.
Large DNN models show a small difference between full-
precision and low-precision networks.

The experiments with the more complex dataset (e.g.
CIFAR-100) demonstrate more improvements. The test ac-
curacy of the 2-bit ResNet-20 is 66.44% and 64.47%
with the HLHLp training and the fine-tuning methods, re-
spectively. The accuracy difference between our HLHLp
and conventional training methods is reduced when the
model size increases. However, the HLHLp training method
demonstrates a comparable accuracy with the floating-point
model in the MobileNetV2, which has a large number of
parameters, but the conventional training method reports a

2https://github.com/facebook/fb.resnet.torch

Table 2: HLHLp training results on ResNet-18 ImageNet. In
this experiment, only the weights are quantized in 2-bit. The
values in the parentheses are the difference between the full-
precision and quantized accuracy (%) in literature. HLHLp
result is an average of five times running.

W2/A32 Levels Top-1 Acc Top-5 Acc
TWN 3 61.8 (N/A) 84.2 (N/A)
TTQ Asym3 66.6 (-3) 87.2 (-2)

LQ-Nets 4 68.0 (-2.3) 88.0 (-1.5)
ADMM 3 67.0 (-2.1) 87.5 (-1.5)

HLHLp (ours) 3 67.2 (-1.6) 87.8 (-0.8)

performance degradation of 1.01%.
Results on ImageNet: The experimental results of the Im-
ageNet dataset are reported in Table 2. The compared low-
precision models include TWN (Fengfu, Bo, and Bin 2016),
TTQ (Zhu et al. 2017), LQ-Nets (Zhang et al. 2018), and
ADMM (Leng et al. 2018). These models employ 2-bit
weights but we do not quantize the activations. Ours, TWN,
and ADMM employ the symmetric ternary quantization.
However, TTQ employs asymmetric ternary (AT) quantiza-
tion, whereas LQ-Nets employs 4-level quantization. AT and
4-level quantization help in improving the performance but
also make the inference more complex. The experimental re-
sults demonstrate that the proposed method is effective and
that the top-1 accuracy with ternary weights is better than
ADMM. In the comparison of the accuracy difference be-
tween the full-precision model and the QDNN, our HLHLp
training results demonstrate 1.6% degradation on Top-1 ac-
curacy, which is much better than LQ-Nets (2.3%), TTQ
(3%), and ADMM (2.1%). In LQ-Nets, the first and last lay-
ers of the model are not quantized, whereas, in ours, all the
layers are quantized.

As part of the generalization test, we also evaluate our
QDNN model with a contaminated dataset (Hendrycks and
Dietterich 2018), which mixes various types of noise in
the ImageNet validation set. Our proposed HLHLp training
scheme increases the average noise accuracy from 39.08%
(HL) to 45.99% (HLHL) in 2-bit QDNNs. Thus, our HLHLp
training helps to increase the generalization capability in
QDNN. The detailed results for each contaminated dataset
are reported in Appendix D.
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Table 3: PPL for 2-bit ternary and 2-bit 4-level weight quantized network of LSTM and GRU based language models on PTB
test set. The activations are also quantized in 2-bit 4-level. The number in the parenthesis represents that the gap of the PPL
between the 2-bit and full-precision in literature. HLHLp result is an average of five times running.

W2 (Ternary)/A2 LSTM GRU W2 (4-level)/A2 LSTM GRU
He et al. (2016b) 152 (43) 150 (50) Zhou et al. (2017) 126 (20) 142 (42)

Kapur, Mishra, and Marr (2017) 152.2 (43.5) N/A Guo et al. (2017) 100.3 (10.5) 105.1 (12.6)
Wang et al. (2018) 110.3 (13.1) 113.5 (10.8) Xu et al. (2018) 95.8 (6.0) 101.2 (8.7)

HLHLp (Ours) 97.27 (7.82) 95.04 (1.80) HLHLp (Ours) 94.89 (5.44) 96.20 (2.96)

Table 4: Quantization results on WikiText-2 test set for 2-bit quantized networks. ‘FP’ means full-precision and ‘Difference’
represents the gap between the PPL for 2-bit and full-precision in literature. HLHLp result is an average of five times running.

Weight Test PPL for LSTM Test PPL for GRU
Levels FP 2-bit Difference FP 2-bit Difference

Wang et al. (2018) Ternary 114.37 126.72 12.35 124.50 132.49 7.99
HLHLp (ours) Ternary 103.0 107.66 4.66 108.68 105.96 -2.72

Xu et al. (2018) 4-level 100.10 106.10 6.00 106.70 113.70 7.00
HLHLp (ours) 4-level 103.0 105.5 2.5 - - -

4.2 Language Modeling on PTB and WikiText-2

Network and Hyper-parameter Configuration: For the
quantitative comparison with previous works (Guo et al.
2017; He et al. 2016b; Kapur, Mishra, and Marr 2017; Wang
et al. 2018; Xu et al. 2018; Zhou et al. 2017), we constructed
two word-level language models (LMs) containing one long
short-term memory (LSTM) (Hochreiter and Schmidhuber
1997b) or one gated recurrent unit (GRU) (Cho et al. 2014).
Each LM has a 300-memory cell for PTB and 512-memory
cell for WikiText-2. The initial learning rate for the floating-
point network is 1.0. After 10 epochs, the learning rate de-
creases by a factor of 0.9 at each epoch. We clip the norm of
the gradients by 1.0 for PTB and 3.5 for WikiText-2. Both
the batch-size and unrolling steps are 20 for PTB, while, for
WikiText-2, the values are 50 and 30, respectively. We apply
dropout (Srivastava et al. 2014) only at non-recurrent con-
nections as suggested in Zaremba, Sutskever, and Vinyals
(2015) with a keeping probability of 0.5 for PTB and 0.6 for
WikiText-2. The performance of LM is measured via per-
plexity (PPL). An LM with low PPL is considered a good
model.
Results on PTB: The comparison of the PPL of our HLHLp
scheme and that of previous studies is presented in Table 3
for 2-bit ternary and 2-bit 4-level weight representations. We
employ two previously developed quantizers for the 2-bit
ternary (Wang et al. 2018) and 2-bit 4-level (Guo et al. 2017)
weight respectively. The activations are also quantized in 2-
bit. The HLHLp with ternary weights significantly outper-
forms the previous studies and also exhibits better results
for the 2-bit 4-level representation. The GRU results also
outperform both the 2-bit ternary and 2-bit 4-level represen-
tations. To the best of our knowledge, these results are the
state-of-the-art when quantizing both weight and activation
in 2-bit. Appendix E presents the results when employing
a simple uniform quantizer (Shin, Hwang, and Sung 2016)

and the change in PPL during the progress of each step in
the HLHLp training scheme. HLHLp yielded significantly
improved the results for all three quantizers when compared
with those of the conventional training scheme.
Results on WikiText-2: The PPL of WikiText-2 is re-
ported in Table 4. We employ a simple uniform quantizer
from Shin, Hwang, and Sung (2016). The quantized network
trained using HLHLp outperforms the other previous re-
sults. The LSTM model quantized with the proposed method
shows lower (better) PPL when compared to the previous
works in both ternary and 4-level weight. Especially for the
2-bit 4-level result, we achieve the test PPL of 105.5 that
is 0.6 lower than the work of Xu et al. (2018) although our
full-precision PPL is 2.9 higher (worse) than the compared
work. In the case of GRU, our HLHLp quantization scheme
demonstrates a much better test PPL than Xu et al. (2018).
We have improved the state-of-the-art PPL from 113.7 to
105.96. Surprisingly, the quantized network performs bet-
ter than the floating-point model, which suggest that the
HLHLp scheme works as a regularizer.

4.3 Speech Recognition on WSJ Corpus

Network and Hyper-parameter Configuration: We
construct three unidirectional LSTM layers with 512 mem-
ory cells. We employ the connectionist temporal classifi-
cation (CTC) loss to train an RNN-based acoustic model
(AM). We clip the norm of the gradients by 4, and train
the AM with the Adam optimizer. A dropout with a keeping
probability of 0.5 is applied for all the non-recurrent connec-
tions. The initial learning rate for the floating-point training
is 3e-4, which decreases by a factor of 0.2 whenever the val-
idation loss does not decrease thrice consecutively.
Results: The experiment results for WSJ are reported in Ta-
ble 5. For comparison, we report another quantization re-
sult of the same RNN trained with the method suggested
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Table 5: HLHLp training results on WSJ corpus. We quan-
tize both weight and activations in 2-bit. ‘CER’ is charac-
ter error rate (%) and ‘WER’ means word error rate (%).
‘Clean’ represents the results on Aurora-4 clean set, and
‘Noisy’ means the results on average of all noisy set.

W2/A2
WSJ Aurora-4

Test
CER

Test
WER

Clean
CER

Noisy
CER

Float 8.18 11.16 7.37 51.95
Lee et al. (2016) 9.76 11.32 8.58 51.65
HLHLp (ours) 8.21 11.27 6.78 48.6

Table 6: Ablation study on GRU PTB LM. The results are
reported in PPL. Results in the same column represent ob-
tained PPL with the exactly same epochs.

(A) Float (H) 2-bit (L) 8-bit (H) 2-bit (L)
95.32 99.12 92.25 96.97

(B) Float (H) Float (H) Float (H) 2-bit (L)
95.32 100.98 98.13 115.92

(C) Float (H) 2-bit (L) 2-bit (L) 2-bit (L)
95.32 99.46 97.48 97.84

(D) Float (H) Float (H) Float (H) 2-bit (L)
- - 95.06 112.08

in Lee et al. (2016). The character error rate (CER) is mea-
sured using greedy decoding. To obtain the word error rate
(WER), we follow the method used in Miao, Gowayyed,
and Metze (2015) to decode the output of the CTC-AM us-
ing the weighted finite-state transducers (WFST) network.
We used a retrained trigram LM with an extended vocabu-
lary for decoding. The CER of the full-precision model is
8.18%, and that of the 2-bit quantized model measured after
the HLHLp training is 8.21%, which demonstrates almost
no degradation. As part of the generalization test, we eval-
uate on the Aurora-4 noisy test corpus (Parihar et al. 2004),
which mixes the noises of a car, babble, restaurant, street,
airport, and train to the WSJ eval clean test set. The eval-
uation results of this test are presented in Table 5. When
full-precision was quantized to 2 bits using Lee et al. (2016)
method, CER increases by 1.21% on the clean set, however,
our HLHLp training shows 0.59% higher accuracy than the
full-precision result. A similar tendency is observed in the
noise test. The performance of the 2-bit weight representa-
tion obtained by the HLHLp training is 3.35% better than the
full-precision performance based on the average value of the
noise test. In Appendix F, we present the detailed results for
all the noise entries and each step in HLHLp method.

4.4 Discussion

Ablation Study: The experimental results demonstrate that
the proposed HLHLp training method works exceptionally
well for all experiments, including image classification, lan-

guage modeling, and speech recognition. However, some
questions still exist, such as “Are the improved results due
to the longer training time?” and “Which part helps in in-
creasing the performance?”. To answer these questions, we
conduct ablation experiments that optimizes an LM with a
GRU using four different approaches as follows:
• (A) is the proposed HLHLp training employing floating-

point training for 50 epochs, 2-bit retraining for 30 epochs
with high a learning rate, 8-bit retraining for 30 epochs
with a low learning rate, and 2-bit retraining for 30 epochs
with a low learning rate.

• (B) employs 110 (=50+30+30) epochs of floating-point
training with a cyclic learning rate which is exactly the
same as the learning rate of (A). Additionally, 2-bit re-
training for 30 epochs is conducted with the same learning
rate as that of the last step in (A).

• (C) adopts 50 epochs of floating-point training and 90
(=30+30+30) epochs of 2-bit retraining with exactly the
same learning rate as that of (A). Therefore, this setting
converts the high-precision in the third step of (A) into
low-precision.

• (D) conducts floating-point training but monotonically
decreases the learning rate during 110 epochs and per-
forms the retraining of 30 epochs with 2-bit weights rep-
resentations. Thus, this method uses only fine-tuning.
The detailed results are presented in Table 6. The re-

sults clearly indicate that HLHLp ((A)) training performs
much better than training with cyclical learning rate ((B)) or
monotonic decreasing learning rate ((D)) without converting
precision in the middle of steps in HLHLp training. The gap
in PPL between (A) and (C) also indicates that fine-tuning
in high-precision aids in improving the performance.

Visualization of Loss Surface: We employ 3-dimensional
graphical visualization to demonstrate that our proposed
HLHLp training scheme aids to reach flat minima in loss
surface. We employ the method developed by Garipov et
al. (2018). This method can help compare the training or
test loss of three neural network models on the same 3-D
surface, while the previous visualization method in (Li et
al. 2018) only shows the loss surface of one model. Figure
1 depicts the loss surface of test error on ResNet20 using
CIFAR-100 dataset. Figure 1 (a) compares the test loss of
three models: full-precision (‘FLOAT’), 2-bit quantized net-
work retrained using a very small learning rate or fine-tuning
(‘Hlp’), and 2-bit quantized network trained with HLHLp
(‘HLHLp’). We can find a path connecting ‘FLOAT’ and
‘Hlp’. Note that ‘Hlp’ point is located very close to the steep
loss wall, suggesting a poor generalization capability. On
the other hand, connecting ‘FLOAT’ and ‘HLHLp’ seems
more difficult because the loss surface between them is not
flat. However, ‘HLHLp’ is located near the center of a wide
basin or a flat minimum. Apparently, ‘HLHLp’ should be
preferred for good generalization. In Figure 1 (b), we com-
pare the full-precision (‘FLOAT’), 2-bit QDNN trained with
HLHLp (‘HLHLp’), and 2-bit QDNN with HLp (‘HLp’).
Note that ‘HLp’ means 2-bit QDNN after the second step of
HLHLp training scheme. ‘HLp’ employs a very large learn-
ing rate for coarse tuning. Here, we can find that ‘HLp’ is
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Figure 1: 3-D loss surface for test error on ResNet20 CIFAR-
100. The three points in (a) indicate full-precision (FLOAT),
2-bit QDNN that trained with fine-tuning (Hlp), and 2-bit
QDNN that trained with HLHLp (HLHLp). The three points
in (b) represent full-precision (FLOAT), 2-bit QDNN that
trained with HLHLp (HLHLp), and 2-bit QDNN that trained
with HLp (HLp). Note that HLp means 2-bit QDNN after the
second step of HLHLp training scheme.

at the same basin with the ‘HLHLp’, but is at the boundary.
The remaining steps of HLHLp training help move ‘HLp’ to
the near center of the basin.

In Figure 1 (a) and (b), we show the test loss surface.
The training loss surface can be found in Appendix H. Ap-
pendix H contains more results using ε-sharpness (Keskar
et al. 2017) and figures produced with another visualization
method (Li et al. 2018).

5 Concluding Remarks

In this study, we developed a HLHLp training scheme to ob-
tain high-performance quantized neural networks. At each
training step, we employed different precisions and abruptly
changing learning rates during training to escape from sharp
minima and reach a flatter loss surface. Thus, the proposed
approach significantly differs from conventional methods,
wherein training with quantized networks is conducted for
fine-tuning and the learning rates typically monotonically
decrease. We applied the training scheme to the quantization
of RNNs and CNNs and obtained very good performance
closing the gap between full-precision and low-precision
models. Specifically, the method exhibited extremely good
results with respect to the quantization of RNNs.
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