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Abstract

Compared with single-label and multi-label annotations, la-
bel distribution describes the instance by multiple labels with
different intensities and accommodates to more-general con-
ditions. Nevertheless, label distribution learning is unavail-
able in many real-world applications because most existing
datasets merely provide logical labels. To handle this prob-
lem, a novel label enhancement method, Label Enhancement
with Sample Correlations via low-rank representation, is pro-
posed in this paper. Unlike most existing methods, a low-rank
representation method is employed so as to capture the global
relationships of samples and predict implicit label correlation
to achieve label enhancement. Extensive experiments on 14
datasets demonstrate that the algorithm accomplishes state-
of-the-art results as compared to previous label enhancement
baselines.

Introduction

Recently, a growing number of studies have focused on
the challenging label ambiguity problem. Since single-label
learning paradigm where one instance is mapped to one sin-
gle label has been well studied, multi-label learning (MLL)
is highlighted to address this issue. During past years, a col-
lection of scenarios have applied this learning process (Chen
et al. 2019; Tsoumakas and Katakis 2007; Huang and Zhou
2012; Zhang and Zhou 2013), which simultaneously assigns
multiple labels with identical degrees to each instance. In
particular, in the supervised-learning process, each instance
is described by a label vector where each value, i.e., the
logic label, is either 1 or 0, which represents whether the
instance belongs to the relevant label or whether it does not,
respectively. Since all labels with the same values contribute
equally in the label vector, the relative importance among
multiple associated labels, which is supposed to be different
under most circumstances, cannot be reflected well.

Therefore, despite MLL’s success, in some sophisticated
semantics such as facial age estimation and facial expres-
sion recognition, the performance of primitive MLL is hin-
dered because a model precisely mapping the instance to
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Figure 1: An Example of Label Enhancement

a real-valued label vector with quantitative description de-
grees (i.e., label distribution) is required in these tasks.
To meet this demand, the learning process for the above-
mentioned model called ”label distribution learning” (LDL)
(Geng 2016) has attracted significant attention. In LDL, an
instance is annotated by a label vector, i.e., the label distribu-
tion where each value ranging from 0 to 1 is the description
degree of the relevant label and all values add up to 1. As
many pieces of literature have demonstrated(Gao et al. 2017;
Geng, Yin, and Zhou 2013; Zheng, Jia, and Li 2018), label
distributions generally describe attributes of samples more
precisely because differences between the relative impor-
tance of each label exist in most cases, and implicit cues
within the label distributions can be effectively leveraged
through LDL for reinforcing the supervised training.

Nevertheless, since manually annotating each instance
with label distribution is time-consuming, it is unavailable in
most training sets practically(Xu, Lv, and Geng 2019). The
requirement of label distribution among different datasets
arises some progress in label enhancement (LE), which was
proposed by (Xu, Tao, and Geng 2018). It is a pre-processing
of the training set, where label distributions are recovered
from the off-the-shelf logical labels and the implicit infor-
mation of given features, as shown in Fig.1.

This definition indicates that the essence of LE is to exca-
vate the information from two folds: the topological struc-
ture of feature space and the relationships among logical
labels. Several approaches have been proposed according
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to this principle. To leverage the knowledge in the feature
space, some prior efforts (El Gayar, Schwenker, and Palm
2006) assigned the membership degree of each instance to
different labels via Fuzzy Clustering Method (FCM) (Melin
and Castillo 2005), whereas others constructed graph struc-
tures and similarity matrices transferred into the label space
later. However, arbitrary elements of the edges in the graph
or within the similarity matrix are calculated by the pair-
wise method (Li, Zhang, and Geng 2015) or the K-nearest
neighbors’ (KNN) correlations to a certain instance (Xu,
Tao, and Geng 2018; Hou, Geng, and Zhang 2016). The
downside of these partial-based processes for the graph con-
struction of each instance is that only local topological fea-
tures have been taken advantage of, and the holistic infor-
mation of the feature space has been largely untapped. In
addition, these approaches always require prior knowledge
for hyperparameters. Specifically, if one tunes the param-
eters such as parameter K in the KNN part slightly, these
algorithms’ recovery performance varies on a large scale,
which tremendously affects the widespread use of these al-
gorithms.

Toward this end, an approach globally unearthing the
global structure of the whole feature space and robust to pa-
rameters is expected. Thus far, to meet the aforementioned
requirements, a novel Label Enhancement with Sample Cor-
relations via low-rank representation (LESC) algorithm is
proposed. More specifically, low-rank representation (LRR),
which imposes a low-rank constraint on the data subspace
representation to capture the global relationship of all in-
stances, is employed to benefit the LE by exploiting the
structure of the feature space from a global perspective (Liu
and Yan 2011; Yin, Gao, and Lin 2015; Zhai et al. 2019). In-
tuitively, the constructed low-rank structure could be gener-
ally transferred to the label space smoothly, and the lowest-
rank representation of feature space is utilized to represent
the LRR of the label distributions. As a result, we incorpo-
rate the attained LRR into the objective function to explore
the hidden cues in the label distribution space. Consequently,
we could obtain the optimal recovered label distribution. Ex-
tensive experiments have shown that the proposed LESC al-
gorithm is stable to obtain remarkable performance as we
expect.

Our contributions can be summarized as follows:
• A novel LESC algorithm is proposed in this pa-

per.It leverages the global-instances relationship to
improve the performance of LE.

• By introducing the LRR in the feature space, the in-
trinsic structure of the feature space is fully exploited
for LE.

• Comprehensive experiments conducted on 14 real-
world datasets show excellent power and generation
compared with several state-of-the-art methods.

Related Work

Label Enhancement

For the convenience of the description of related works, we
declare the fundamental notations in advance. The set of la-
bels is Y = {y1, y2, · · ·, yo}, where o is the size of the label

set. For an instance xi ∈ R
q , the logical label is denoted as

Li =
(
ly1
xi
, ly2

xi
, · · ·, lyo

xi

)T
and lyxi

∈ {0,1}, while the corre-
sponding label distribution is denoted as:

Di =
(
dy1
xi
, dy2

xi
, · · ·, dyo

xi

)T
, s.t.,

o∑
m=1

dym
xi

=1 (1)

where dyxi
depicts the degree to which xi belongs to label y.

The goal of the LE process is to recover the associated label
distribution of every instance from logical labels in a given
training set.

This issue is raised by (Xu, Tao, and Geng 2018), in which
the GLLE algorithm was also proposed for the LE process,
but some studies concentrated on the same issue before that-
for instance, fuzzy clustering method (Melin and Castillo
2005) is applied in (El Gayar, Schwenker, and Palm 2006),
which intends to allocate the description values to each in-
stance over diverse clusters. Specifically, features are clus-
tered into t clusters via fuzzy M -means clustering where ck
denotes the k − th cluster center. The cluster membership
ωi = {ωi1, ωi2, · · ·, ωit} for each instance xi is obtained by
calculating the description value over the center ck as fol-
lows:

ωik =
1

t∑
j=1

(‖xi−ck‖2

‖xi−cj‖2

) 1
β−1

(2)

where β is larger than 1. Afterward, a zero matrix Q ∈ R
o×t

is initialized and it is continuously updated by:
Qj = Qj + ωi, s.t., l

yj
xi

= 1 (3)
where Qj denotes the j−th row of Q. They constructed pro-
totype label matrix through which classes and clusters are
softly associated. After normalizing the columns and rows
of Q to sum to 1, the label distribution is computed for each
instance xi using fuzzy composition: Di = Q ◦ ωi

In addition, other recent studies have focused on the
graph-based approaches to tackle the LE problem. They con-
structed the similarity matrix Q over the features space via
various strategies. Hou, Geng, and Zhang recovered the la-
bel distribution according to manifold learning (ML), which
ensures them to gradually convert the local structure of the
feature space into the label space. In particular, to represent
this structure, the similarity matrix Q is established based on
the assumption that each feature can be represented by the
linear combination of its KNN, which means to minimize:

Φ(Q) =

n∑
i=1

∥∥∥∥∥∥xi −
∑
j �=i

qijxj

∥∥∥∥∥∥
2

(4)

where qij = 1 if xj is one of xi’s KNNs; otherwise, qij = 0.
They further constrained that

∑n
j=1 qij = 1 for translation

invariance. The constructed graph is transferred into the la-
bel space to minimize the distance between the target label
distribution and the identical linear combination of its KNN
label distributions (Roweis and Saul 2000), which infers the
optimization of:

φ(D) =

n∑
i=1

∥∥∥∥∥∥Di −
∑
j �=i

qijDj

∥∥∥∥∥∥
2

(5)
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by adding the constraint of ∀1 ≤ i ≤ n, 1 ≤ j ≤
o, djxil

j
i ≥ λ where λ > 0. This formula is minimized

with respect to the target label distribution D through a con-
strained quadratic programming process.

Li, Zhang, and Geng regarded the LE as the label propa-
gation (LP) process (Zhu and Goldberg 2009). The pairwise
similarity was calculated over the complete feature space
and a fully-connected graph was established as:

qij =

⎧⎪⎨
⎪⎩

exp

(
−‖xi − xj‖2

2σ2

)
, if i �= j

0, if i = j

(6)

where ∀ i, j ∈ [1, n] and σ is fixed to be 1. The required
LP matrix is built from the formula: P = Q̃− 1

2QQ̃− 1
2 with

Q̃= diag [q̃1, q̃2, · · ·, q̃n] denoting a diagonal matrix where
q̃i equals to the sum of i − th row element in Q. Thus far,
The LP is iteratively implemented, and it is proved that the
recovered label distribution matrix D = [D1;D2; · · ·;Dn]
converges to:

D∗ = (1− α) (I − αP )
−1

Γ (7)

with α denoting the trade-off parameter that controls the
contribution between the label propagation P and the initial
logical label matrix Γ.

For the GLLE algorithm, the similarity matrix is also con-
structed in the feature space by partial topological structure.
Different from LP, which calculates the pair-wise distance
within the whole feature space, the GLLE algorithm com-
putes the distance between a specific instance and its KNNs
to define the relevant element in the similarity matrix as fol-
lows:

qij =

⎧⎪⎨
⎪⎩

exp

(
−‖xi − xj‖2

2σ2

)
, if xj ∈ K (i)

0, otherwise

(8)

where K (i) is the set of xi’s KNNs. Because of the same in-
tuition that these relationships could be converted into the la-
bel distribution space, this constructed graph is incorporated
into the label space to attain a matrix linearly transforming
the logical labels to the label distributions, obtaining the pre-
vious state-of-the-art results. Since we normalize each Di

by the softmax normalization for the above-mentioned algo-
rithms, the condition

∑o
m=1 d

ym
xi

=1 can be satisfied.
Because it was fully recognized that establishing the sim-

ilarity matrix based on pair-wise or local feature structure
can hinder these approaches’ performances, here, the LRR
is introduced to excavate the global information and lever-
age the attained subspace representation to overcome these
drawbacks in the proposed algorithm.

LESC Algorithm

In this section, the details of the LESC algorithm are
provided. In a training set S = {(x1, L1), (x2, L2), · ·
·, (xn, Ln)}, all instances are vertically concatenated along
the column to attain the feature matrix X = [x1;x2; · · ·xn],

where xi ∈ R
q and X ∈ R

q×n. After the LE process, a new
LDL training set ε = {(x1, D1), (x2, D2), · · ·, (xn, Dn)}
can be rehabilitated to implement the LDL process. The log-
ical label matrix Γ = [L1;L2; · · ·;Ln] and the objective la-
bel distribution matrix D = [D1;D2; · · ·;Dn] are created in
the same way. For a given instance xi, it is necessary to find
the optimal parameter to recover the best label distribution.
This mapping model is represented as follows:

Di = φ
(
θ̂, ξ (xi)

)
(9)

while φ(θ̂, ·) denotes a linear transformation parameterized
by θ̂, ξ (x) embeds x in a high-dimensional space where the
Gaussian kernel function is determined to be employed. Ap-
parently, we need to induce the minimization of the formula
to get an optimal θ̂:

min
θ̂

L
(
θ̂
)
+ λ1Ψ

(
θ̂
)

(10)

where L(θ̂) denotes a loss function and Ψ(θ̂) is the func-
tion that excavates information in the raw feature space and
the correlations among labels with λ1 denoting the trade-off
between them.

Since the prior knowledge of the ground-truth label distri-
bution is unavailable, we establish the loss function between
the recovered label distributions and the logical labels. The
least-squares (LS) loss function is adopted as the first term
in (10):

L
(
θ̂
)
=

n∑
i=1

∥∥∥φ(θ̂, ξ (xi)
)
− Li

∥∥∥2 (11)

In the LRR, all samples and their global relationships are
expressed by the linear combination of a small amount of
data, which are the bases in the feature space. Accordingly,
this property can be transferred to the label space under gen-
eral conditions. Therefore, it is expected that the low-rank
recovery to the label distribution D can be expressed, which
means to discover a proper D for minimizing the distance
between D and DĈ, where Ĉ is the minimized LRR of the
feature space. This leads the second term of the optimization
formula (10) to be as follows:

Ψ
(
θ̂
)
=
∥∥∥D−DĈ

∥∥∥2
F

=
∥∥∥(I − ĈT )DT

∥∥∥2
F

(12)

To attain the minimizer Ĉ, we aim at seeking the LRR
among the feature matrix to excavate the global structure of
feature space, i.e., assuming that X = XC + E, it is nec-
essary to solve the following regularized rank minimization
problem:

min
C,E

rank (C) + λ2‖E‖l, s.t.,X = XC + E (13)

where E denotes the sample-specific corruptions, and the
minimizer C∗ is the so-called ”LRR” of feature X with re-
spect to the variable C. λ2 is the low-rank coefficients which
balances the effects between two parts. The rank function
could be replaced by the nuclear norm for the convenience
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Table 1: Some Information about 14 Datasets.

Dataset Instances Features Labels
Artificial

Movie
SBU 3DFE

SJAFFE
Yeast-alpha
Yeast-cdc
Yeast-cold
Yeast-diau
Yeast-dtt
Yeast-elu
Yeast-heat
Yeast-spo
Yeast-spo5

Yeast-spoem

2601
7755
2500
213
2465
2465
2465
2465
2465
2465
2465
2465
2465
2465

3
1869
243
243
24
24
24
24
24
24
24
24
24
24

3
5
6
6
18
15
4
7
4
14
6
6
3
2

of computing in rank minimization problems, reformulating
the above problem as follows:

min
C,E

‖C‖∗ + λ2‖E‖2,1, s.t.,X = XC + E (14)

There are diverse approaches to tackle the above convex
optimization problem. We adopt the augmented Lagrange
multiplier (ALM) approach (Liu et al. 2012) in this pa-
per. Specifically, by introducing an auxiliary variable J , this
problem can be equally transformed into the following for-
mula:

min
J,C,E

‖J‖∗ + λ2‖E‖2,1
s.t. X = XC + E,C = J

(15)

Since it is regarded as an ALM optimizing problem (Liu
et al. 2012), this problem can be settled by minimizing the
following augmented Lagrangian function:

M = ‖J‖∗ + λ2‖E‖2,1
+tr

(
Y T
1 (X −XC − E)

)
+tr

(
Y T
2 (C − J)

)
+
μ

2

(‖X −XC − E‖2F +‖C − J‖2F
) (16)

To gain the optimized J , C and E, we update each of them
while fixing the other two variables respectively and sub-
sequently updating the corresponding Lagrange multipliers
Y1, Y2 and μ, during iterations. The detailed solution process
can be found in (Liu et al. 2012).

After Ĉ is optimized, we could represent every term in
(10) and consequently obtain the objective function of θ̂:

P
(
θ̂
)
=

n∑
i=1

∥∥∥φ(θ̂, ξi)−Li

∥∥∥2+λ1

∥∥∥(I−ĈT
)
DT
∥∥∥2
F

= tr

[(
φ
(
θ̂,Ξ

)
−Γ
)T (

φ
(
θ̂,Ξ

)
−Γ
)]

+ λ1tr
(
D
(
I−Ĉ

)(
I−ĈT

)
DT
)

(17)
where Ξ = [ξ (x1) , · · ·, ξ (xn)].

Table 2: Introduction to Evaluation Measures.

Measure Formula

Cheb ↓ Dis1(D, D̂) = maxj

∣∣∣dyj − d̂yj

∣∣∣
Canber ↓ Dis2(D, D̂) =

o∑
j=1

|dyj−d̂yj |
dyj+d̂yj

Clark ↓ Dis3(D, D̂) =

√
o∑

j=1

(dyj−d̂yj )
2

(dyj+d̂yj )
2

Cosine ↑ Sim1(D, D̂) =

o∑
j=1

dyj d̂yj

√
o∑

j=1
(dyj )2

√
o∑

j=1
(d̂yj )

2

Intersec ↑ Sim2(D, D̂) =
o∑

j=1

min
(
dyj , d̂yj

)

To acquire the optimized θ̂∗, the minimization of this ob-
jective function will be solved by an effective quasi-Newton
method called the limited memory BFGS (L-BFGS) (No-
cedal and Wright 2006), of which the optimizing process
is associated with the first-order gradient. Once the formula
converges, we feed the optimal θ̂∗ into (9) to form the label
distribution Di. Furthermore, since the defined label distri-
bution needs to meet the requirement

∑o
m=1 d

ym
xi

=1, Di is
normalized by the softmax normalization form.

Experiment

Datasets

The fundamental statistics about 13 real-world datasets and
a toy dataset employed to evaluate the algorithm are shown
in Table 1. Whereas the first three real-world datasets are
created from movies and facial expression images, the last
datasets from Yeast-alpha to Yeast-spoem are collected from
the records of 10 biological experiments on the budding
yeast genes(Eisen et al. 1998). The artifical dataset was also
adopted in (Xu, Tao, and Geng 2018), which intuitively ex-
hibits the model’s ability to recover the label distributions.
Each instance xi ∈ R

3 is chosen following the rule that the
first two dimensions x(1)

i and x
(2)
i are formed as a grid with

an interval of 0.04 in the range [-1,1], while the third dimen-
sion x

(3)
i is computed by:

x
(3)
i = sin

((
x
(1)
i + x

(2)
i

)
× π

)
(18)

The corresponding label distribution Di =
(
dy1
xi
, dy2

xi
, dy3

xi

)T
is collected through the following equations:

wj=mx
(j)
i + n

(
x
(j)
i

)2
+ p
(
x
(j)
i

)3
+ q, j=1, 2, 3 (19)

⎧⎪⎪⎨
⎪⎪⎩

ϕ1 =
(
r�1 w

)2
ϕ2 =

(
r�2 w + η1ϕ1

)2
ϕ3 =

(
r�3 w + η2ϕ2

)2 (20)

dyj
xi

=
ϕj

ϕ1 + ϕ2 + ϕ3
, j = 1, 2, 3 (21)
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(a) Ground-Truth (b) LESC (c) GLLE

(d) LP (e) ML (f) FCM

Figure 2: Visualization of the ground-truth and recovered label distributions on the artificial dataset (regarded as RGB colors,
best viewed in color).

where w = (w1, w2, w3), m = 1, n = 0.5, p = 0.2, q = 1,
r1 = (4, 2, 1)

T , r2 = (1, 2, 4)
T , r3 = (1, 4, 2)

T , and η1 =
η2 = 0.01.

Experimental Settings

Evaluation Metric. Since both the recovered and ground-
truth label distributions are label vectors, the average dis-
tance or similarity between them is calculated to evalu-
ate the LE algorithms thoroughly. For a fair comparison,
five measures were selected, where the first three were
distance-based measures and the last two were similarity-
based measures, reflecting an LE algorithm’s performance
from different aspects in semantics. As shown in Table 2
where D̂ denotes the real label distribution, for these met-
rics, i.e., Chebyshev distance (Cheb), Canberra metric (Can-
ber), Clark distance (Clark), cosine coefficient (Cosine) and
intersection similarity (Intersec), ↓ states ”the smaller the
greater” while ↑ states ”the larger the greater”.

Implementation Details. To fully investigate the per-
formance of the algorithms, the proposed LESC algorithm
and four state-of-the-art algorithms, i.e., FCM (El Gayar,
Schwenker, and Palm 2006), LP (Li, Zhang, and Geng
2015), ML (Hou, Geng, and Zhang 2016), and GLLE (Xu,
Tao, and Geng 2018) were employed. We list the param-
eter settings here. The parameters λ1 and λ2 are selected
among {0.0001, 0.001, ..., 10} in our LESC algorithm. As
for GLLE, the number of neighbors K is set to c + 1 and
the parameters λ are set among {0.01, 0.1, ..., 100}. We also
choose the parameter α in LP to be 0.5, the number of neigh-

bors K for ML to be c + 1, and the parameter β in FCM to
be 2.

We recovered the label distributions from logical labels
and the above-mentioned metrics were computed first. Be-
cause of the lack of datasets with both logical labels and
label distributions, the logical labels had to be binarized
from the ground-truth label distributions in the LDL training
set so that it was possible to implement LE algorithms and
measure the similarity between the recovered label distri-
butions and the ground-truths. To ensure the consistency of
evaluation, we binarized the logical labels through the way
in GLLE, which conforms to the annotating convention for
MLL.

Moreover, it is known that LE aims at recovering the label
distributions to strengthen supervised learning, which pro-
vides further motivation to evaluate the effectiveness of LE
algorithms by conducting LDL. In particular, for a given
dataset, the ten-fold cross validation was executed. After
each algorithm recovered label distributions under its opti-
mal parameters, the LDL model proposed in (Jia et al. 2019)
was trained with the recovered distributions and the ground-
truth label distributions. Both trained models were employed
to predict the label distributions of the new test set simul-
taneously, and the same evaluation metrics were calculated
between these generated label distributions. Note that we
have implemented the LDL experiments with other LDL al-
gorithms and similar results are obtained.
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Table 3: Recovery Results (value(rank)) Measured by Cheb and Cosine.

Dataset Measure Results by Cosine ↑ Measure Results by Cheb ↓
FCM LP ML GLLE LESC FCM LP ML GLLE LESC

Artificial
Movie

SBU 3DFE
SJAFFE

Yeast-alpha
Yeast-cdc
Yeast-cold
Yeast-diau
Yeast-dtt
Yeast-elu
Yeast-heat
Yeast-spo
Yeast-spo5

Yeast-spoem

0.933(4)
0.773(5)
0.912(3)
0.906(4)
0.922(3)
0.929(3)
0.922(4)
0.882(4)
0.959(3)
0.950(3)
0.883(4)
0.909(4)
0.922(4)
0.878(4)

0.974(3)
0.929(2)
0.922(2)
0.941(3)
0.911(4)
0.916(4)
0.925(3)
0.915(3)
0.921(4)
0.918(4)
0.932(3)
0.939(3)
0.969(3)
0.950(3)

0.925(5)
0.919(3)
0.815(5)
0.857(5)
0.756(5)
0.759(5)
0.784(5)
0.803(5)
0.763(5)
0.763(5)
0.783(5)
0.803(5)
0.884(5)
0.815(5)

0.980(2)
0.900(4)
0.900(4)
0.946(2)
0.973(2)
0.959(2)
0.969(2)
0.939(2)
0.983(2)
0.978(2)
0.980(2)
0.968(2)
0.974(1)
0.968(2)

0.992(1)
0.937(1)
0.932(1)
0.973(1)
0.992(1)
0.991(1)
0.986(1)
0.985(1)
0.991(1)
0.991(1)
0.986(1)
0.975(1)
0.974(1)
0.978(1)

0.230(5)
0.188(5)
0.135(3)
0.132(4)
0.044(4)
0.051(4)
0.141(4)
0.124(4)
0.097(3)
0.052(4)
0.169(5)
0.130(4)
0.162(4)
0.233(4)

0.130(3)
0.161(3)
0.123(2)
0.107(3)
0.040(3)
0.042(3)
0.137(3)
0.099(3)
0.128(4)
0.044(3)
0.086(3)
0.090(3)
0.114(3)
0.163(3)

0.227(4)
0.164(4)
0.233(5)
0.190(5)
0.057(5)
0.071(5)
0.242(5)
0.148(5)
0.244(5)
0.072(5)
0.165(4)
0.171(5)
0.273(5)
0.400(5)

0.108(2)
0.160(2)
0.141(4)
0.100(2)
0.033(2)
0.038(2)
0.093(2)
0.084(2)
0.065(2)
0.030(2)
0.056(2)
0.067(2)
0.092(1)
0.108(2)

0.057(1)
0.121(1)
0.121(1)
0.069(1)
0.015(1)
0.019(1)
0.056(1)
0.042(1)
0.043(1)
0.019(1)
0.046(1)
0.060(1)
0.092(1)
0.087(1)

Avg.Rank 3.71 3.14 4.86 2.21 1.00 4.07 3.00 4.79 2.14 1.00

Algorithm Analysis

Recovery Performance. First, to illustrate the recovery
performance on the artificial dataset visually, the three-
dimensional label distributions were separately converted
into the RGB color channels, which were reinforced by
the decorrelation stretch process for easier observation. In
other words, the label distribution of each point in the fea-
ture space could be represented by its color. Thus far, the
color patterns can be directly observed to compare both the
ground truth and the recovered label distributions. As shown
in Fig.2, in contrast to the ground-truth color patterns, our
algorithm nearly recovers these patterns identically, while
GLLE obtains almost the same results. In addition, the color
patterns in other three algorithms are barely satisfactory,
which proves the limits of excavating the space structure of
features locally.

Because of space limitations, we only present the quanti-
tative results of the above five LE algorithms by Cheb and
Cosine in Table 3 where the optimal results for each dataset
are highlighted with boldface. Note that we could directly
borrow the recovery results in (Xu, Tao, and Geng 2018)
under the same settings. To exhibit the mean accuracy of the
recovered label distribution, the average rank of every algo-
rithm among all datasets is also listed. Some observations
stand out in this table. Apparently, the quantitative perfor-
mances of the artificial dataset are consistent with the recov-
ered color patterns in Fig.2 where the proposed algorithm
gets the 1st rank. Besides, the changes of rankings under
distinct metrics have evidenced the significance of employ-
ing a collection of measures. Despite gaps between these
metrics, the performance of the proposed algorithm still out-
performs those of others for the 13 datasets by a large margin
and achieves identical results with the state-of-the-art base-
lines in the Yeast-spo5 dataset under both shown measures,
which substantially surpasses the performance of other al-
gorithms varying in different metrics (e.g., ML ranks the
3rd order by Cosine measure while the 4th ranking was ob-
tained by the Cheb measure in Movie dataset). These results
have strongly demonstrated the proposed algorithm’s effec-
tiveness and generalization, and the necessity of employing

(a) Cosine Meausre Result ↑

(b) Cheb Meausre Result ↓

Figure 3: Measure Results of Yeast alpha Dataset by Cosine
↑ and Cheb ↓.
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(a) Cosine Measure Result ↑

(b) Cheb Measure Result ↓

Figure 4: LDL Prediction Results of 14 Datasets by Cosine ↑ and Cheb ↓

Table 4: The Average Ranks on Five Measures.

Measure FCM LP ML GLLE LESC
Cheb
Clark

Canber
Cosine
Intersec

4.93
4.93
4.93
4.93
5.00

3.57
3.71
3.71
3.57
3.57

2.29
2.29
2.36
2.21
2.29

2.64
2.50
2.50
2.64
2.57

1.57
1.57
1.50
1.64
1.57

the LRR.
Parameter Analysis. The effects of two trade-off hy-

perparameters were analyzed separately on the real-world
dataset through fixing one parameter among the aforemen-
tioned parameter scope and tuning the other one as well. We
only illustrate the case of the dataset Yeast alpha by Cheb
and Cosine measures in Fig.3, while the same rule is ob-
tained in other datasets. When the low-rank coefficient λ2

varies with the trade-off parameter λ1 fixed, two shown mea-
sure results of the recovery performance fluctuates in a very
tiny range that could not even be distinguished. As we in-
crease the parameter λ1 from 0.0001 to 0.1, the recovery
performance also turns out to change within a small scope.
When λ1 is geared to 1 or 10, the results even zooms up to a
higher level. Particularly, taking this dataset for reference, it
is found that our worst measure result still far exceeds that of
the previous state-of-the-art baseline, i.e, 0.987 versus 0.973
(GLLE) by cosine. As discussed before, these phenomena
indicate that our algorithm is robust when the low-rank coef-
ficients and the trade-off parameter in the objective function
vary by a large margin. This ensures us to generalize our al-
gorithm to different datasets without much effort in terms of
adjusting the values of hyperparameters.

LDL Prediction Performance. We train the LDL model
and then predict the label distributions of the new test set as
discussed before, and the average orders of these results on

five measures are listed in Table.4. While LP ranks 3st in
recovery experiments but ranks 4st in LDL prediction, our
algorithm still has the highest average ranks across all mea-
sures despite huge gaps between these two experiments. The
LDL prediction results measured by Cheb and Cosine are il-
lustrated in Fig.4. Our algorithm obtains almost the same
prediction results as that of ground-truth on other datasets,
which proves the accuracy of the algorithm’s recovered label
distributions. Moreover, the LESC model ranks 1st in nine
datasets, while ranking 2nd in other datasets, which is su-
perior over other algorithms. Note that we haven’t attained
the best results in some cases such as Yeast-alpha and Yeast-
heat. We believe that this is mainly because of the inaccurate
binary of logical labels. However, our prediction results are
still comparable to the best ones and to the ground-truth dis-
tributions in these datasets, even until the last four decimal
places of the Cheb measure.

Conclusion

To excavate the underlying information contained in the fea-
ture space through a global approach, a novel algorithm,
LESC, was proposed to address the LE issue. The LRR was
generated to capture the global intrinsic relationships of in-
stances, and it was subsequently employed to excavate the
hidden label information globally. Extensive experimental
results among 14 datasets demonstrated the remarkable su-
periority of the proposed algorithm over several state-of-the-
art algorithms in recovering the label distributions and LDL
prediction after LE preprocessing on logical labels. Further
analysis of the influence of hyperparameters verified the ro-
bustness of our algorithm to the variation of parameters.
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