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Abstract

Intrinsic rewards were introduced to simulate how human in-
telligence works; they are usually evaluated by intrinsically-
motivated play, i.e., playing games without extrinsic rewards
but evaluated with extrinsic rewards. However, none of the
existing intrinsic reward approaches can achieve human-
level performance under this very challenging setting of
intrinsically-motivated play. In this work, we propose a novel
megalomania-driven intrinsic reward (called mega-reward),
which, to our knowledge, is the first approach that achieves
human-level performance in intrinsically-motivated play. In-
tuitively, mega-reward comes from the observation that in-
fants’ intelligence develops when they try to gain more con-
trol on entities in an environment; therefore, mega-reward
aims to maximize the control capabilities of agents on given
entities in a given environment. To formalize mega-reward, a
relational transition model is proposed to bridge the gaps be-
tween direct and latent control. Experimental studies show
that mega-reward (i) can greatly outperform all state-of-
the-art intrinsic reward approaches, (ii) generally achieves
the same level of performance as Ex-PPO and professional
human-level scores, and (iii) has also a superior performance
when it is incorporated with extrinsic rewards.

Introduction

Since humans can handle real-world problems without ex-
plicit extrinsic reward signals (Friston 2010), intrinsic re-
wards (Oudeyer and Kaplan 2009) are introduced to simu-
late how human intelligence works. Notable recent advances
on intrinsic rewards include empowerment-driven (Klyubin,
Polani, and Nehaniv 2005; 2008; Mohamed and Rezende
2015; Montúfar, Ghazi-Zahedi, and Ay 2016), count-based
novelty-driven (Bellemare et al. 2016; Martin et al. 2017;
Ostrovski et al. 2017; Tang et al. 2017), prediction-error-
based novelty-driven (Achiam and Sastry 2017; Pathak et
al. 2017; Burda et al. 2018; 2019), stochasticity-driven (Flo-
rensa, Duan, and Abbeel 2017), and diversity-driven (Song
et al. 2019a) approaches. Intrinsic reward approaches are
usually evaluated by intrinsically-motivated play, where
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Figure 1: Latent control in Breakout (left) and DemonAttack
(right).

proposed approaches are used to play games without extrin-
sic rewards but evaluated with extrinsic rewards. However,
though proved to be able to learn some useful knowledge
(Florensa, Duan, and Abbeel 2017; Song et al. 2019a) or to
conduct a better exploration (Burda et al. 2018; 2019), none
of the state-of-the-art intrinsic reward approaches achieves
a performance that is comparable to human professional
players under this very challenging setting of intrinsically-
motivated play.

In this work, we propose a novel megalomania-driven in-
trinsic reward (called mega-reward), which, to our knowl-
edge, is the first approach that achieves human-level per-
formance in intrinsically-motivated play. The idea of mega-
reward originates from early psychology studies on con-
tingency awareness (Watson 1966; Baeyens, Eelen, and
van den Bergh 1990; Bellemare, Veness, and Bowling 2012),
where infants are found to have awareness of how entities in
their observation are potentially under their control. We no-
tice that the way in which contingency awareness helps in-
fants to develop their intelligence is to motivate them to have
more control over the entities in the environment; therefore,
we believe that having more control over the entities in the
environment should be a very good intrinsic reward. Mega-
reward follows this intuition, aiming to maximize the control
capabilities of agents on given entities in a given environ-
ment.

Specifically, taking the game Breakout (shown in Fig. 1
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(left)) as an example, if an infant is learning to play this
game, contingency awareness may first motivate the infant
to realize that he/she can control the movement of an entity,
bar; then, with the help of contingency awareness, he/she
may continue to realize that blocking another entity, ball,
with the bar can result in the ball also being under his/her
control. Thus, the infant’s skills on playing this game is
gradually developed by having more control on entities in
this game.

Furthermore, we also note that entities can be controlled
by two different modes: direct control and latent control. Di-
rect control means that an entity can be controlled directly
(e.g., bar in Breakout), while latent control means that an en-
tity can only be controlled indirectly by controlling another
entity (e.g., ball is controlled indirectly by controlling bar).
In addition, latent control usually forms a hierarchy in most
of the games; the game DemonAttack as shown in Fig. 1
(right) is an example: there is a gun, which can be fired (di-
rect control); then firing the gun controls bullets (1st-level
latent control); finally, the bullets control enemies if they
eliminate enemies (2nd-level latent control).

Obviously, gradually discovering and utilizing the hier-
archy of latent control helps infants to develop their skills
on such games. Consequently, mega-reward should be for-
malized by maximizing not only direct control, but also la-
tent control on entities. This thus requests the formalization
of both direct and latent control. However, although we can
model direct control with an attentive dynamic model (Choi
et al. 2019), there is no existing solution that can be used to
formalize latent control. Therefore, we further propose a re-
lational transition model (RTM) to bridge the gap between
direct and latent control by learning how the transition of
each entity is related to itself and other entities. For example,
the agent’s direct control on entity A can be passed to entity
B as latent control if A implies the transition of B. With the
help of RTM, we are able to formalize mega-reward, which
is computationally tractable.

Extensive experimental studies have been conducted on
18 Atari games and the “noisy TV” domain (Burda et al.
2018); the experimental results show that (i) mega-reward
significantly outperforms all six state-of-the-art intrinsic re-
ward approaches, (ii) even under the very challenging set-
ting of intrinsically-motivated play, mega-reward (without
extrinsic rewards) still achieves generally the same level of
performance as two benchmarks (with extrinsic rewards),
Ex-PPO and professional human-level scores, and (iii) the
performance of mega-reward is also superior when it is in-
corporated with extrinsic rewards, outperforming state-of-
the-art approaches in two different settings.

This paper’s contributions are briefly as follows: (1) We
propose a novel intrinsic reward, called mega-reward, which
aims to maximize the control capabilities of agents on
given entities in a given environment. (2) To realize mega-
reward, we further propose a relational transition model
(RTM) to bridge the gap between direct and latent con-
trol. (3) Experiments on 18 Atari games and the “noisy
TV” domain show that mega-reward (i) greatly outperforms
all state-of-the-art intrinsic reward approaches, (ii) gener-
ally achieves the same level of performance as two bench-

marks, Ex-PPO and professional human-level scores, and
(iii) also has a superior performance when it is incorpo-
rated with extrinsic rewards. Easy-to-run code is released in
https://github.com/YuhangSong/Mega-Reward.

Direct Control

We start with the notion of direct control. Generally, we con-
sider the effect of the action at−1 ∈ A on the state st ∈ S
as direct control. In practice, we are more interested in how
different parts of a visual state are being directly controlled
by at−1. Thus, prevailing frameworks (Jaderberg et al. 2017;
Choi et al. 2019) mesh st into subimages, as shown in Fig. 2,
where we denote a subimage of st at the coordinates (h,w)
as sh,wt ∈ SH,W . The number of possible coordinates (h,w)
and space of the subimage SH,W is determined by the gran-
ularity of the meshing H,W . Then, we can define the quan-
tification of how likely each sh,wt is being directly controlled
by at−1 as α(sh,wt , at−1) ∈ R.

The state-of-the-art method (Choi et al. 2019) models
α(sh,wt , at−1) with an attentive dynamic model (ADM),
which predicts at−1 from two consecutive states st−1 and
st. The key intuition is that ADM should attend to the most
relevant part of the states st−1 and st, which is controllable
by at−1, to be able to classify at−1. Thus, a spatial atten-
tion mechanism (Bahdanau, Cho, and Bengio 2015; Xu et
al. 2015) can be applied to ADM to model α(sh,wt , at−1):

eh,wt = Θ
([

sh,wt − sh,wt−1; s
h,w
t

])
∈ R

|A| (1)

ᾱ(sh,wt , at−1) = Λ
(
sh,wt

)
∈ R (2)

α(sh,wt , at−1) = sparsemax
(
ᾱ(sh,wt , at−1)

)
∈ R (3)

p(ât−1|st−1, st) = SoM

⎛
⎝∑

h′∈H,w′∈W

α(sh,wt , at−1) · eh,wt

⎞
⎠ , (4)

where Θ and Λ are two parameterized models, eh,wt
is the logits of the probability of the predicted action
p(ât−1|st−1, st) before masking it by the spatial atten-
tion α(sh,wt , at−1), SoM is the softmax operation, and
ᾱ(sh,wt , at−1) is the spatial attention mask before convert-
ing it into a probability distribution α(sh,wt , at−1) using the
sparsemax operator (Martins and Astudillo 2016). The mod-
els can be optimized with the standard cross-entropy loss
Laction(at−1, ât−1) relative to the ground-truth action at−1

that the agent actually has taken. More details, including ad-
ditional attention entropy regularization losses, can be found
in (Choi et al. 2019).

From Direct Control to Latent Control

Built on the modelled direct control α(sh,wt , at−1), we pro-
pose to study the notion of latent control, which means the
effect of at−n on the state st, where n > 1. Like in direct
control, we are interested in how different parts of a visual
state sh,wt are being latently controlled, thus, we define the
quantification of how likely sh,wt is being latently controlled
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Figure 2: Relational transition model.

by at−n as α(sh,wt , at−n). As an example for latent control
quantification α(sh,wt , at−n), consider the game DemonAt-
tack in Fig. 1 (right). In this case, consider at−n to be the
action at step t − n that shoots a bullet from the gun, sh,wt
to be the subimage containing one of the enemy at step t.
Clearly, sh,wt is influenced by at−n. But this influence needs
n steps to take effect, where n is unknown; also, it involves
an intermediate entity bullet, i.e., the gun “controls” the bul-
let, the bullet “controls” the enemy. Due to the nature of de-
layed influence and involvement of intermediate entities, we
call it latent control, in contrast to direct control.

To compute α(sh,wt , at−n), one possible way is to ex-
tend ADM to longer interval, i.e., a variant of ADM takes
in st−n, st and makes predictions of a sequence of ac-
tions at−n, at−n+1, ..., at−1. However, n is not known in
advance, and we may need to enumerate over n. We propose
an alternative solution, based on the observation that latent
control always involves some intermediate entities. For ex-
ample, the latent control from the gun to the enemy in De-
monAttack in Fig. 1 (right) involves an intermediate entity
bullet. Thus, how likely the enemy is latently controlled can
be quantified if we can model that (1) an action directly con-
trols the gun, (2) the gun directly controls the bullet, and (3)
the bullet directly controls the enemy. In this solution, latent
control is broken down into several direct controls, which
avoids dealing with the unknown n. As can be seen, this so-
lution requires modelling not only the direct control of an
action on a state, but also the direct control of a state on the
following state, which is a new problem. Formally speak-
ing, we first quantify how likely sh,wt is controlled by sh

′,w′
t−1

with α(sh,wt , sh
′,w′

t−1 ) ∈ R. Then, we can formally express
the above idea by

α(sh,wt , at−n) =
∑
h′∈H,w′∈W

α(sh,wt , sh
′,w′

t−1 )α(sh
′,w′

t−1 , at−n). (5)

Thus, Eq. (5) derives α(sh,wt , at−n) from α(sh
′,w′

t−1 , at−n). If

we keep applying Eq. (5) on α(sh
′,w′

t−1 , at−n), we can even-

tually derive it from α(sh
′,w′

t−n+1, at−n), which is the qual-
ification of direct control defined in the last section and
can be computed via Eqs. (1) to (4). Thus, α(sh,wt , at−n)

can be computed as long as we know α(sh,wt′ , sh
′,w′

t′−1 ) for

all t′ ∈ [t− n+ 2, t]. That is, α(sh,wt , sh
′,w′

t−1 ) bridges the
gap between direct and latent control. Furthermore, since

α(sh,wt , sh
′,w′

t−1 ) models how a part of the previous state

sh
′,w′

t−1 implies a part of the current state sh,wt , it reveals the
need of a new form of transition model, which contains in-
formation about the relationships between different parts of
the state underlying the transition of full states. Thus, we
call it a relational transition model (RTM). In the next sec-
tion, we introduce our method to learn RTM efficiently.

Relational Transition Model

To produce an approximation of α(sh,wt , sh
′,w′

t−1 ), we pro-
pose relational transition models (RTMs), the general idea
behind which is introducing a spatial attention mechanism
to the transition model. Specifically, Fig. 2 shows the struc-
ture of an RTM, which consists of two parameterized mod-
els, namely, Φ for relational transition modeling and Γ for
attention mask estimation. We first define the forward func-
tion of Φ; it makes a prediction of the transition from sh

′,w′
t−1

to sh,wt :

ŝh,wt =
∑
h′∈H,w′∈W

α(sh,wt , sh
′,w′

t−1 )Φ
([

sh
′,w′

t−1 , at−1, c
])

. (6)

Here, ŝh,wt represents the prediction of sh,wt . Also, note that
apart from taking in sh

′,w′
t−1 , Φ also takes in the relative co-

ordinates c = (h − h′, w − w′) and at−1, both as one-
hot vectors, so that the model Φ knows the relative posi-
tion of the part to predict and the action taken. Furthermore,
α(sh,wt , sh

′,w′
t−1 ) is the estimated attention mask of predicting

sh,wt from sh
′,w′

t−1 , which models how informative each sh
′,w′

t−1

of different h′, w′ is for the prediction of sh,wt , i.e., how
likely sh

′,w′
t−1 controls sh,wt . α(sh,wt , sh

′,w′
t−1 ) is estimated by

the model Γ. Specifically, Γ first estimates ᾱ(sh,wt , sh
′,w′

t−1 )
via

ᾱ(sh,wt , sh
′,w′

t−1 ) = Γ
([

sh,wt , sh
′,w′

t−1 , at−1, c
])

, (7)

which is later sparsemaxed over h′ ∈ H,w′ ∈ W to com-
pute

α(sh,wt , sh
′,w′

t−1 ) = sparsemax
(
ᾱ(sh,wt , sh

′,w′
t−1 )

)
. (8)

We train RTM end-to-end with Ltransition =
MSE(ŝh,wt , sh,wt ). As an intuitive explaination of RTM,
taking the game Breakout (shown in Fig. 1 (left)) as an
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example, Φ makes three predictions of the current ball based
on the previous ball, bar, and brick. Since the final predic-
tion of the current ball is the weighted combination of these
three predictions, Γ is further used to estimate the weights
of this combination, measuring different control effects that
the previous ball, bar, and brick have on the current ball. We
thus propose Φ and Γ as relational transition models.

RTM has introduced separated forwards over every
h′ ∈H , w′ ∈W , h ∈ H , and w∈W ; however, by putting
the separated forwards into the batch axis, the computing
is well parallelized. We reported the running times and in-
cluded code in the extended paper (Song et al. 2019b).

Formalizing Intrinsic Rewards

Summarizing the previous sections, ADM and RTM model
α(sh

′,w′
t−n+1, at−n) and α(sh,wt , sh

′,w′
t−1 ), respectively. Based on

this, α(sh,wt , at−n) can be modelled via Eq. (5). In this sec-
tion, we formalize the intrinsic reward from α(sh,wt , at−n).

First, {α(sh,wt , at−n)}n∈[1,t] contains all the information
about what is being controlled by the agent in the current
state, considering all the historical actions with both direct
and latent control. Clearly, computing all components in
the above set is intractable as t increases. Thus, we define
a quantification of accumulated latent control gh,wt ∈ R,
which is a discounted sum of α(sh,wt , at−n) over n:

gh,wt =
∑

n∈[1,t]

ρn−1α(sh,wt , at−n), (9)

where ρ is a discount factor, making α(sh,wt , at−n) with
n >> 1 have a lower contribution to the estimation of
gh,wt . Then, we show that gh,wt can be computed from gh,wt−1

and α(sh,wt , at−1) without enumerating over n (see proof of
Lemma 1 in the extended paper (Song et al. 2019b)):

gh,wt = ρ
∑
h′∈H,w′∈W

α(sh,wt , sh
′,w′

t−1 )gh
′,w′

t−1 + α(sh,wt , at−1), (10)

which reveals that we can maintain an H × W memory
for gh,w, and then update gh,wt−1 to gh,wt at each step with

α(sh,wt , sh
′,w′

t−1 ) and α(sh,wt , at−1) according to (10). The in-
tuitive integration of gh,wt is an overall estimation of what is
being controlled currently, both directly and latently, consid-
ering the effect of all historical actions. This also coincides
with the intuition that humans do not explicitly know what
they latently control for each historical action. Instead, we
maintain an overall estimation of what is under the historical
actions’ control, both directly and latently. At last, to max-
imize

∑
h∈H,w∈W gh,wt=T , where T is the terminal step, the

intrinsic reward (our mega-reward) at each step t should be:

rmeg
t =

∑
h∈H,w∈W

(
gh,wt − gh,wt−1

)
. (11)

Experiments

In extensive experiments, we evaluated the performance of
mega-reward. We first report on the evaluation on 18 Atari

games under the very challenging settings of intrinsically-
motivated play, where a case study is used to visualize
how each part of mega-reward works, and mega-reward
is compared with six state-of-the-art intrinsic rewards, the
benchmark of a PPO agent with access to extrinsic rewards
(Ex-PPO), and the benchmark of professional human-level
scores, to show its superior performance. Then, we fur-
ther investigate two possible ways to integrate mega-reward
with extrinsic rewards. Finally, a few failure cases of mega-
reward are studied, showing possible topics for future re-
search.

Mega-reward is implemented on PPO in (Schulman et al.
2017) with the same set of hyper-parameters, along with
H × W = 4 × 4 and ρ = 0.99. H × W = 4 × 4 is
a trade-off between efficiency and accuracy. An ablation
study on value settings of H × W over the game Break-
out is available in the extended paper (Song et al. 2019b),
showing that 4 × 4 is sufficient to achieve a reasonable
accuracy, while having the best efficiency. The network
structures of Φ and Γ are provided in the extended paper
(Song et al. 2019b). The hyper-parameters of the other base-
line methods are set as in the corresponding original pa-
pers. The environment is wrapped as in (Burda et al. 2018;
Mnih et al. 2015).

Due to the page limit, running times, additional ablation
studies (e.g., of components in mega-reward), and additional
comparisons under other settings (e.g., the setting when
agents have access to both intrinsic and extrinsic rewards)
are provided in the extended paper (Song et al. 2019b).

Intrinsically-Motivated Play of Mega-Reward

Intrinsically-motivated play is an evaluation setting where
the agents are trained by intrinsic rewards only, and the per-
formance is evaluated using extrinsic rewards. To make sure
that the agent cannot gain extra information about extrinsic
rewards, the displayed score in each game is masked out. To
ensure a fair comparison, all baselines are also provided with
a feature map gh,wt as an additional channel. Here, all agents
are run for 80M steps, with the last 50 episodes averaged as
the final scores and reported in Table 1. The evaluation is
conducted over 18 Atari games.

Case Study. Fig. 3 visualizes how each component in
our method works as expected. The 1st row is a frame se-
quence. The 2nd row is the corresponding direct control map
α(sh,wt , at−1), indicating how likely each grid being directly
controlled by at−1. As expected, the learned map shows the
grid containing the bar being directly controlled. The 3rd
row is the accumulated latent control map gh,wt , indicating
how likely each grid being controlled (both directly and la-
tently) by historical actions. As expected, the learned map
shows: (1) only the bar is under control before the bar hits
the ball (frames 1–5); (2) both the bar and the ball are under
control after the bar has hit the ball (frames 6–10); and (3)
the bar, ball, and displayed score are all under control if the
opponent missed the ball (frame 11). The 4th row is mega-
reward rmeg

t , obtained by Eq. (11) from the map in the 3rd
row. As expected, it is high when the agent controls a new

5829



Figure 3: Case study: the example of Pong.

Table 1: Comparison of mega-reward against six baselines.
Game Emp Cur RND Sto Div Dir Meg

Seaquest 612.2 422.2 324.2 103.5 129.2 323.1 645.2
Bowling 103.4 156.2 77.23 86.23 79.21 113.3 82.72
Venture 62.34 0.0 83.12 61.32 95.67 86.21 116.6
WizardOfWor 526.2 562.3 702.5 227.1 263.1 723.7 1030
Asterix 1536 1003 462.3 304.2 345.6 1823 2520
Robotank 5.369 3.518 3.619 4.164 2.639 1.422 2.310
BeamRider 944.1 864.2 516.3 352.1 381.2 1273 1363
BattleZone 3637 4625 8313 0.0 0.0 2262 3514
KungFuMaster 424.9 3042 652.1 245.1 523.9 423.7 352.4
Centipede 1572 3262 4275 1832 1357 2034 2001
Pong -7.234 -8.234 -17.42 -16.52 -14.53 -17.62 -3.290
AirRaid 1484 1252 942.3 723.4 1426 1583 2112
DoubleDunk -18.26 -20.42 -17.34 -19.34 -18.35 -17.72 -13.58
DemonAttack 9259 69.14 412.4 57.14 90.23 7838 10294
Berzerk 735.7 363.1 462.4 157.2 185.2 413.3 764.6
Breakout 201.4 145.3 125.5 113.5 1.352 125.2 225.3
Jamesbond 523.2 603.0 201.2 0.0 0.0 1383 3223
UpNDown 8358 8002 2352 331.3 463.3 60528 124423

grid in the 3rd row (achieving more control over the grids in
the state).

Against Other Intrinsic Rewards. To show the supe-
rior performance of mega-reward (denoted Meg), we first
compare its performance with those of six state-of-the-
art intrinsic rewards, i.e., empowerment-driven (denoted
Emp) (Mohamed and Rezende 2015), curiosity-driven (de-
noted Cur) (Burda et al. 2018), RND (Burda et al. 2019),
stochasticity-driven (denoted Sto) (Florensa, Duan, and
Abbeel 2017), diversity-driven (denoted Div) (Song et al.
2019a), and a mega-reward variant with only direct control
(denoted Dir). Results for more baselines can be found in the
extended paper (Song et al. 2019b). By the experimental re-
sults in Table 1, mega-reward outperforms all six baselines
substantially. In addition, we also have the following find-
ings: (i) Sto and Div are designed for games with explicit
hierarchical structures, so applying them on Atari games

Figure 4: Mega-reward against the benchmark of Ex-PPO.

with no obvious temporal hierarchical structure will result in
the worst performance among all baselines. (ii) Dir is also
much worse than the other baselines, proving the necessity
of latent control in the formalization of mega-reward. (iii)
The failure of the empowerment-driven approach states that
applying information theory objectives to complex video
games like Atari ones is an open problem. A detailed dis-
cussion of the benefits of mega-reward over other intrinsi-
cally motivated approaches can be found in the extended pa-
per (Song et al. 2019b). Videos demonstrating the benefits
of mega-reward on all 57 Atari games can be found in the
released code (Song 2019).

Against Two Benchmarks. In general, the purpose of
evaluating intrinsic rewards in intrinsically-motivated play
is to investigate if the proposed intrinsic reward approaches
can achieve the same level of performance as two bench-
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Figure 5: Mega-reward against the benchmark of human
player.

marks: PPO agents with access to extrinsic rewards (de-
noted Ex-PPO) and professional human players. Therefore,
we evaluate mega-reward using a relative score against two
such benchmarks, which can be formally defined as

SRelative =
SMega-reward − SRandom

SBenchmark − SRandom
× 100%, (12)

where SRelative > 100% means that mega-reward achieves
a better performance than the corresponding benchmark,
SRelative < 100% that it achieves a worse performance, and
SRelative = 0% is random play.

Fig. 4 shows the comparative performance of mega-
reward against Ex-PPO on 18 Atari games, where mega-
reward greatly outperforms the Ex-PPO benchmark in 8
games, and is close to the benchmark in 2 games. These
results show that mega-reward generally achieves the same
level of or a comparable performance as Ex-PPO (though
strong on some games and weak on others); thus, the
proposed mega-reward is as informative as the human-
engineered extrinsic rewards.

Similarly, Fig. 5 shows the comparative performance of
mega-reward against professional human players. As the
performance of professional human players (i.e., profes-
sional human-player scores) on 16 out of 18 Atari games
have already been measured by (Mnih et al. 2015), we mea-
sure the professional human-player scores on AirRaid and
Berzerk using the same protocol. Generally, in Fig. 5, mega-
reward greatly outperforms the professional human-player
benchmark in 7 games, and is close to the benchmark in 2
games. As the professional players are equipped with strong
prior knowledge about the game and the scores displayed in
the state, they show a relatively high-level of human skills on
the corresponding games. Thus, the results sufficiently prove
that mega-reward has generally reached the same level of (or
a comparable) performance as a human player.

Pretraining with Mega-Reward

In many real-world cases, the agent may have access to the
dynamics of the environment before the extrinsic rewards
are available (Ha and Schmidhuber 2018). This means that
an agent can only play with the dynamics of the environ-
ment to pretrain itself before being assigned with a spe-

Figure 6: Relative improvements of the score when pre-
trained with mega-reward and world model (Delta = Mega-
reward-World Model).

cific task (i.e., having access to extrinsic rewards). There-
fore, we further investigate the first way to integrate mega-
reward with extrinsic rewards (i.e., using mega-reward to
pretrain the agent) and compare the pretrained agent with
that in the state-of-the-art world model (Ha and Schmidhu-
ber 2018), as well as two state-of-the-art methods of un-
supervised representation learning for RL: MOREL (Goel,
Weng, and Poupart 2018) and OOMDP (Diuk, Cohen, and
Littman 2008).

The evaluation is based on a relative improvement of the
score, which is formally defined as

SImprove =
SPretrain − SRandom

SScratch − SRandom
× 100% , (13)

where SPretrain is the score after 20M steps with the first
10M steps pretrained without access to extrinsic rewards,
and SScratch is the score after 10M steps of training from
scratch. In 14, 15, and 17 out of 18 games (see Fig. 6), pre-
training using mega-reward achieves more relative improve-
ments than pretraining using the world model, MOREL and
OOMDP, respectively. This shows that mega-reward is also
very helpful for agents to achieve a superior performance
when used in a domain with extrinsic rewards.

Attention with Mega-Reward

Furthermore, “noisy TV” is a long-standing open problem
in novelty-driven approaches (Burda et al. 2018; 2019); it
means that if there is a TV in the state that displays randomly
generated noise at every step, the novelty-driven agent will
find that watching at the noisy TV produces great interest.
A possible way to solve this problem is to have an attention
mask to remove the state changes that are irrelevant to the
agent, and we believe the accumulated latent control map
gh,wt can be used as such an attention mask. Specifically,
we estimate a running mean for each grid in gh,wt , which
is then used to binarize gh,wt . The binarized gh,wt is used
to mask the state used in the state-of-the-art novelty-driven
work, RND (Burda et al. 2019), making RND generate nov-
elty scores only related to the agent’s control (both direct
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Figure 7: Comparing G-RND with O-RND over Montezu-
maRevenge of different noises.

Table 2: Comparing G-RND with O-RND and other base-
lines over 6 hard exploration Atari games with STD of 0.3.

Game G-RND A-RND M-RND O-RND

MontezumaRevenge 7934 7138 2385 313
Gravitar 3552 3485 1634 1323
Pitfall -15.48 -14.43 -13.64 -14.23
PrivateEye 7273 7347 6128 2132
Solaris 3045 2857 2253 2232
Venture 1700 1701 1599 1572

or latent). There are two additional baselines, ADM (Choi
et al. 2019) and MOREL (Goel, Weng, and Poupart 2018)
that also generate segmentation masks, which can be used
to mask the state in RND. Thus, we compare gh,wt in our
mega-reward with these baselines in terms of generating bet-
ter masks to address the “noisy TV” problem.

Experiments are first conducted on MontezumaRevenge,
following the same settings as in (Burda et al. 2019). Fig. 7
shows the performance of the original RND (O-RND) and
gh,wt -masked RND (G-RND) with different degrees of noise
(measured by the STD of the normal noise). The result
shows that as the noise degree increases, the performance
score of RND decreases catastrophically, while the perfor-
mance drop of G-RND is marginal until the noise is so
strong (STD = 0.6) that it ruins the state representation.
Fig. 2 shows the performance of O-RND and RND masked
with different baselines (G-RND for gh,wt -masked RND, A-
RND for ADM-masked RND, and M-RND for MOREL-
masked RND) over 6 hard exploration Atari games with
STD of 0.3. Results show that G-RND outperforms all other
baselines, which means that gh,wt generated in our mega-
reward is the best mask to address the “noisy TV” problem.
This further supports our conclusion that mega-reward can
also achieve a superior performance when it is used together
with extrinsic rewards.

Failure Cases

Some failure cases of mega-reward are also noticed. We
find that mega-reward works well on most games with a
meshing size of 4 × 4; however, some of the games with
extremely small or big entities may fail with this size. In
addition, mega-reward also fails when the game terminates
with a few seconds of flashing screen, because this will make
the agent mistakenly believe that killing itself will flash the

screen, which seems like having control on all entities for
the agent. Another failure case is that when the camera can
be moved by the agent, such as in the game Pitfall in Ta-
ble 2. The experiment’s first step, i.e., modeling direct con-
trol α(sh,wt , at−1) via Eqs. (1) to (4) fails, as all grids are
under direct control when the agent moves its camera. One
possible solution for above failures is extracting the entities
from the states using semantic segmentation (Goel, Weng,
and Poupart 2018), then applying our method on the seman-
tically segmented entities instead of each grid.

Related Work

We now discuss related works on intrinsic rewards. Further
related work on contingency awareness, empowerment, vari-
ational intrinsic control, and relation-based networks is pre-
sented in the extended paper (Song et al. 2019b).

Intrinsic rewards (Oudeyer and Kaplan 2009) are the re-
wards generated by the agent itself, in contrast to extrin-
sic rewards, which are provided by the environment. Most
previous work on intrinsic rewards is based on the gen-
eral idea of “novelty-drivenness”, i.e., higher intrinsic re-
wards are given to states that occur relatively rarely in the
history of an agent. The general idea is also called “sur-
prise” or “curiosity”. Based on how to measure the nov-
elty of a state, there are two classes of methods: count-
based methods (Bellemare et al. 2016; Martin et al. 2017;
Ostrovski et al. 2017; Tang et al. 2017) and prediction-error-
based methods (Achiam and Sastry 2017; Pathak et al. 2017;
Burda et al. 2018; 2019). Another popular idea to generate
intrinsic rewards is “difference-drivenness”, meaning that
higher intrinsic rewards are given to the states that are dif-
ferent from the resulting states of other subpolicies (Flo-
rensa, Duan, and Abbeel 2017; Song et al. 2019a). To eval-
uate intrinsic rewards, intrinsically-motivated play has been
adopted in several state-of-the-art works. However, it may
be an ill-defined problem, i.e., if we flip the extrinsic re-
wards, the agent only trained by the intrinsic rewards is
likely to perform worse than a random agent in terms of
the flipped extrinsic rewards. Discarding the possible bug
in defining the problem, intrinsically-motivated play indeed
helps in many scenarios, such as pretraining, improving ex-
ploration, as well as understanding human intelligence.

Summary

In this work, we proposed a novel and powerful intrin-
sic reward, called mega-reward, to maximize the control
over given entities in a given environment. To our knowl-
edge, mega-reward is the first approach that achieves the
same level of performance as professional human players
in intrinsically-motivated play. To formalize mega-reward,
we proposed a relational transition model to bridge the gap
between direct and latent control. Extensive experimental
studies are conducted to show the superior performance of
mega-reward in both intrinsically-motivated play and real-
world scenarios with extrinsic rewards.
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