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Abstract

In matrix factorization, available graph side-information may
not be well suited for the matrix completion problem, hav-
ing edges that disagree with the latent-feature relations learnt
from the incomplete data matrix. We show that removing
these contested edges improves prediction accuracy and scal-
ability. We identify the contested edges through a highly-
efficient graphical lasso approximation. The identification
and removal of contested edges adds no computational com-
plexity to state-of-the-art graph-regularized matrix factoriza-
tion, remaining linear with respect to the number of non-
zeros. Computational load even decreases proportional to the
number of edges removed. Formulating a probabilistic gen-
erative model and using expectation maximization to extend
graph-regularised alternating least squares (GRALS) guaran-
tees convergence. Rich simulated experiments illustrate the
desired properties of the resulting algorithm. On real data
experiments we demonstrate improved prediction accuracy
with fewer graph edges (empirical evidence that graph side-
information is often inaccurate). A 300 thousand dimen-
sional graph with three million edges (Yahoo music side-
information) can be analyzed in under ten minutes on a stan-
dard laptop computer demonstrating the efficiency of our
graph update.

1 Introduction

Matrix factorization (MF) is popular in a number of domains
including recommender systems (Koren, Bell, and Volinsky
2009; Mehta and Rana 2017), bioinformatics (Brunet et al.
2004; Jacoby and Brown 2018; Stein-O’Brien et al. 2018;
Zakeri et al. 2018; Zheng et al. 2013), image restoration
(Xue, Zhang, and Cai 2017) and many more (Davenport and
Romberg 2016). Much of the data is of a very large scale and
sparse, and additional (side-)information is usually avail-
able. Therefore, many methods focus on scalability (Dav-
enport and Romberg 2016; Mnih and Salakhutdinov 2008;
Sardianos, Papadatos, and Varlamis 2019) and the addition
of side information (SI) (Chiang, Hsieh, and Dhillon 2015;
Chiang, Dhillon, and Hsieh 2018; Gönen, Khan, and Kaski
2013; Ma et al. 2011; Zakeri et al. 2018; Zhou et al. 2012;
Zhao et al. 2015), and more recently scalable methods with
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SI (Monti, Bronstein, and Bresson 2017; Rao et al. 2015;
Yao and Li 2018).

Empirical evidence shows that prediction accuracy is sig-
nificantly improved by graph SI, where edges in the graph
represent similarity between connected nodes (Cai et al.
2011; Ma et al. 2011; Monti, Bronstein, and Bresson 2017;
Rao et al. 2015; Yao and Li 2018; Zhou et al. 2012;
Zhao et al. 2015). MF (or low-rank matrix completion) has
theoretical guarantees for exact completion without and with
noise (Candes and Plan 2010; Candès and Recht 2009). In-
troducting noisy SI is shown to reduce sample-complexity,
and is reduced even further handling the noise (Chiang,
Hsieh, and Dhillon 2015). Reduction in sample complexity
through the introduction of graph SI has also been shown
(Ahn et al. 2018; Rao et al. 2015), as a function of graph
quality. However, to the best of our knowledge there is no
work on scalable methods to handle the noise in the graph
SI.

Mnih and Salakhutdinov (Mnih and Salakhutdinov 2008)
introduced probabilistic matrix factorisation (PMF), which
is equivalent to �2-regularised (alternating least squares) MF.
Probabilistic interpretations for MF with graph SI are ker-
nelized PMF (KPMF (Zhou et al. 2012)) and kernelized
Bayesian MF (KBMF (Gönen, Khan, and Kaski 2013)):
placing priors over the columns of the latent feature matri-
ces. This type of prior models the pairwise relation between
rows, where these rows correspond to rows or columns of the
incomplete data matrix. KPMF and KBMF showed good re-
sults on moderate-sized data but failed to scale to large data.

To address scalability, graph-regularised alternating least
squares (GRALS (Rao et al. 2015)) was proposed, with con-
jugate gradient descent exploiting the sparsity in the data
matrix and the graphs, resulting in linear computational
complexity and fast convergence. Recently there has been
progress on applying deep learning to matrix completion,
with and without side information, with good accuracy and
showing potential for scalability (Berg, Kipf, and Welling
2017; Hartford et al. 2018; Monti, Bronstein, and Bresson
2017; Yao and Li 2018).

All of the non-Bayesian or scalable methods incorporat-
ing graph SI (Cai et al. 2011; Ma et al. 2011; Monti, Bron-
stein, and Bresson 2017; Rao et al. 2015; Zhou et al. 2012)
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fix the edges in the graph, considering them as true. How-
ever, these graphs are known to be uncertain (Adar and Re
2007; Asthana et al. 2004), and furthermore, the similarities
they represent (e.g. homophily (McPherson, Smith-Lovin,
and Cook 2001)) are rarely specific to the matrix factoriza-
tion task leaving no guarantee that correlations correspond
(Ma et al. 2011; Singla and Richardson 2008); graphs are of-
ten formed for other purposes, and hence their usefulness for
MF is uncertain. This leaves room for improving the qual-
ity of the graph, leading to a significant reduction in sample
complexity (Ahn et al. 2018). In this work we will introduce
a solution based on contested edges, defined later in the pa-
per.

Example of Graph Side-Information and Contested
Edges To better understand how graph similarities are not
task-specific (are non-specific) to MF, take a common ex-
ample of a movie-recommendation problem with social net-
work (SN) SI (Ma et al. (2011) and in our experiments on
Douban data). Connected users in the SN do not connect
based on their similar preference of movies, instead they
connect on the basis of a broader social context. Similarly,
the demographic information in MovieLens1, used to form
a user-similarity graph, is only very indirectly related to
the movie preferences (McPherson, Smith-Lovin, and Cook
2001). Nevertheless, more general similarity has been shown
to often work well in practice, but some parts of it may turn
out to be detrimental as we illustrate below.

Figure 1 (top) shows a small movie-recommendation data
matrix with SN SI (bottom-left). Without SI, if row/column
observations in the data matrix are similar, latent features
will be similar. This can be inaccurate, e.g. users 2 and 3
would be considered similar based on the observations, and
thus predictions for user 2 would be similar to ratings of
user 3, whereas actually user 2 is similar to user 1. Graph
information can help by encouraging latent features of con-
nected users, like user 1 and user 2 here, to be similar, even
when there is no observed data in the matrix to indicate they
should be. However, for other users such as 4 and 5 the graph
may mismatch with the data, indicating similarity whereas 4
and 5 are actually negatively correlated (as seen in their rat-
ings of movies 5 and 6), and using the graph would thus
worsen their predictions. We propose using this discrepancy
to contest the graph edge between users 4 and 5; removing
this edge as in Figure 1 (bottom-right) would improve pre-
dictions for users 4 and 5 to be consistent with their observed
negative correlation, while the beneficial edge between users
1 and 2 will still remain. In real cases, mismatch between
the data matrix and the SI would be detected based on much
more data than in this illustration.

We do not propose to identify contested edges directly
from the observed data but from correlations between the la-
tent features. We introduce a probabilistic generative model
that we call graph-based prior PMF (GPMF). Using the
expectation-maximization (EM, (Bishop 2006)) algorithm
we find a maximum a posteriori (MAP) estimate for the
latent features and a maximum likelihood estimate (MLE)

1https://grouplens.org/datasets/movielens/

Movie

User m1 m2 m3 m4 m5 m6 m7

u1 5 1
u2 5 4 1
u3 1 4 5
u4 5 4 2 1
u5 1 2 4 5

Figure 1: An illustrative movie recommendation problem.
Top: data matrix where entries are user-ratings for movies:
observations in black, unseen entries are blank and unseen
entries to be predicted are in grey. Bottom-left: Social Net-
work SI; connected users assumed to have similar ratings.
The edge shown in red is contested due to negative correla-
tion of u4 and u5 in the data matrix. Bottom-right: a graph
update with removal of the contested edge to improve pre-
diction accuracy.

for the correlations of the latent features. We show in Sec-
tion 3 how using GLASSO approximation we can remove
contested edges by simply thresholding a constrained sam-
ple covariance matrix (SCM).

There exist a number of approaches to reduce the edges
in a labelled graph, graph summarization, Liu et al. (2018)
for example. Most of these approaches do not use node
attributes (labels) and to the best of our knowledge none
use latent features for edge pruning. There are link predic-
tion models that are probabilistic and use node attributes
(Haghani and Keyvanpour 2017) but none of them can (yet)
scale to large data (Li et al. 2014; Nguyen and Mamitsuka
2012; Zhao, Du, and Buntine 2017).

This paper introduces GPMF: the generative model in
Section 2, the scalable constrained EM algorithm in Sec-
tion 3, experiments in Section 4 and a conclusion in Sec-
tion 5.

2 GPMF Generative Model and Relations to

the Graph Side-Information

We are provided with a partially observed data matrix R
with N rows and M columns. R is approximated as the
product of two low-rank matrices, U and V . The number
of latent features D is fixed; U and V have D columns,
each row is a latent feature vector for each row / column of
R respectively. We use an indicator matrix Ω where [Ω]ij is
one if the element in row i and column j of R is observed,
and zero otherwise. The goal is to learn latent-feature matri-
ces U and V that most accurately represent the full matrix
R.
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�2-regularized MF has a scalable probabilistic interpre-
tation: PMF. Each observed entry Rij : (i, j) ∈ {(s, t) :
[Ω]s,t = 1} is assumed to have Gaussian noise σ2; each
row of U and V has a zero-mean spherical Gaussian prior.
Similar to KPMF (Zhou et al. 2012), our model replaces
the spherical Gaussian prior with a full-covariance Gaus-
sian over the columns of the latent features (introducing row-
wise dependencies):

p(R | U ,V , σ2) =

N∏
i=1

M∏
j=1

N (Rij | U i:V
�
j:, σ

2)Ωij (1)

p(U | ΛU ) =

D∏
d=1

N (U :d | 0,Λ−1
U ) (2)

p(V | ΛV ) =
D∏

d=1

N (V :d | 0,Λ−1
V ) . (3)

Graph SI constrains the structure of the precision matrices
(ΛU or ΛV ) of (2) and (3), discussed next.

Gaussian Markov Random Field (GMRF) Relation
to Precision Matrix

An undirected graph GZ = (VZ , EZ) with a set of nodes VZ ,
representing a set of random variables {Zi}Pi=1, and a set of
edges EZ ⊆ {(i, j) | i, j ∈ VZ}, defines the conditional
independence of the random variables, where the absence
of an edge (i, j) /∈ EZ implies that the two random vari-
ables are conditionally independent [ΛZ ]ij = 0 given the re-
maining random variables (Bishop 2006; Hastie, Tibshirani,
and Friedman 2009; Lauritzen 1996; Rue and Held 2005):
Zi ⊥ Zj | {Zk : k ∈ {1, ..., N} \ (i, j)}. In the remainder
of the paper we refer to the adjacency matrix of GZ : a sym-
metric matrix where [AZ ]ij is one if an edge exists between
nodes i and j and zero otherwise. We can summarize the
GMRF relation as [AZ ]ij = 0 ⇐⇒ [ΛZ ]ij = 0 | i �= j.

Laplacian Matrix Relation to Precision Matrix

The Laplacian matrix of a graph is LZ = D −AZ , where
Di,i =

∑N
j=1[AZ ]ij is a diagonal degree matrix, and is

positive-semi-definite by definition. The regularised Lapla-
cian L+

Z = LZ + γI , γ > 0 is a positive-definite ma-
trix; a valid precision matrix retains the GMRF property
(Dong et al. 2016; Egilmez, Pavez, and Ortega 2016; 2017;
Hastie, Tibshirani, and Friedman 2009; Liu et al. 2014):
[L+

Z ]ij = 0 ⇐⇒ [ΛZ ]ij = 0 | i �= j.

Lemma 1. If the precision matrix in (2) and (3) is the reg-
ularised Laplacian matrix L+

U ,L
+
V , then the MAP estimator

of our model has the same objective function as GRALS (Rao
et al. 2015). Our GPMF model therefore gives a generaliza-
tion of the GRALS objective function.

Proof of Lemma 1.. Our generative model is biconvex, and
hence it suffices to prove for U that the posterior is equiva-
lent to the GRALS objective. Holding V fixed and finding

the log posterior of U :
ln p(U |R, σ2,V ,ΛU ) ∝ ln p(R | U ,V , σ2)p(U | ΛU )

∝ −1

2

∑
(i,j):Ωi,j=1

(
Rij −U i:V

�
j:

)2
− σ2

2

D∑
d=1

U�
:dΛUU :d

= −1

2
‖PΩ(R−UV �)‖2F −

σ2

2
tr(U�L+

UU) , (4)

where U i: is row i of matrix U and U :d is column d, PΩ

is a projection operator retaining entries of the matrix in
the set {(i, j) : Ωi,j = 1}, setting ΛU = L+

U and noting
that

∑
i,j U

2
ij = tr(U�U) = ‖U‖2F is the Frobenius norm

squared. Equation (4) is the GRALS objective function (Rao
et al. 2015). Derivations are provided in the supplementary
material.

3 GRAEM: Scalable EM for GPMF
We naturally extend each least-squares sub-problem of
GRALS (Rao et al. 2015) with graph-regularised alternating
EM (GRAEM), having the same global convergence guar-
antees as GRALS: (Xu and Yin 2013). We work through op-
timising U with V fixed. Solving for V has the same form.

The EM Formulation

We have an incomplete data matrix R, fixed matrix V , latent
variable matrix U , and graph SI. From the graph we derive
L+

U (see Section 2), then set the precision matrix ΛU = L+
U .

We want to maximize the expectation of the joint density of
the data and the latent variables, with U as our unknowns
and ΛU as our input parameters:

Q(ΛU ,Λ
old
U ) =

∫
U

p(U |R,Λold
U ) ln p(R,U | ΛU ) dU

= Ep(U |R,Λold
U ) [ln p(R,U | ΛU )] . (5)

E-step: Expected Value of the Latent Variables

The expected value of our latent variables has a Gaus-
sian posterior distribution (see supplementary material),
we can therefore use the MAP, which is equivalent to
the GRALS objective function as shown in Lemma 1:
Ep(U |R,Λold

U )[ U ] = μpost.
U ≈ μ̂MAP

U .

M-step: Removing Contested Edges

We can remove edges in the graph that correspond to neg-
ative correlations between the latent features by simply re-
moving negative covariances from an SCM; this relationship
holds for large scale and sparse problems; details follow.

The MLE of the Parameters and GLASSO To find the
MLE we maximise the Q function in Equation (5) with re-
spect to ΛU . The maximum can be found in closed form by
taking the derivative with respect to the parameter ΛU and
setting to zero:

argmax
ΛU

Q =

(
Ep(U |R,Λold

U )

[
1

D

D∑
d=1

U :dU
�
:d

])−1

=
(
E

[
SD

U

])−1

= Λ∗
U . (6)
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Equation (6) is the inverse of an SCM, where each sample
is one of the columns of U . Values for U are unknown, so
we use the MAP given the previous estimate of the parame-
ters (Λold

U ). The solution (if any) is almost surely not sparse.
Graphical lasso (GLASSO (Mazumder and Hastie 2012))
finds a sparse solution for the MLE of the precision matrix,
where samples are assumed to be normally distributed, in
line with our model assumptions in Section 2. We therefore
propose solving (6) with GLASSO.

Constrained GLASSO and Highly Efficient Approxima-
tion GLASSO finds the MLE of the precision matrix un-
der an �1 penalty, given an SCM S. Grechkin et al. (2015)
showed that the problem space can be reduced with prior
knowledge on which pairwise relationships do not exist,
forcing them to be zero in the solution:

min
ΛU�0

tr(SΛU )− log |ΛU |+ τ ‖ΛU‖1 ,
subject to [ΛU ]ij = 0 ∀ {(i, j) : [A0

U

]
ij
= 0} . (7)

Zhang, Fattahi, and Sojoudi (2018) uses a relation between
the sparsity structure of the τ -thresholded SCM and the
GLASSO solution; for large-scale problems, when the so-
lution is very sparse, the connected components are equiva-
lent (Mazumder and Hastie 2012), given further assumptions
the complete sparsity structure is equivalent (Fattahi and So-
joudi 2019; Sojoudi 2016a; 2016b). However, this solution
will locate correlations, positive and negative, with a strong
magnitude, greater than τ . Next we detail how to identify
edges that correspond to only negative correlations.

Removing a Contested Edge The sparsity structure of the
SCM and the (GLASSO) solution are equivalent under mild
assumptions that are found to be true for sufficiently large
τ , that result in ≈ 10N non-zeros in the solution (Fattahi
and Sojoudi 2017; 2019). One of these assumptions is sign-
consistency where each non-zero element of the solution has
the opposite sign in the SCM. Assuming sign-consistency
we can identify all graph edges that correspond to negative
correlations in the latent features, with E[SD

U ] from Equa-
tion (6) as our SCM:

[Anew
U ]ij =

⎧⎪⎪⎨
⎪⎪⎩
1,

[
A0

U

]
ij
= 1 , E

[
SD

U

]
ij
≥ τ

0,
[
A0

U

]
ij
= 1 , E

[
SD

U

]
ij
< τ , CE

0, otherwise, cons-E,

(8)

where Anew
U is the updated adjacency matrix, the threshold

parameter τ is set to zero (or can be increased for a sparser
solution) and A0

U is the adjacency matrix of the graph SI;
CE is a contested edge and cons-E is a constrained edge. To
solve Equation (8) we need to compute E[SD

U ], which can
be decomposed as:

E[SD
U ] =

1

D

D∑
d=1

E

[
U :dU

�
:d

]

E

[
U :dU

�
:d

]
= Cov[U :d] + E[U :d]E[U

�
:d]

= Σpost.
U:d

+
[
μpost.

U:d

] [
μpost.

U:d

]�
.

The remaining task is to efficiently approximate the pos-
terior covariance Σpost.

U:d
for each column, d, of U , which we

discuss next.

Posterior Covariance Approximation The posterior of
our GPMF model, in Section 2, is a joint Gaussian dis-
tribution, where the likelihood in Equation (1) introduces
relations between the columns of the latent features and
the prior in Equation (2) introduces relations between the
rows. This results in a posterior covariance matrix with
an inverse Kronecker sum structure (Kalaitzis et al. 2013;
Schacke 2004): Σpost.

U = (ID ⊗ ΛU + α C)−1 where ⊗ is
the Kronecker product operator and

C = [c(d, d′)]Dd,d′=1 ,

c(d, d′) = diag

⎛
⎜⎝
⎧⎨
⎩

M∑
j=1

ΩijV jdV jd′

⎫⎬
⎭

N

i=1

⎞
⎟⎠ .

Column-Wise Independence Assumption. We simplify
the Kronecker sum with a column-wise independence as-
sumption, setting all off-diagonals of C to zero:

Λpost.
U ≈ ID ⊗ΛU + α diag (C)

= blkdiag
({

Λ̂
post.
U:d

}D

d=1

)
, (9)

Λ̂
post.
U:d

= ΛU + α diag (Cd) ,

diag (Cd) = diag

⎛
⎜⎝
⎧⎨
⎩

M∑
j=1

Ωi,jV
2
j,d

⎫⎬
⎭

N

i=1

⎞
⎟⎠ ,

where α = [σ2]−1 is the inverse of the observation noise
in (1), diag takes a vector to create a diagonal matrix and
blkdiag takes a sequence of matrices to construct a block-
diagonal matrix.

Sparse Cholesky Factorisation: Each Λ̂
post.
U:d

is still too
large to invert. Assuming the high-dimensional matrix
is sparse, as in Zhang, Fattahi, and Sojoudi (2018), its
Cholesky factorisation is computable in O(N) time (Davis
et al. 2004). We compute K samples as an unbiased estimate
for the approximate posterior covariance:

Σ̂
post.
U:d

=
[
Λ̂

post.
U:d

]−1

≈ 1

K

K∑
k=1

xkx
�
k

xk ∼ N
(
0,
[
Λ̂

post.
U:d

]−1
)

.

The Algorithm

The EM algorithm iterates between E-step and M-step until
convergence. We initialize the latent feature matrices (U ,V )
by finding the MAP with no graph SI using PMF, to learn la-
tent features that reflect the observed entries of the data ma-
trix. In practise any method to learn the latent features with
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Figure 2: Synthetic data experiments

no SI can be used. The M step uses the relations between the
latent features to identify negative correlations and remove
them from the graph SI. The E-step then finds the MAP of
the latent features given the updated graph. In theory the E
and M step could be continued until some convergence cri-
terion was met, but this would be less efficient and we get
good results with just one step. So the three steps of our al-
gorithm are lines 1,3 and 4:

Algorithm 1 Graph-regularised alternating EM (GRAEM)

Input: A0
U ,A

0
V

Output: Û , V̂ ,A+
U ,A

+
V

1: U0,V 0 ← Initialise with PMF (no graphs)
2: while not converged do
3: At

U ,A
t
V ← Run M-step Equation (8) with

U t−1,V t−1 and A0
U ,A

0
V as structural constraints

4: U t,V t ← Run E-step with regularized Laplacians
given At

U ,A
t
V

5: end while

Scalability: Computational Complexity

The algorithm has three steps: lines 1,3,4 in Algorithm 1.
Line 1 is linear in the number of non-zeros nz() in the
data matrix O(nz(Ω)) per conjugate gradient (CG) itera-
tion. Line 3 comprises sparse Cholesky factorisation, linear
in time with respect to the dimension size O(N +M), con-
strained SCM computation and thresholding, O(nz(AU ) +
nz(AV )) both converge in one time step. Line 4 uses
GRALS with the sparsified graphs: O(nz(Ω) + nz(A+

U ) +

nz(A+
V )) per CG iteration. Line 4 is initialised with U ,V

values from the PMF run, largely reducing the number of it-
erations required. Our algorithm remains linear with respect
to the number of non-zeros. The additional M-step is a trivial
additional cost, and if A+

U ,A
+
V are much sparser, reducing

iteration costs in Line 4, the overall computational load can
be less than GRALS using the original graphs.

4 Experiments2

We compare our algorithm to a baseline with no graph SI
(PMF, (Mnih and Salakhutdinov 2008)), the current most

2Code: https://github.com/strahl2e/GPMF-GBP-AAAI-20

scalable method, GRALS (Rao et al. 2015), and to evaluate
accuracy less scalable methods KPMF (Zhou et al. 2012)
and sRMGCNN (Monti, Bronstein, and Bresson 2017).
For sRMGCNN we used their published code, ran it on a
(NVIDIA Tesla P100) GPU and used cross validation to tune
the T value; this model took several orders of magnitude
more time to converge: on Flixster data GPMF and GRALS
converged in 20 seconds, PMF in 0.2 seconds, sRMGCNN
took 30 minutes. We also ran KBMF (Gönen, Khan, and
Kaski 2013) and non-convex IMC (Zhang, Du, and Gu
2018), with adjacency matrix rows as feature vectors, but
with long computational time on the smaller datasets, we
failed to achieve reasonable results. KPMF exploits rich side
information and IMC experiments have more densely ob-
served data, so they don’t seem suited to this problem.

Experiments on Synthetic Data

To analyze the behaviour of our algorithm we generate a data
matrix with a known underlying graph. Therefore we can re-
place real edges in the graph with corrupted edges (CEs) that
contest the real underlying structure, controlling the accu-
racy of the graph SI. We use a block-diagonal regularised-
Laplacian precision matrix. We generate a 400 × 400 data
matrix by Equations (1)-(3), with proportion of corrupted
edges 0.3, observation noise 0.01, 7% observed values, and
40 latent dimensions; we vary these settings in the experi-
ments below. See supplementary material for further details.

Graph Fidelity. In Figure 2 (a) we vary the number of
CEs. A graph with no CEs has fidelity one (F = 1), with
all CEs F = 0. GPMF consistently improves prediction ac-
curacy over methods with graph SI for F > 0, and perfor-
mance is equal for F = 0. PMF with no graph performs
better below F = 0.3, showing that a graph of low quality
can make prediction accuracy worse.

Observation Noise. Figure 2 (b) shows the benefit of
GPMF diminishes as noise increases; learning correlations
requires learning from the observations. However, at worst
GPMF is only as bad as using the original corrupted graph.

Proportion of Observations. In Figure 2 (c) with just
10% of observed entries our algorithm can almost attain the
same prediction accuracy as using the true graph. GRALS
requires 30% to achieve a similar accuracy. At 40% of ob-
served entries the graph is no longer beneficial. Note that
most large scale matrix completion problems have fewer
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Figure 3: Convergence time on large data; vertical lines show start and end of M-step. c) 40NN graph.

Table 1: Result summary on real datasets (RMSE), A+ is the graph updated with GRAEM (our method) where contested edges
have been removed, we report the proportion of remaining edges in the bottom row. Bold = best result.

FLIXSTER DOUBAN MOVIELENS EPINIONS YAHOO MOVIELENS 20M
ALGO. (3K) (3K) 100K MUSIC (10-/20-/40-NN)

PMF 0.9809 0.7492 0.9728 0.31 22.991 0.7980 / 0.7980 / 0.7980
GRALS 0.9152 0.7504 0.9178 0.32 22.760 0.7898 / 0.7925 / 0.7922
GPMF (OURS) 0.8857 0.7497 0.9174 0.28 22.795 0.7894 / 0.7895 / 0.7887
KPMF 0.9212 0.7324 0.9336 - - -
KPMF (A+) 0.9212 0.7323 0.9374 - - -
SRMGCNN 0.9108 0.7915 0.9263 - - -

DATA DIMS. 3K X 3K 3K X 3K 1K X 1.5K 22K X 296K 250K X 300K 138K X 27K
NUM. OF OBS. 2.6K 137K 100K 824K 6M 20M

EDGES (AU /AV ) 59K / 51K 2.7K / 0 12.6K / 29K 574K / 0 0 / 3M 0 / 493K - 0 / 963K - 0 / 1.9M

PROP. OF EDGES IN A+ 0.57 / 0.63 0.77 / 0 0.63 / 0.61 0.45 / 0 0 / 0.8 0 / 0.88 - 0 / 0.71 - 0 / 0.65

than 10% observed entries.
Model Capacity. Figure 2 (d) shows that with too few

latent features all models are negatively effected, but overall
GPMF attains the best prediction accuracy.

GLASSO Accuracy We see clearly that observation
noise strongly effects the ability to identify contested edges,
as shown in Figure 2 (b). Accuracy improves with more ob-
servations, but even with low levels of noise and a reason-
able amount of observations successful removal of CEs is
moderate. Regardless of this moderate (best-case) accuracy,
experiments show it is enough to attain significant improve-
ments in accuracy of the latent features. We analyse the ac-
curacy of removing CEs over several simulations. With 7%
of observed entries, 31.7% of CEs are correctly removed and
19% of true edges (TEs) are wrongly removed; increasing
observed entries to 40%, 44.3% of CEs are removed and
0.3% of TEs. Fixing observed entries at 20%, with noise
σ2 = 0.01, 39% of CEs and 2.7% of TEs are removed, and
with σ2 = 1, 34.3% CEs and 42.7% TEs are removed.

Experiments on Real Data

In Table 1 GPMF (our method) gives improved accuracy
over GRALS on all small datasets: 3000 (3k) by 3k sub-
sets of Flixster and Douban (Monti, Bronstein, and Bres-

son 2017), full datasets not attainable, and MovieLens100k
(Harper and Konstan 2015)); the bottom rows of the table
show the size and number of observations for each data ma-
trix and the number of edges in each SI graph. In Figure 3
our method is shown to add no computational cost on large
data: Epinions (Tang, Gao, and Liu 2012), Yahoo Music
(Rao et al. 2015; Dror et al. 2011) and MovieLens 20 million
(Harper and Konstan 2015)), note that proportion of edges
used by GPMF is reported in figure title. Figure 3 (a) is an
example of poor quality graph SI, we see this as PMF outper-
forms GRALS with the SI; our method (GPMF) estimates
over half the edges as contested, removing them improves
the accuracy. We believe that there were no gains in Figure 3
(b) as the graph is extremely sparse and removing edges has
little effect. We test this hypothesis with MovieLens 20M
in Table 1 by increasing the number of nearest neighbours
from 10 to 40, we see that GRALS with the original graph
decreases in performance while our algorithm continues to
improve, we plot k = 40 in Figure 3 (c); the computational
time of our M-step (between the two vertical lines) is a frac-
tion of the running time of the algorithm with k = 40.

We also tested general usefulness of the updated graph:
We get a small improvement for Douban with KPMF using
77 % of the edges, we also get the same accuracy for Flixster
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with almost half the edges.

5 Conclusion

We present a highly efficient method to improve the qual-
ity of graph side-information for matrix factorisation. Of the
three steps in the algorithm, the initialisation of the latent
features and the estimation of the latent features with the up-
dated graph (the E-step) can be performed with any method
for matrix completion without SI and with graph SI respec-
tively. With such a small computational cost a graph update
(the M-step) to improve quality seems like a valuable step
when including graph SI into matrix factorisation. Further-
more, we demonstrated the robustness using our algorithm
on real graph side-information. By increasing the number
of nearest neighbours for generating graphs from feature
side-information our algorithm, GRAEM, improved while
GRALS worsened. Our graph update step allows for more
noisy graphs to improve the matrix completion accuracy.

Future work could improve the graph update accuracy; we
showed with simulated data the GLASSO approximation is
only moderately successful.
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