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Abstract

Experience replay (ER) has become an important component
of deep reinforcement learning (RL) algorithms. ER enables
RL algorithms to reuse past experiences for the update of cur-
rent policy. By reusing a previous state for training, the RL
agent would learn more accurate value estimation and bet-
ter decision on that state. However, as the policy is continu-
ally updated, some states in past experiences become rarely
visited, and optimization over these states might not improve
the overall performance of current policy. To tackle this issue,
we propose a new replay strategy to prioritize the transitions
that contain states frequently visited by current policy. We
introduce Attentive Experience Replay (AER), a novel expe-
rience replay algorithm that samples transitions according to
the similarities between their states and the agent’s state. We
couple AER with different off-policy algorithms and demon-
strate that AER makes consistent improvements on the suite
of OpenAI gym tasks.

1 Introduction

Deep reinforcement learning (RL) has made remarkable ad-
vances in many sequential decision-making problems, in-
cluding Atari games (Mnih et al. 2013; 2015), realistic simu-
lated robotic (Schulman et al. 2015; 2017) and board games
(Silver et al. 2016; 2017). With the utilization of deep neu-
ral network (DNN) as function approximators, deep RL al-
gorithms are able to learn complex nonlinear policies (or
value functions) directly from high dimensional input with-
out prior knowledges. Experience Replay (ER) (Lin 1992)
is a technique that stores and reuses past experiences with a
replay buffer. By randomly sampling transitions from the re-
play buffer, ER alleviates the temporal correlations between
sequential transitions, and offers i.i.d. samples required for
the training of DNN. Furthermore, the reuse of the transi-
tions from the past improves the sample efficiency and sta-
bilizes the learning process.

As suggested in (De Bruin et al. 2018), the learning ef-
ficiency and stability of RL algorithm, as well as the fi-
nal performance of the learned policy, are heavily depen-
dent on how the experiences are replayed. In the origi-
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(a) Pong (b) HalfCheetah

Figure 1: Snapshots of OpenAI gym tasks. Left: Pong, one
of the Atari 2600 games. Right: HalfCheetah, one of the
MuJoCo tasks.

nal form of ER, experience transitions are replayed uni-
formly at random from the replay buffer, which neglects
the significance of different transitions. To make better use
of the experiences, various sampling strategies (De Bruin
et al. 2015; Schaul et al. 2016; De Bruin et al. 2016;
Novati and Koumoutsakos 2019; Zha et al. 2019) have been
proposed to prioritize important experiences. For off-policy
algorithms, as the policy diverges from previous behaviors,
some experiences in the replay buffer might become irrele-
vant to current policy. For example, some transitions from
the past might contain states that would never be visited by
current policy. Optimization over these states might not im-
prove the overall performance of current policy and can pos-
sibly undermine the performances on the frequently visited
states. For off-policy algorithms that contain such irrelevant
experiences, a proper sampling strategy should be able to
improve the performance.

In this paper, we propose a new criterion for sampling
transitions from the replay buffer. We argue that transi-
tions that contain states frequently visited by current policy
should be sampled with higher priorities, and ones that con-
tain rarely visited states should be sampled less. Based on
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this criterion, we propose a new experience replay algorithm
called Attentive Experience Replay (AER). AER computes
the similarities between the states in past transitions and the
agent’s state, and implicitly assigns high priorities to the
similar transitions. To evaluate the performance of the pro-
posed algorithm, we couple AER with four off-policy algo-
rithms: DQN, SAC, TD3 and DDPG. We compare AER with
two ER methods, the uniform sampling and the prioritized
experience replay (PER) (Schaul et al. 2016), on the suite of
OpenAI gym tasks (Figure 1) (Brockman et al. 2016). The
results show that our method achieves better performance
and scalability, outperforming the uniform sampling and the
PER method over different algorithms and tasks.

2 Related Work

In this section, we briefly review the related methods. First,
we present the formulation of the reinforcement learning
problem. After that, we introduce the related off-policy RL
algorithms and experience replay methods, respectively.

2.1 Reinforcement Learning Formulation

In reinforcement learning, an agent interacts with the en-
vironment with the aim of maximizing the cumulative re-
ward. At each discrete time step t, the agent observes its
state st ∈ S , and selects an action at ∈ A following its pol-
icy at ∼ π(a|st), receiving a reward rt ∈ R and observing a
new state st+1 ∈ S according to the environment’s dynamic
st+1 ∼ P(st+1|st, at), which results in an experience tran-
sition quadruple et = (st, at, rt, st+1). The return is defined
as the discounted cumulative reward:

Rt =

T∑
i=t

γi−tr(si, ai), (1)

where γ is a discount factor determining the priority of
short-term rewards. The expected return after taking an at
at state st following policy π is formulated as follows:

Qπ(st, at) = Es∼P,a∼π[Rt|st, at]. (2)

The corresponding value of the state st is defined as follows:

V π(st) = Es∼P,a∼π[Rt|st]. (3)

The objective of reinforcement learning is to find a policy π
that maximizes the expected cumulative reward:

J(π) = Es∼P,a∼π [R0] =

T∑
i=0

Esi∼P,a∼π(a|si)
[
γir(si, ai)

]
. (4)

2.2 Deep RL Algorithms with Experience Replay

The combination of deep RL algorithms with experience re-
play has shown great success on different RL tasks. In this
work, we focus on four deep off-policy algorithms.

Deep Q-network. In deep Q-network (DQN) algorithm
(Mnih et al. 2013; 2015), a deep neural network is used to
approximate the optimal value function:

Q∗(s, a) = max
π

Qπ(s, a), (5)

after experiencing a state s and taking an action a. The deep
Q-network Q(s, a; θ) is parametrized using a deep neural
network, in which θ are the parameters. During training,
at each time step t, the DQN agent stores its experience
et = (st, at, rt, st+1) into a replay bufferD = {e1, e2 · · · }
that holds the last one million transitions. When performing
updates, mini-batches of experience (s, a, r, s′) ∼ U(D) are
uniformly sampled from the replay buffer to optimize the
deep Q-network using stochastic gradient descent by mini-
mizing loss:

L (θ) = E(s,a,r,s′)∼U(D)

[
(y −Q (s, a; θ))

2
]
, (6)

where y = r + γmaxa′ Q (s′, a′; θ−) is the bootstrapping
target, and θ− represents the parameters of the target net-
work Q−(s, a; θ−), a periodic copy of the deep Q-network
Q(s, a; θ). With the merits of combining deep RL algo-
rithm with experience replay, DQN and its variants (Hessel
et al. 2018; Van Hasselt, Guez, and Silver 2016) show super-
human performance on the Atari 2600 games.

Deep deterministic policy gradient. Deep deterministic
policy gradient (DDPG) (Lillicrap et al. 2016) is an off-
policy actor-critic algorithm that extends the deterministic
policy gradient (DPG) algorithm (Silver et al. 2014) by us-
ing deep neural networks as function approximators. DDPG
contains two neural networks, i.e., the value-network (a.k.a.
critic) that outputs Q(s, a; θ), and the policy-network (a.k.a.
actor) that selects actions based on given states a = μ(s;φ).
DDPG alternately updates these two networks. The value-
network is trained using the loss function similar to DQN:

L (θ) = E(s,a,r,s′)∼U(D)

[
(y −Q (s, a; θ))

2
]
, (7)

where y = r + γQ (s′, μ(s′;φ−); θ−). Q(s, a; θ−) and
μ(s;φ−) are the target networks. The policy-network is
trained to output an action a that maximizes the value pre-
dicted by the value-network:

∇φJ(μ) ≈ ∇φEs∼U(D)

[
Q (s, a|θ) |a=μ(s|φ)

]
= ∇φEs∼U(D)

[
∇aQ (s, a|θ)a=μ(s)∇φμ (s|φ)

]
.

(8)

TD3. Twin delayed deep deterministic policy gradient
(TD3) (Fujimoto, van Hoof, and Meger 2018) makes several
improvements on DDPG to alleviate the overestimation of
the value-network. Motivated by double Q-learning (Hasselt
2010; Van Hasselt, Guez, and Silver 2016) that prevents the
overestimation in Q-learning, TD3 introduces clipped dou-
ble Q-learning, which learns two separate value-networks.
The update target of the clipped double Q-learning is for-
mulated as:

y = r + γ min
i=1,2

Q (s′, μ (s′;φi) ; θi) , (9)

which is the minimum estimation among two value-
functions.
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Soft actor-critic. Soft actor-critic (SAC) (Haarnoja et al.
2018) is an off-policy actor-critic deep RL algorithm based
on the maximum entropy reinforcement learning frame-
work. SAC incorporates the policy entropy into the opti-
mization objective:

J(π) =

T∑
t=0

Est∼P,at∼π [r (st,at) + αH (π (·|st))] , (10)

whereH (π (·|st)) is the entropy measure of the policy π and
α is the temperature parameter that determines the relative
importance of the entropy term against the reward. Optimiz-
ing such objective encourages the agent to act as randomly
as possible while maximizing the cumulative reward, and
hence improves the robustness and stability of the policy.

2.3 Experience Replay Methods

In the original form of ER, transitions are uniformly sampled
from the replay buffer. However, intuitively, some transitions
are more important than others. An ideal experience replay
strategy is to sample transitions according to how much cur-
rent agent can learn from them. While such measure is not
directly accessible, many proxies have been proposed from
two perspectives: the first is how to retain experiences in the
replay buffer, and the second is how to sample experiences
from the buffer. Motivated by different optimization objec-
tives, different replay strategies have been proposed.

In simple continuous control tasks, De Bruin et al. (2015;
2016) suggest that replay buffer should contain variant tran-
sitions that are not close to current policy to prevent fit-
ting to local minimums and the best replay distribution is
in between on-policy distribution and uniform distribution.
However, the authors state that this method is not suitable
for complex tasks where policy is updated for many itera-
tions. For lifelong learning, a good replay strategy should
retain the transitions from previous tasks and maximize the
coverage of the state space (Isele and Cosgun 2018). In RL
problems, when the rewards are sparse, agent can learn from
failed experiences by reproducing artificial successful tra-
jectories, that is, replacing the original goals with states in
the trajectories (Andrychowicz et al. 2017).

For complex control tasks, prioritized experience replay
(PER) (Schaul et al. 2016) measures the importances of the
transitions using the magnitude of temporal-difference (TD)
error:

|δ| =
∣∣∣r + γQ

(
s′, a′; θ−

)−Q (s, a; θ)
∣∣∣. (11)

And the probability of sampling transition i is define as:

P (i) =
pαi∑
k p

α
k

, (12)

where pi = |δi| + ε is the priority of transition i. The expo-
nent α determines how much prioritization is used, with α =
0 corresponding to the uniform sampling. Remember and
forget experience replay (ReF-ER) (Novati and Koumout-
sakos 2019) actively enforces the similarity between policy
and the transitions in the replay buffer, since on-policy tran-
sitions are more useful for the training of current policy. Ex-
perience replay optimization (ERO) (Zha et al. 2019) can be

regarded as a kind of meta-learning. Besides the agent pol-
icy, ERO also learns a replay policy. Replay policy is trained
to provide the agent with the most useful experiences. In this
paper, we compare our proposed method AER with vanilla
ER and PER on different off-policy algorithms. For ReF-ER
and ERO, we cannot readily couple them with SAC, TD3
and DQN. Hence we leave the comparison with these two
methods to our future work.

3 Attentive Experience Replay

3.1 Motivation

In reinforcement learning tasks, the learning agent interacts
with the environment following its policy. For different poli-
cies, states are visited with different frequencies. For a cer-
tain policy π, the induced state distribution is defined as fol-
lows:

ρπ(s) = (1− γ)
∫
S

∞∑
t=0

γtp0(s
′)p (s′ → s, t, π) ds′, (13)

where p0(s′) is the distribution of the initial state. In com-
plex control tasks, each policy only explores a subset of the
high dimensional state-space. As a result, some states are
frequently visited by current policy, while other states rarely
appear. To improve the policy, it is desirable to improve the
performances on frequently visited states, that is, making
more accurate value estimations and better action selections.

Off-policy algorithms utilize deep neural networks
(DNNs) as value function approximators, and recall past ex-
periences stored in a replay buffer D to compute the gradi-
ents for the updates of DNNs. DNNs tend to have lower es-
timation errors on states similar to those on which they have
been trained (Burda et al. 2019b). Based on this observation,
to make better performances on frequently visited states, we
want the frequently visited states to be sampled with higher
priorities. However, as the agent continues to update its pol-
icy, current policy π is increasingly dissimilar from previous
behaviors. As a consequence, the state distribution ρD(s) in
the replay buffer differs from on-policy distribution ρπ(s).
Uniformly sampling transitions from the buffer for training
might cause the DNN to fit to some undesired states. Some
strategies have been proposed to remedy the inconsistency
between ρD(s) and ρπ(s) by slowing down the change of
the policy, including meticulous learning rate tunning (Wang
et al. 2016), and slowly changing target network (Mnih et al.
2015). ReF-ER (Novati and Koumoutsakos 2019) proposes
to enforce the similarity between transitions in the replay
and current policy, and select “near-policy” transitions for
training.

In this work, we present a new criterion of selecting tran-
sitions for the training of current policy, which is assigning
transitions with higher priorities, if the transitions contain
states frequently visited by current policy. Specifically, for a
transition (s, a, r, s′), if ρπ(s) is large, which indicates that
it is frequently visited by policy π, we will classify it as an
“on-distribution” transition and use it for training more of-
ten; if ρπ(s) ≈ 0, which indicates that it is rarely visited,
this transition will be classified as an “off-distribution” tran-
sition and rarely be sampled. Based on this rule, we propose
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Figure 2: The comparison of TD errors of the sampled tran-
sition on HalfCheetah-v2 task.

Algorithm 1 Attentive experience replay
1: Input: minibatch k, learning rate η, replay period K

and buffer size N , coefficient λ, total steps T , similarity
measure F

2: Initialize replay memory D = ∅
3: Observe s0 and choose a0 ∼ π(a|s0;φ)
4: for t = 1 to T do
5: Observe st, rt
6: Store transition (st−1, at−1, rt, st) in D
7: if t ≡ 0 mod K then
8: for j = 1 to λ · k do
9: Uniformly Sample transitions j:

(
sj , aj , rj , s

′
j

)
10: Compute similarity lj = F(sj , st)
11: end for
12: Select k most similar transitions B
13: Calculate weight-change Δ using transitions B
14: Update weights φ← φ+ λ · η ·Δ
15: end if
16: Choose action at ∼ π(a|st;φ)
17: end for

Attentive Experience Replay (AER) algorithm. AER adopts
a new sampling strategy called attentive sampling that sam-
ples on-distribution transitions with higher priorities.

3.2 Attentive Sampling

Ideally, if we know the exact state distribution ρπ(s), we
can assign priorities according to this distribution. However,
this distribution is not directly accessible, especially when
the policy is continuously changing. We propose to use the
similarity between transition states and current state st as
a reasonable proxy to sample frequently visited states more
often. The reasons are as follows. First, current state st is an
on-distribution state, since it is currently visited by the pol-
icy; and similar states usually have similar densities under
distribution ρπ(s). An intuition is that sequential states are
similar to each other, and they are all on-distribution states
since they have all been visited by current policy. Second,

with the generalization ability of DNN, training on similar
states also improves the performance on state st. Therefore,
training on transitions sampled using AER improves the per-
formance on st, and in consequence, improves the perfor-
mance of current policy.

Based on this surrogate measure, we propose an atten-
tive sampling strategy. When performing updates, we uni-
formly sample λ · k instead of k transitions from the re-
play buffer. Then we compute the similarities between on-
distribution state s and the sampled transitions, and choose
the k most similar transitions for training (see Algorithm
1). Here λ ≥ 1 determines how much prioritization to on-
distribution transitions is used, with λ = 1 corresponding to
the uniform sampling, with λ = N , where N is the replay
buffer size, corresponding to sampling the k most similar
transitions in the replay buffer.

3.3 Bias Annealing

AER deviates from uniform sampling by assigning some
transitions with higher priorities. As pointed out in previ-
ous work (Schaul et al. 2016), such deviation introduces bias
and can change the solution that the policy will converge
to. But in fact, in reinforcement learning, the training pro-
cess is highly non-stationary due to the changing policies,
state distributions and update targets. The unbiased nature
of updates is most important near convergence of the pol-
icy. Hence, the small bias introduced by attentive sampling
is negligible when the policy is still changing. To make sure
that attentive sample does not introduce bias when the policy
converges, we propose to anneal λ over time. In practice, we
linearly anneal λ from a initial value λ0 to 1 in α · T steps.
Here T is the total training steps, and α ≤ 1 is the frac-
tion of total steps to perform attentive sampling. The choice
of α depends on how fast the policy converges; a smaller α
corresponds to faster policy convergence.

Since AER continuously samples on-distribution tran-
sitions and trains the neural network, the neural network
should make small prediction error on the sampled transi-
tions, which means that the TD errors should be small. As
shown in Figure 2, PER samples transitions with higher TD
errors as expected, and transitions sampled by AER have
smallest TD errors. Since smaller TD error yields smaller
gradient, AER uses a larger learning rate to compensate,
while PER uses a smaller learning rate. In practice, we use
λ · η as the learning rate, where η is the learning rate of
uniform sampling; since we anneal λ over time, we also de-
crease the learning rate to its default η. However, annealing
the learning rate is a common trick to speed up the training.
To isolate the effect of learning rate annealing, we conduct
experiments (see Section 4.4 for details) to show that an-
nealing the learning rate itself does not improve the learning
efficiency.

4 Experiments

In this section, we couple AER, PER and vanilla-ER (uni-
form sampling) with four off-policy deep RL algorithms:
SAC, TD3, DDPG and DQN. We conducted several exper-
iments to evaluate their performances and aimed to show

5903



(a) Hopper-v2 (b) HalfCheetah-v2

0.5 1.0 1.5 2.0 2.5
Steps 1e6

0

2

4

6

Cu
m

ul
at

iv
e 

Re
w

ar
d

1e3

AER
vanilla-ER
PER

(c) Walker2d-v2

(d) Swimmer-v2 (e) Humanoid-v2

0.5 1.0 1.5 2.0 2.5
Steps 1e6

0

2

4

6

Cu
m

ul
at

iv
e 

Re
w

ar
d

1e3

AER
vanilla-ER
PER

(f) Ant-v2

Figure 3: Learning curves for SAC with AER, vanilla-ER and PER on MuJoCo tasks. The solid lines indicate the mean across
5 random seeds and the shaded areas show the standard error.

how different experience replay methods can affect the per-
formances of different off-policy algorithms. For deep actor-
critic algorithms, we tested on the MuJoCo (Todorov, Erez,
and Tassa 2012) tasks implemented in OpenAI Gym (Brock-
man et al. 2016), and for DQN, we measured the perfor-
mances on the Atari 2600 games. The results are demon-
strated by plotting the mean cumulative reward. For the
plots, the solid lines indicate the average cumulative rewards
among the training process averaged over 5 different random
seeded training trials and the shaded areas show the standard
error. All experiments are performed on a server with 40 In-
tel(R) Xeon(R) CPU E5-2650 v4 @ 2.4GHz processors and
8 GeForce GTX-1080 Ti 12 GB GPU.

4.1 Implementation Details

To make a fair comparison, for all ER algorithms, each
off-policy algorithm is implemented with identical hyper-
parameters.

Hyper-parameters. For deep actor-critic algorithms
(SAC, TD3 and DDPG), both policy-network and value-
network are represented using MLP with two hidden layers
(256, 256) and optimized using Adam (Kingma and Ba
2014) with learning rare of 3 × 10−4. The replay buffer
size is 106 and the sampling mini-batch size is 256. The
agents are evaluated every 5000 steps, by running the policy
deterministically and cumulative rewards are averaged over
50 evaluation episodes. For DQN, the neural network is
the same as in its original paper (Mnih et al. 2015), but

we use the Adam optimizer instead of RMSProp to update
the parameters. The learning rate is set to 2.5 × 10−4. The
replay buffer size and the sampling mini-batch size are 106

and 32, respectively. The agents are evaluated using the
mean cumulative rewards of the last 100 episodes, every
2000 steps. For other hyper-parameters, we the use the same
settings as in their original papers (Mnih et al. 2013; 2015;
Haarnoja et al. 2018; Fujimoto, van Hoof, and Meger 2018;
Lillicrap et al. 2016).

Prioritized experience replay. We implement the pro-
portional variant of PER (Schaul et al. 2016). For DQN
and DDPG, there is only one value-network that outputs
Q(s, a; θ). The magnitude of temporal-difference (TD) er-
ror |δ| of the transition (s, a, r, s′) is calculated as follow:

|δ| =
∣∣∣r + γQ

(
s′, a′; θ−

)−Q (s, a; θ)
∣∣∣, (14)

where a′ is the action given by current policy.
For TD3 and SAC, since they have two value-networks,

we define the magnitude of TD error |δ| of each transition as
the mean TD error of two value-networks:

|δ| = 1

2

2∑
j=1

∣∣∣Qbackup −Q (s, a; θj)
∣∣∣, (15)

where for SAC, Qbackup = r + γV (s′;ψ−); for TD3,
Qbackup = r + γmini=1,2Q

(
s′, a′; θ−i

)
.
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Figure 4: Learning curves for DQN, TD3 and DDPG with AER, vanilla-ER and PER. DQN is trained on Pong; TD3 is trained
on Hopper, and DDPG is trained on HalfCheetah

Figure 5: Total steps the learning agents take to achieve
vanilla-ER’s final performance. The normalized steps are
plotted above the bars. Since Swimmer takes a much smaller
number of steps to converge than other tasks, we omit it for
the compactness of the plot.

Attentive experience replay. AER has two hyper-
parameters: λ0 and α. We did a coarse grid-search over
the ranges: λ0 ∈ [2, 2.5, 3, 4], α ∈ [0.5, 2/3, 1]. For rela-
tively simple tasks (Hopper-v2 and Swimmer-v2), we use
λ0 = 4, α = 1; for the other complex tasks, we use
λ0 = 2.5, α = 2/3. Besides these two hyper-parameters,
AER also requires a function F(s1, s2) to measure the sim-
ilarity between states s1 and s2. Since the state vectors are
on different scales in MuJoCo tasks, we use the cosine sim-
ilarity: F(s1, s2) = s1·s2

‖s1‖‖s2‖ . For Atari 2600 games, the
raw states have extremely high dimensions and forbid direct
similarity computing. We use a fixed and randomly initial-
ized deep convolutional neural network, with the same ar-
chitecture as the deep Q-network, to embed states into 512-
dimensional features x = φ(s) (Burda et al. 2019a). Then,
the similarity is defined as:F(s1, s2) = −‖φ(s1)−φ(s2)‖2.

4.2 Results for SAC

In this section, we couple AER, PER and vanilla-ER with
SAC, a state-of-the-art off-policy actor-critic algorithm. The
learning curves on 6 MuJoCo tasks are shown in Figure 3.
Note that our implementation of SAC has comparable or
even better performances compared to the results reported
in the original paper (Haarnoja et al. 2018).

Figure 3 shows that the proposed AER algorithm consis-
tently outperforms all the other ER methods on most of the
tasks in terms of sample efficiency and final performance.
On Ant-v2 and Swimmer-v2, all three methods converge to
the optimal policy, but AER converges with clearly faster
speed. On other tasks, higher sample efficiency and better
final performance are observed. To give a more intuitive il-
lustration, we calculate the total steps three agents take to
reach the vanilla-ER’s final performances. As shown in Fig-
ure 5, AER learns very efficiently and takes less than 65% of
vanilla-ER’s total steps to achieve the same performances.

It is worth noting that PER makes only a slight im-
provement to SAC. This phenomenon was also observed
in previous works (Novati and Koumoutsakos 2019; Zha
et al. 2019), when coupling PER with DDPG. We pro-
vide one possible explanation here. The PER method fo-
cuses on choosing informative transitions with high mag-
nitude of TD error for the training of value-networks. The
TD errors are calculated using value-networks, and there-
fore, transitions with high TD errors are more “surprising”
to value-networks. But when applying PER to actor-critic
algorithms, the sampled transitions are also used to update
the policy-network. However, transitions with high TD er-
rors usually diverge far from current policy and do harm to
the updates of policy-network (Novati and Koumoutsakos
2019). On the contrary, AER selects transitions according to
their similarities with current state. This preference to on-
distribution states enforces transitions that contain old states
to be discarded and stabilizes the training process of the
policy-network.

4.3 Scalability of AER

In this section, we conduct experiments to show the scala-
bility of different ER methods. We couple AER, PER and
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Figure 6: Learning curves for SAC with AER, vanilla-ER and vanilla-ER with learning rate annealing.

vanilla-ER with three different off-policy algorithms on sev-
eral tasks. The results are shown in Figure 4. AER shows
consistent improvements over vanilla-ER and outperforms
PER on different tasks. This observation indicates that on-
distribution transitions are important for the training of both
Q-learning and actor-critic learning. By contrast, PER out-
performs vanilla-ER with clear margin only on DQN and
has almost the same performances as vanilla-ER on TD3 and
DDPG. This result verifies the our speculation: high TD er-
ror transitions are useful for the training of Q-network, but
may hurt the performance of the policy-network.

4.4 The Effect of Learning Rate Annealing

In AER, we propose to anneal the learning rate to compen-
sate the small gradients incurred by sampling small TD er-
ror transitions. But as known to us, in supervised learning
with deep neural network, it is usually helpful to anneal
the learning rate over time. With a high learning rate, the
neural network converges faster, but with a small learning
rate, the neural network converges with better performance.
Hence, annealing the learning rate speeds up the learning of
neural network in supervised learning. However, in deep re-
inforcement learning domain, faster weight-changes of the
neural network incurred by high learning rate also forces the
agent’s policy to change more drastically, which can make
the learning process unstable. Hence, annealing the learning
rate does not necessarily improve the learning efficiency in
deep RL algorithms.

To isolate the effect of learning rate annealing in AER, we
combined vanilla-ER with learning rate annealing to form a
new ER method: annealing-ER. Annealing-ER anneals the
learning rate over time as AER does, but samples transitions
uniformly. We couple vanilla-ER, annealing-ER and AER
with SAC and test on three MuJoCo tasks. The results are
plotted in Figure 6. Note that annealing-ER achieves nearly
the same performance as vanilla-ER. This observation sug-
gests that AER improves the learning efficiency due to the
attentive sampling rather than learning rate annealing.

4.5 Running Time Comparison

We compare the running time of three different ER meth-
ods in Table 1. Since AER computes similarities only on

Running Time (103s)
Env vanilla-ER AER PER

Hopper 5.1 5.4 8
HalfCheetah 10.3 10.5 19

Walker2d 10.2 10.4 19
Swimmer 5.65 5.75 8.55
Humanoid 11 11.3 23.1

Ant 12.1 12.2 21

Table 1: Comparison of running time for vanilla-ER, AER
and PER coupling with SAC.

the sampled batch of transition rather than the whole replay
buffer, it requires negligible extra running time. On the other
hand, PER needs nearly twice of the time to finish the same
steps of training. This is due to the use of the “segment-tree”
data structure to store transition priorities in PER. Search-
ing in segment-tree needs extra O(logN) time complexity,
where N is the replay buffer size. Consequently, AER are
also more efficient than PER in terms of running time.

5 Conclusion

In this paper, we study the problem of sampling transitions
from a replay buffer for the training of off-policy algorithms.
Motivated by the fact that each policy visits different states
with different frequencies, we argue that transitions that con-
tain states frequently visited by current policy are more im-
portant for the update of current policy. To this end, we intro-
duce a novel experience replay algorithm AER. AER selects
transitions according to the similarities between their states
and the agent’s current state. We couple AER with four off-
policy algorithms and test on the suite of OpenAI Gym tasks.
Experimental results suggest that AER consistently outper-
forms vanilla-ER and PER in terms of sample efficiency and
final performance. AER shows that sampling on-distribution
transitions for updates is a promising strategy.
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