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Abstract

Although Reinforcement Learning (RL) has been one of the
most successful approaches for learning in sequential deci-
sion making problems, the sample-complexity of RL tech-
niques still represents a major challenge for practical applica-
tions. To combat this challenge, whenever a competent pol-
icy (e.g., either a legacy system or a human demonstrator)
is available, the agent could leverage samples from this pol-
icy (advice) to improve sample-efficiency. However, advice is
normally limited, hence it should ideally be directed to states
where the agent is uncertain on the best action to execute.
In this work, we propose Requesting Confidence-Moderated
Policy advice (RCMP), an action-advising framework where
the agent asks for advice when its epistemic uncertainty is
high for a certain state. RCMP takes into account that the ad-
vice is limited and might be suboptimal. We also describe a
technique to estimate the agent uncertainty by performing mi-
nor modifications in standard value-function-based RL meth-
ods. Our empirical evaluations show that RCMP performs
better than Importance Advising, not receiving advice, and
receiving it at random states in Gridworld and Atari Pong
scenarios.

Introduction

Reinforcement Learning (RL) (Sutton and Barto 1998) tech-
niques have been applied to solve increasingly complex
problems, such as video game playing (Mnih and others
2015) and robotics tasks (Singh et al. 2019). Despite being
one of the most effective approaches to autonomously learn
in sequential decision making problems, RL requires explor-
ing the environment for gathering samples, which makes the
learning process potentially costly or dangerous for many
real-world applications. For this reason, many of the recent
investigations in the area aim at reducing the amount of re-
quired samples during learning.

When a competent policy is available, the learning agent
might leverage samples of it (hereafter referred as advice) to
reduce the need of (potentially harmful) random exploration,
especially at the beginning of learning when the agent is act-
ing randomly. This policy might be available either because

∗This work was completed while an intern at Borealis AI.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a human can demonstrate how to perform the task (Argall
et al. 2009) or because other automated agents are available
to give suggestions based on their policies (Silva, Glatt, and
Costa 2017).

Many works from the Learning from Demonstration (Ar-
gall et al. 2009) and Action Advising (Torrey and Taylor
2013) subareas have successfully leveraged advice to reduce
the sample-complexity of challenging tasks.

However, the use of advice requires coping with some
open problems. For example, the amount of advice is of-
ten limited by human availability or communication costs,
hence the learning agent must make effective use of the
available samples, while taking into account the demonstra-
tor availability. In the literature, advice is usually given at
a prefixed frequency or based on heuristics unrelated to the
agent epistemic uncertainty1, such as based on the demon-
strator’s knowledge (Taylor et al. 2014). This means that the
advice is not aimed to disambiguate situations in which the
agent has high uncertainty and the demonstrator is likely to
give advice when the agent does not need it.

We here propose Requesting Confidence-Moderated Pol-
icy advice (RCMP), an algorithm to selectively give advice
to a learning agent in situations where its epistemic uncer-
tainty is high. In contrast, when the agent has a low uncer-
tainty (assuming that the uncertainty estimation is accurate),
this indicates that the value estimate for the current state is
close to convergence, and advice might be saved for more
useful situations. For picturing the situation in which this
would be useful, imagine a robot receiving a couple of min-
utes of advice in an episodic task from a human. Instead of
simply sequentially demonstrating the solution of the task
multiple times, the human might provide initial demonstra-
tions and let the robot try to solve the task itself. The robot
then can ask for advice in states where it has not learned
what to do yet, or in new states encountered during the ex-
ecution. This strategy can result in a better coverage of the
advised state space than repeating the demonstration of the

1The uncertainty stemmed from lack of information about the
environment the agent is trying to model. On the other hand,
aleatoric uncertainty comes from the environment stochasticity.
The former is possible to reduce by collecting more samples, while
the latter is not.
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solution over and over again.
Our second contribution is describing a method for esti-

mating epistemic uncertainty for model-free RL algorithms.
This measure is used by RCMP to define if advice should
be given in the current state. Our approach consists in learn-
ing simultaneously multiple estimates of the value function
from a single network, similarly as done in Bootstrapped
DQN (Osband et al. 2016). The variance between those es-
timates is then used as a metric of the epistemic uncertainty,
used to define when advice is expected to be useful. Our
approach presents the advantage of being flexible and ap-
plicable to many value-function-based RL algorithms. We
exemplify this by describing adaptions for two popular al-
gorithms in our method description.

We show in our empirical evaluation that our method is
able to make efficient use of the provided advice, performing
better than the baselines in Gridworld and Pong domains.

Background
In this section we lay the background for our proposal.
First, we describe Reinforcement Learning and representa-
tive techniques, then we describe Action Advice and Learn-
ing from Demonstration.

Reinforcement Learning

Reinforcement Learning enables the solution of Markov De-
cision Processes (MDP) (Puterman 2005). An MDP is de-
scribed by a tuple 〈S,A, T,R, γ〉. S is the set of states in
the system, A is the set of actions available to the agent,
T : S × A × S → [0, 1] is the state transition function,
R : S × A × S → R is the reward function, and γ is a
discount factor. The goal of the agent is learning a policy
π : S → A that dictates the action to be applied in each pos-
sible state, where the optimal policy π∗ maximizes the ex-
pected reward achieved. However, in learning problems the
functions T and R are unavailable to the agent, that can only
observe samples of them by actuating in the environment.
Therefore, RL consists in gathering samples of 〈s, a, s′, r〉,
where s′ = T (s, a) and r = R(s, a, s′). Those samples are
the only feedback the agent has for solving the task.

Commonly, RL algorithms aim at learning a state-action
value function (generally known as Q-function) that approx-
imates the expected return of applying each action in a par-
ticular state Q : S × A → R. The optimal Q-function
is Q∗(s, a) = E

[∑∞
i=0 γ

iri
]
, where ri is the reward re-

ceived after i steps from using action a on state s and
following the optimal policy on all subsequent steps, and
γ is a discount factor. Q can be used to extract a policy
π(s) = argmaxa∈A Q(s, a), where using Q∗ results in π∗.

Although classical RL algorithms such as Q-Learning
(Watkins and Dayan 1992) and SARSA (Sutton 1996) learn
Q∗ under restrictive conditions, directly applying those al-
gorithms in problems with huge state spaces is usually in-
feasible. For those problems, function approximators might
be able to learn a Q function from which a good policy
can be extracted. Deep Q-Network (DQN) (Mnih and others
2015) leverages Deep Neural Networks (Schmidhuber 2015)
to learn Q-functions. The training process of DQNs typi-
cally consists of storing the observed samples of interactions

with the environment and updating the function approxima-
tor with a portion of them, called minibatch D, periodically.
The network is optimized by minimizing the following loss
function:

LDQN = ED[(r + γmax
a′

Qt(s′, a′)−Q(s, a))2], (1)

where Qt is a target network that is periodically updated to
have the same weights as Q: Qt ← Q.

The Asynchronous Advantage Actor-critic (A3C) (Mnih
and others 2016) leverages multiple simultaneous execu-
tions of the learning process to learn in a more efficient way.
Assuming the task can be executed multiple times in paral-
lel (e.g., it is a simulated environment), multiple instances
of the learning agent will simultaneously update a locally
shared actor-critic Deep Neural Network. The same network
will learn the critic (estimate of the value of each state) and
the actor (policy). The loss function for the critic is:

LA3C critic = Et[(Ri − V (si))
2], (2)

where t is the trajectory of states and rewards observed
since the beginning of the episode until the end, Ri =∑k=|t|

k=i γk−irk is the observed discounted return for this
episode, and V (s) is the critic estimate of the network for
state s. The actor is then updated according to the estimated
advantage function Ad, as:

LA3C actor = Et[−logπ(ai|si)Ad(si)], (3)

where Ad(si) =
∑|t|−1

k=0 γkri+k + γ|t|V (s|t|) − V (si).
Although effective, both DQN and A3C suffer from high-
sample complexity. The next section describes approaches
to reduce sample-complexity through action advising.

Action Advice and Learning from Demonstration

Despite the advances on RL described on the last section, the
sample complexity of those techniques is still high. How-
ever, for many tasks, a good policy might be available be-
fore starting the training process, more commonly because
an older system for solving the task is available or because a
human can provide some examples of how to solve the task.

The literature can be roughly divided on two interpreta-
tions of how to leverage those available policies. The first
one, Learning from Demonstrations (LfD) (Argall et al.
2009), typically has a human providing demonstrations to
a learning agent. This paradigm has had successes in many
challenging robotics applications, where a human teleop-
erates (Ross et al. 2013) or applies external forces to the
learner so as to generate a kinesthetic demonstration (Her-
sch et al. 2008). The advice usually covers entire episodes,
and in general the learning agents try to model the demon-
strated policy in a supervised learning fashion (Torabi, War-
nell, and Stone 2018), being unable to improve the demon-
strator’s policy via exploration.

On the other hand, Action Advising (Silva and Costa
2019), the second interpretation, consists of receiving ac-
tion advice for a single state where it is expected to be
useful (ideally states that the agent has not explored before
and that have a high difference in expected returns for dif-
ferent actions) (Torrey and Taylor 2013). The decision on
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when the advice should be provided can be taken by ei-
ther the learning agent (Amir et al. 2016) or the demon-
strator (Taylor et al. 2014). This paradigm is also appro-
priate to multiagent systems where the agents are learn-
ing together (Silva, Glatt, and Costa 2017; Omidshafiei et
al. 2019), as they can provide advice as a way of shar-
ing the knowledge gained through their exploration. This
paradigm is closer to what we intend to achieve in our work,
because the action advising tries to estimate what is the
best timing for giving advice instead of giving it arbitrar-
ily. One of most used metrics for defining when to give ad-
vice is the importance advising (Torrey and Taylor 2013;
Amir et al. 2016):

I(s) = max
a∈A

QD(s,a) −min
a∈A

QD(s,a), (4)

where QD is the Q-table of the demonstrator (a RL demon-
strator is usually assumed). The intuition of this metric is to
give advice when there is a huge difference between the best
and worst actions. Although effective in some scenarios, no-
tice that the decisions are taken through the point of view of
the demonstrator. This has two undesired consequences: (i)
the advising-function does not consider the learning agent
policy, which means that advice is possibly given in states
where the agent has had sufficient experiences, while ne-
glecting new states for the learning agent; (ii) the demonstra-
tor has to observe the learning agent during all time steps.
Our proposal intends to address both of those key limita-
tions.

As opposed to LfD, action advising applies normal ex-
ploration when not receiving advice, which means that the
learning agents can converge to better policies than the
demonstrator’s.

The main challenge for both paradigms is that the amount
of available advice is usually limited. Either the human is
available for a short period of time or communication costs
constrain advice from other automated agents. For this rea-
son, ideally the advice should be directed to states which the
agent is less confident. In the next section we describe our
approach for using the agent epistemic uncertainty to decide
when advice should be given.

Uncertainty-Aware Advice
We are interested in leveraging action advice to accelerate
the learning process, while allowing the agent to explore the
environment and improve upon the demonstrator’s policy.
For that purpose, we propose the Requesting Confidence-
Moderated Policy advice (RCMP) algorithm.

We assume that a demonstrator πΔ : S × A → [0, 1] is
available to the agent and can be queried to give action sug-
gestions (we use πΔ(s) for getting an action sample from
πΔ for state s). While πΔ might follow any algorithm, the
learning agent has no knowledge about the internal repre-
sentation of πΔ and can only get samples of πΔ(s). Further-
more, we assume that πΔ has a policy that performs signifi-
cantly better than a random policy. The demonstrator might
be unavailable at some times, e.g. if the human will be par-
ticipating in the learning process only for a short period of
time, hence the learning agent is equipped with an availabil-
ity function At to check if the demonstrator is available at

a given step t. In our evaluation, we assume that the learn-
ing agent has a budget of advice to be used. Once the bud-
get is spent, the demonstrator is unavailable for the rest of
training. The availability can also be evaluated in a domain-
specific way, e.g. considering the demonstrator as unavail-
able when the physically distance between the agents is too
high, and this obstructs their communication. In most cases,
the demonstrator can neither be assumed to be available at
all times nor to have an optimal policy.

Algorithm 1 fully describes RCMP. The learning agent
might use any value-function-based algorithm as long as it
is able to estimate an epistemic uncertainty measure μ from
its model of the value function (we propose a way of adapt-
ing DQN-like algorithms in the next section). Firstly, the
agent initializes the Q-function Q̂ (or value function, e.g.,
for A3C) and the policy π (line 1). Then, for every learning
step, the agent will check its epistemic uncertainty in the cur-
rent state (line 4) and, in case it is high2 and the demonstra-
tor is available (line 5), the agent will ask for an advice and
follow the suggested action (line 6). Otherwise, the usual
exploration will be applied (line 8). Q̂ and π are updated
normally according to the chosen learning algorithm.

Algorithm 1 RCMP

Require: Value function approximator Q̂, agent policy π,
uncertainty estimator μ, demonstrator πΔ, availability
function At

1: Initialize Q̂ and π
2: for ∀ learning step t do
3: Observe s
4: u← μ(s) � Calculate uncertainty (Eq. (5))
5: if u is high and At(t) then
6: a← πΔ(s) � Ask for advice
7: else
8: a← π(s) � Normal policy
9: end if

10: Apply action a and observe s′, r
11: Update Q̂ and π with 〈s, a, s′, r〉
12: end for

Calculating the Uncertainty

Value-based algorithms estimate the expected value of ap-
plying each action in a given state. However, vanilla algo-
rithms cannot estimate the uncertainty on their predictions,
which means that we can compare the expected values of
each action but there is no direct way of estimating the un-
certainty of the predictions. For that purpose, we propose a
way to measure the uncertainty with a small enhancement
in standard algorithms. Consider the illustration of a DQN
network in Figure 1. The first layer consists of the state fea-
tures, whereas the last layer outputs an estimate of the ex-
pected value for each action. We propose to add as a last
layer multiple heads estimating separately expected values
for each action, as done in Bootstrapped DQN (Osband et

2We decide if the uncertainty is high through a predefined
thresholds of 0.11 (Gridworld) and 0.1 (Pong) in our evaluations.

5794



al. 2016). Due to the aleatoric nature of the exploration and
network initialization, each head will output a different esti-
mate of the action values. As the learning algorithm updates
the network weights, their predictions will get progressively
closer to the real function, and consequently one close to the
others as the variance of the predictions is reduced. There-
fore, we use the variance of the predictions across the heads
as an estimate of uncertainty for a given state:

μ(s) =

∑
∀a∈A var(Q(s, a))

|A| , (5)

where Q(s, a) =

⎡
⎢⎣
Q1(s, a)

...
Qh(s, a)

⎤
⎥⎦, Qi(s, a) is the Q-value

given by head i for state s and action a, var is the variance,
and h is the chosen number of heads. The final value pre-
diction (used, for example, for extracting a policy from the
value function) is the average of the predictions given by
each head:

Q̂(s, a) =

∑h
i=1 Qi(s, a)

h
(6)

Each head will have their own loss function to minimize.
The DQN algorithm might be adapted by calculating a loss
for each head as:

LDQN
i = ED[(r + γmax

a′
Qi(s

′, a′)−Qi(s, a))
2], (7)

where LDQN
i is the loss function for head i and D is the

minibatch for the update.
Similarly, the A3C algorithm is adapted by adding multi-

ple heads for the critic. The loss function for the critic will
then be:

LA3C critic
i = Et[(Ri − Vi(s))

2], (8)

where Ri has the same definition as in Equation (2) and
Vi(s) is the value estimate given by the i-th head. The ac-
tor will be updated normally using V̂ (as in Equation (6)).
The variance in Equation (5) is then computed over the value
estimates V (s).

Implementation-friendly Description

Although the previous section fully describes our proposal,
we show here further implementation details. Our descrip-
tion is a viable and efficient implementation of the training
of DQN with multiple heads.

As illustrated in Figure 1b, we assume the network Q is
implemented giving as output a prediction for each action
a ∈ A in each head i ∈ {1, . . . , h}, given a batch of states s.
Therefore, the output of a forward pass in Q is of dimension
h × |s| × |A|. We assume that a target network Qt is used
for stability3.

3In cases where no target network is used, simply consider Q =
Qt in this section.

In practice, updating each head with different samples
might be desired to help to reduce the bias that might ar-
tificially reduce the variance on the predictions. For this
purpose, we make use of a sample selecting function d :
D × h → {0, 1}h×|D|, where D is the mini-batch for the
current update. This function will sample either 0 (not use)
or 1 (use) for each sample and each head. The simplest way
of implementing d is by sampling |D|h numbers from {0, 1}
with a fixed probability, but any other strategy might be
used. Alternatively, different mini-batches could be sorted
for each head, but using d is simpler to implement efficiently.
Any network architecture might be used for the hidden lay-
ers according to the desired domain of application, as long
as the input and output layers are defined as specified.

Algorithm 2 describes the implementation of the loss
function for DQN, where vectors and matrices are in bold
and the comments on the right side depict the dimensional-
ity of the result of each calculation. For a particular mini-
batch D, we first convert the applied actions to the one-hot
representation (line 2). Then, we predict the values of the
next states (line 3) and for the observed state-action tuples
(line 4). Finally, we calculate a loss for each head, using the
sorted samples (line 5) to calculate the predicted and tar-
get values (lines 7 and 8). Here, � represents the element-
wise multiplication. Those loss functions can be easily used
for network training in any contemporary machine learning
framework.

Algorithm 2 Implementation of DQN with heads

Require: minibatch D, Q-network Q, target network Qt,
sample selecting function d, number of heads h

1: s,a, s′, r = D
2: act← one hot(a) � |A| × |D|
3: qt ← maxa Q

t(s′) � h× |D|
4: q ← Q(s)act � h× |D|
5: p ∼ d(D, h) � h× |D|
6: for ∀i ∈ {1, . . . , h} do
7: target← r + γqt[i]� p[i] � |D|
8: pred← q[i]� p[i] � |D|
9: loss[i]← 1

|D|
∑

(target− pred)2

10: end for

Empirical Evaluation
We evaluated RCMP in two domains varying (i) learn-
ing algorithms; (ii) competency level of the demonstrators;
(iii) domain complexity. The first one is a relatively sim-
ple gridworld-like domain where we can define the optimal
policy and use it as a demonstrator for a DQN agent. The
second one is the Pong Atari game, a much more complex
domain where we use as demonstrator a previously-trained
A3C agent. With both evaluation domains we hope to show
that RCMP is useful across different scenarios.
• RCMP: Our proposal as described in the last section.
• No Advice: A baseline learning with no advice.
• Random: The agent receives uniformly random advice

with no regard to its uncertainty.
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(a) (b)

Figure 1: (a) Illustration of a regular DQN network and (b) a network with heads. Each head estimates a value for each action.

• Importance: Advice is given according to the impor-
tance advising metric calculated from the Q-function of a
trained agent (Eq. (4)), as in previous action advising lit-
erature (Taylor et al. 2014; Amir et al. 2016). Notice that
this algorithm is more restrictive than RCMP because:
(i) the demonstrator needs a Q-function; (ii) the learning
agents needs to be observed at all time steps, while for
RCMP the own agent monitors its uncertainty and queries
the demonstrator only when needed.

Gridworld

Our Gridworld domain is illustrated in Figure 2a. The agent
aims at reaching a goal as quickly as possible, while avoid-
ing falling in one of the holes spread in the environment.
The agent has 4 actions A = {up, down, left, right} that
most of the times have the intended effect, unless the agent
is in the 4-neighborhood of a hole. In that case, the agent has
a 25% probability of falling into the hole regardless of the
applied action. An episode ends when the agent has either
reached the goal or fallen into a hole. In the former case, a
reward of +1 is awarded, whereas in the latter the reward is
−1.

(a) (b)

Figure 2: (a) Initial state of the Gridworld domain and (b)
illustration of the Pong domain.

Before evaluating the learning performance of the algo-
rithms, we use this domain for analyzing the effect of the
number of heads h on the uncertainty estimate. Figure 3

shows the average uncertainty observed in each learning
episode over time for different configurations of the param-
eters. Regardless of the chosen parameter value the estimate
works as expected. At first the uncertainty is high, then it
gets progressively lower as the agent trains for longer. How-
ever, if the number of heads is very low (h = 2), sud-
den spikes in the uncertainty might be observed when the
agent encounters new situations (e.g., around after 120 and
200 learning episodes). The uncertainty curve tends to be-
come smoother for higher number of heads, as shown in
the smooth curve of h = 100. However, adding more heads
means adding parameters to be trained for each head, hence
a trade-off is desired.

Figure 3: Average uncertainty of the learning episodes over
time. Averaged over 200 repetitions.

For evaluating the learning performance in this domain,
we use DQN as the base learning algorithm and the opti-
mal policy as the demonstrator. All algorithms are trained
for 1000 episodes in total, where the agents are evaluated
(exploration and updates turned off) for 10 episodes at ev-
ery 10 learning episodes. The maximum number of demon-
strated steps is set to 700 for the algorithms that can receive
advice.For all algorithms, α = 0.01, h = 5, and γ = 0.9.
The network architecture is composed of 2 fully-connected
hidden layers of 25 neurons each before the layer with the
heads. When the agent uncertainty is high, advice is given
until the end of the episode.

Figure 4a shows the performance in observed discounted
reward for each algorithm, while Figure 4b shows the
amount of advice used. RCMP asks for advice until around
200 learning steps, after which the algorithm already has

5796



(a) (b)

Figure 4: (a) Discounted rewards and (b) amount of advice used in 200 repetitions of the Gridworld experiment. The shaded
area corresponds to the 90% confidence interval. The dashed line corresponds to the optimal performance.

high confidence on its predictions and stop asking for ad-
vice. Both Random and Importance, on their turn, keep ask-
ing for advice until the maximum budget is used. RCMP
achieves better performance than both Random and No Ad-
vice and the ties with Importance for the best performance,
while using less advice among all the advice-based algo-
rithms. Notice that RCMP does not use the maximum bud-
get, stopping to ask for advice when it is not expected to
be useful anymore, while Importance and Random spend all
the available advice regardless of how fast the learning agent
converges. In all cases, the use of advice helped converging
faster towards the optimal policy than No Advice. After 1000
episodes, No Advice still has not converged to the same per-
formance as the algorithms making use of advice.

Figure 5 shows the accumulated reward achieved by each
algorithm throughout the entire evaluation. In this exper-
iment, RCMP performed better than both No Advice and
Random and tied for the best performance with Importance,
while using less advice than all other advice-based algo-
rithms.

Figure 5: Sum of discounted rewards observed in 200 repe-
titions of the Gridworld experiment. The shaded area corre-
sponds to the 90% confidence interval.

Pong

Pong is an extensively-used evaluation domain, illustrated
in Figure 2b.This two-dimensional game consists of control-
ling an in-game paddle by moving it across the screen to hit
a ball towards the opposing side. The learning agent com-
petes against a fixed-strategy opponent. An episode lasts 21
goals, in which a reward of +1 is awarded to the player that
scores the goal and −1 is given to the other player. Pong
is a much harder problem to solve, as the game input con-
sists simply of the game screenshot and winning the game
requires a sequence of carefully chosen actions.

For this domain, we use A3C as the base learning algo-
rithm. We train an A3C agent until it is able to achieve a
score of +21 in an episode and use it as the demonstrator.
All algorithms are trained for 3 million steps, where an eval-
uation phase of 1 episode is carried out after each 30, 000
learning steps. For all algorithms, α = 0.0001, h = 5,
and γ = 0.99. The network architecture is composed of 4
sequences of Convolutional layers followed by max pool-
ing layers, connected to the critic head and actor layers that
are fully-connected. Following those layers, we add a Long
Short-Term Memory (LSTM) layer which is connected to
the critic heads and actor outputs.

Figure 6a and 6b show, respectively, the undiscounted re-
ward achieved by each algorithm and the amount of received
advice. RCMP starts to show performance improvements
over No Advice roughly around after 1, 000, 000 learning
steps. The apparent disconnect between when the agents re-
ceive advice and when the improvement happens is because
a sequence of actions must be learned before an improve-
ment in score is seen. Although all advice-based algorithms
are getting closer to a winning behavior as they receive ad-
vice, seeing an improvement in score takes longer. While
Random and Importance quickly spends all the available ad-
vice, RCMP asks for advice only for a short period of time,
after which the uncertainty is not high enough to ask for it
anymore. Although the pattern in advice use and improve-
ment over No Advice is the same as for the Gridworld do-
main for all algorithms, here RCMP presents clear improve-
ments over all the other algorithms while receiving less ad-
vice (more visible in Figure 7).

Summary of Empirical Evaluation

We have evaluated RCMP in the Gridworld and Pong do-
mains. The main conclusions drawn from our evaluation are:
• RCMP performs better than regular learning, randomly

receiving advice, and importance advising across domains
of different complexity levels.
• Receiving advice based on epistemic uncertainty is ad-

vantageous both when the demonstrator is optimal (Grid-
world) or a trained agent with no optimality guaranteed
(Pong).

• Our procedure to estimate epistemic uncertainty is effec-
tive and easily adaptable across different value-function-
based learning algorithms (DQN and A3C were evaluated
in this paper).
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(a) (b)

Figure 6: (a) Undiscounted rewards and (b) amount of advice used in 20 repetitions of the Pong experiment. The shaded area
corresponds to the 60% confidence interval.

Figure 7: Sum of undiscounted rewards observed in 20 rep-
etitions of the Pong experiment.

Related Works

Our work is related to an extensive literature on Learning
from Demonstrations (Argall et al. 2009) and on Action Ad-
vice (Silva and Costa 2019). The former is usually associated
to humans providing a sequence of advice, while the lat-
ter consists in agents providing action suggestions for a sin-
gle step. Hester et al. (2018) combines a supervised learning
loss imitating a dataset of demonstrated data with the regular
DQN loss, which was shown to accelerate learning. Kartal
et al. (2019) uses a planning-based suboptimal demonstrator
that continuously provide advice. However, none of those
previous works provide advice according to the agent uncer-
tainty as we do. Although RL has a long history involving
uncertainty estimation and learning from an expert that pre-
dates Deep RL (Garcıa and Fernández 2015), most of those
works are either inapplicable or inefficient in domains for
which Deep RL is the state-of-the-art solution.

Given the many applications of estimating the agent un-
certainty, several works studied how to define epistemic
uncertainty measures. Most of them are either based on
dropout schemes (Chen et al. 2017) or ensemble of networks
(Clements et al. 2019; Osband et al. 2016) as our method.
However, those works have other purposes than of using this
estimate for defining when to receive advice.

Silva and Costa (2017) propose Ad Hoc Advising where
agents have a confidence function to define when to ask
for or when to give advice, similarly as we do. However,
their confidence function is based on the number of visits
in each state, which not necessarily corresponds to the un-
certainty of the agent model and might lead to unnecessary
advice. Ilhan et al. (2019) propose a Deep RL version of
Ad Hoc Advising, estimating visit counts through a Deep
Neural Network, which maintains the same characteristics
of Silva’s work. Thakur et al. (2019) use Bayesian Neural

Networks to estimate the epistemic uncertainty of the agent
and ask for demonstrations based on that, similarly as we
do. However, their method imitates the demonstrator in a Su-
pervised Learning fashion, whereas our method uses the ad-
vice only for exploration and is able to learn a better policy
than the demonstrator’s. Finally, Lee and Lee (2019) com-
bine demonstrations with RL exploration as we do to find
good policies faster. However, they do not estimate agent
uncertainty to make better use of advice.

Conclusion and Further Work

We proposed an action-advising framework, named Re-
questing Confidence-Moderated Policy advice (RCMP), to
accelerate Reinforcement Learning (RL). Our method es-
timates the agent epistemic uncertainty for each decision-
making step and asks for advice from a demonstrator when
the uncertainty is high, avoiding to take decisions where the
value function is not expected to have converged yet. RCMP
takes into account that the demonstrator might not be avail-
able during the whole process and might provide suboptimal
advice, hence we use the provided advice to help with ex-
ploration, instead of simply trying to copy the demonstrator
policy. We also describe a way to estimate the agent epis-
temic uncertainty through small changes in standard value-
function-based RL algorithms. We show that RCMP per-
forms better than learning without advice, with importance
advising, and with randomly-timed advice in two domains
with different scenarios and levels of complexity.

RCMP opens up several avenues for further work. The
first one would be leveraging more complex (principled)
ways of estimating uncertainty in deep neural networks
(Lakshminarayanan, Pritzel, and Blundell 2017). In addi-
tion to existing methods that estimate the uncertainty to
purposes other than defining when to receive advice, the
recent literature has highlighted the potential of Distribu-
tional RL (Bellemare, Dabney, and Munos 2017) to separate
aleatoric and epistemic uncertainties (Clements et al. 2019).
RCMP could also be improved to make better used of the
provided advice, such as devising a cost function moving
towards the demonstrated behavior more quickly than just
using it for exploration as we do here (Lee and Lee 2019;
Hester and others 2018). Finally, the use of epistemic uncer-
tainty could be extended to other purposes, such as devising
experience replay (Schaul et al. 2016) algorithms that are
more likely to select samples with higher uncertainty.
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