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Abstract

Given labeled instances on a source domain and unlabeled
ones on a target domain, unsupervised domain adaptation
aims to learn a task classifier that can well classify target in-
stances. Recent advances rely on domain-adversarial training
of deep networks to learn domain-invariant features. How-
ever, due to an issue of mode collapse induced by the separate
design of task and domain classifiers, these methods are lim-
ited in aligning the joint distributions of feature and category
across domains. To overcome it, we propose a novel adversar-
ial learning method termed Discriminative Adversarial Do-
main Adaptation (DADA). Based on an integrated category
and domain classifier, DADA has a novel adversarial objec-
tive that encourages a mutually inhibitory relation between
category and domain predictions for any input instance. We
show that under practical conditions, it defines a minimax
game that can promote the joint distribution alignment. Ex-
cept for the traditional closed set domain adaptation, we also
extend DADA for extremely challenging problem settings of
partial and open set domain adaptation. Experiments show
the efficacy of our proposed methods and we achieve the new
state of the art for all the three settings on benchmark datasets.

Introduction

Many machine learning tasks are advanced by large-scale
learning of deep models, with image classification (Rus-
sakovsky et al. 2015) as one of the prominent examples. A
key factor to achieve such advancements is the availability
of massive labeled data on the domains of the tasks of inter-
est. For many other tasks, however, training instances on the
corresponding domains are either difficult to collect, or their
labeling costs prohibitively. To address the scarcity of la-
beled data for these target tasks/domains, a general strategy
is to leverage the massively available labeled data on related
source ones via domain adaptation (Pan and Yang 2010).
Even though the source and target tasks share the same la-
bel space (i.e. closed set domain adaptation), domain adap-
tation still suffers from the shift in data distributions. The
main objective of domain adaptation is thus to learn domain-
invariant features, so that task classifiers learned from the
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source data can be readily applied to the target domain. In
this work, we focus on the unsupervised setting where train-
ing instances on the target domain are completely unlabeled.

Recent domain adaptation methods are largely built on
modern deep architectures. They rely on great model capac-
ities of these networks to learn hierarchical features that are
empirically shown to be more transferable across domains
(Yosinski et al. 2014; Zhang, Tang, and Jia 2018). Among
them, those based on domain-adversarial training (Ganin
et al. 2016; Wang et al. 2019) achieve the current state of
the art. Based on the seminal work of DANN (Ganin et al.
2016), they typically augment a classification network with
an additional domain classifier. The domain classifier takes
features from the feature extractor of the classification net-
work as inputs, which is trained to differentiate between in-
stances from the two domains. By playing a minimax game
(Goodfellow et al. 2014), adversarial training aims to learn
domain-invariant features.

Such domain-adversarial networks can largely reduce
the domain discrepancy. However, the separate design of
task and domain classifiers has the following shortcomings.
Firstly, feature distributions can only be aligned to a certain
level, since model capacity of the feature extractor could be
large enough to compensate for the less aligned feature dis-
tributions. More importantly, given practical difficulties of
aligning the source and target distributions with high gran-
ularity to the category level (especially for complex distri-
butions with multi-mode structures), the task classifier ob-
tained by minimizing the empirical source risk cannot well
generalize to the target data due to an issue of mode col-
lapse (Kurmi and Namboodiri 2019; Tran et al. 2019), i.e.,
the joint distributions of feature and category are not well
aligned across the source and target domains.

Recent methods (Kurmi and Namboodiri 2019; Tran et
al. 2019) take the first step to address the above shortcom-
ings by jointly parameterizing the task and domain classi-
fiers into an integrated one. To further push this line, based
on such a classifier, we propose a novel adversarial learning
method termed Discriminative Adversarial Domain Adapta-
tion (DADA), which encourages a mutually inhibitory rela-
tion between its domain prediction and category prediction
for any input instance, as illustrated in Figure 1. This dis-
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criminative interaction between category and domain pre-
dictions underlies the ability of DADA to reduce domain dis-
crepancy at both the feature and category levels. Intuitively,
the adversarial training of DADA mainly conducts compe-
tition between the domain neuron (output) and the true cat-
egory neuron (output). Different from the work (Tran et al.
2019) whose mechanism to align the joint distributions is
rather implicit, DADA enables explicit alignment between
the joint distributions, thus improving the classification of
target data. Except for closed set domain adaptation, we
also extend DADA for partial domain adaptation (Cao et al.
2018b), i.e. the target label space is subsumed by the source
one, and open set domain adaptation (Saito et al. 2018c), i.e.
the source label space is subsumed by the target one. Our
main contributions can be summarized as follows.
• We propose in this work a novel adversarial learning

method, termed DADA, for closed set domain adaptation.
Based on an integrated category and domain classifier,
DADA has a novel adversarial objective that encourages a
mutually inhibitory relation between category and domain
predictions for any input instance, which can promote the
joint distribution alignment across domains.
• For more realistic partial domain adaptation, we extend

DADA by a reliable category-level weighting mechanism,
termed DADA-P, which can significantly reduce the neg-
ative influence of outlier source instances.
• For more challenging open set domain adaptation, we ex-

tend DADA by balancing the joint distribution alignment
in the shared label space with the classification of outlier
target instances, termed DADA-O.
• Experiments show the efficacy of our proposed methods

and we achieve the new state of the art for all the three
adaptation settings on benchmark datasets.

Related Works

Closed Set Domain Adaptation After the seminal work of
DANN (Ganin et al. 2016), ADDA (Tzeng et al. 2017) pro-
poses an untied weight sharing strategy to align the target
feature distribution to a fixed source one. SimNet (Pinheiro
2018) replaces the standard FC-based cross-entropy clas-
sifier by a similarity-based one. MADA (Pei et al. 2018)
and CDAN (Long et al. 2018b) integrate the discrimina-
tive category information into domain-adversarial training.
VADA (Shu et al. 2018) reduces the cluster assumption vio-
lation to constrain domain-adversarial training. Some meth-
ods (Wang et al. 2019; Wen et al. 2019) focus on transferable
regions to learn domain-invariant features and task classifier.
TAT (Liu et al. 2019) enhances the discriminability of fea-
tures to guarantee the adaptability. Some methods (Saito et
al. 2018b; 2018a; Lee et al. 2019) utilize category predic-
tions from two task classifiers to measure the domain dis-
crepancy. The most related works (Kurmi and Namboodiri
2019; Tran et al. 2019) to us propose joint parameterization
of the task and domain classifiers, which implicitly align the
joint distributions. Differently, our proposed DADA makes
the joint distribution alignment more explicit, thus promot-
ing classification on the target domain.

Partial Domain Adaptation The work (Zhang et al. 2018)
weights each source instance by its importance to the tar-
get domain based on one domain classifier, and then trains
another domain classifier on target and weighted source in-
stances. The works (Cao et al. 2018a; 2018b) reduce the
contribution of outlier source instances to the task or do-
main classifiers by utilizing category predictions. Differ-
ently, DADA-P weights the proposed source discriminative
adversarial loss by a reliable category confidence.
Open Set Domain Adaptation Previous research (Jain,
Scheirer, and Boult 2014) proposes to reject an instance
as the unknown category by threshold filtering. The work
(Saito et al. 2018c) proposes to utilize adversarial training
for both domain adaptation and unknown outlier detection.
Differently, DADA-O balances the joint distribution align-
ment in the shared label space with the outlier rejection.

Method

Given {(xs
i , y

s
i )}ns

i=1 of labeled instances sampled from the
source domainDs, and {xt

j}nt
j=1 of unlabeled instances sam-

pled from the target domain Dt, the objective of unsuper-
vised domain adaptation is to learn a feature extractor G(·)
and a task classifier C(·) such that the expected target risk
E(xt,yt)∼Dt

[Lcls(C(G(xt)), yt)] is low for a certain classifi-
cation loss function Lcls(·). The domains Ds and Dt are as-
sumed to have different distributions. To achieve a low target
risk, a typical strategy is to learn G(·) and C(·) by minimiz-
ing the sum of the source risk and some notion of distance
between the source and target domain distributions, inspired
by domain adaptation theories (Ben-David et al. 2007;
2010). This strategy is based on a simple rational that the
source risk would become a good indicator of the target risk
when the distance between the two distributions is getting
closer. While most of existing methods use distance mea-
sures based on the marginal distributions, it is arguably bet-
ter to use those based on the joint distributions.

The above strategy is generally implemented by domain-
adversarial learning (Ganin et al. 2016; Wang et al. 2019),
where separate task classifier C(·) and domain classifier
D(·) are typically stacked on top of the feature extractor
G(·). As discussed before, this type of design has the fol-
lowing shortcomings: (1) model capacity of G(·) could be
large enough to make D(G(xs)) and D(G(xt)) hardly dif-
ferentiable for any instance, even though the marginal fea-
ture distributions are not well aligned; (2) more importantly,
it is difficult to align the source and target distributions with
high granularity to the category level (especially for com-
plex distributions with multi-mode structures), and thus C(·)
obtained by minimizing the empirical source risk cannot
perfectly generalize to the target data due to an issue of mode
collapse, i.e. the joint distributions are not well aligned.

To alleviate the above shortcomings, inspired by semi-
supervised learning methods based on GANs (Salimans et
al. 2016; Dai et al. 2017), the recent work (Tran et al. 2019)
proposes joint parameterization of C(·) and D(·) into an in-
tegrated one F (·). Suppose the classification task of interest
has K categories, F (·) is formed simply by augmenting the
last FC layer of C(·) with one additional neuron.
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Figure 1: (Best viewed in color.) Discriminative Adversarial Domain Adaptation (DADA), which includes a feature extractor
G(·) and an integrated category and domain classifier F (·). The blue and orange colors denote G(·) and F (·), and the losses
applied to them, respectively. Note that DADA explicitly establishes a discriminative interaction between category and domain
predictions. Please refer to the main text for how the adversarial training objective of DADA is defined.

Denote p(x) ∈ [0, 1]K+1 as the output vector of class
probabilities of F (G(x)) for an instance x, and pk(x), k ∈
{1, . . . ,K + 1}, as its kth element. The kth element of the
conditional probability vector p̄(x) is written as follows

p̄k(x) =

⎧⎨
⎩

pk(x)

1− pK+1(x)
, k = 1, 2, ...,K

0 , k = K + 1

. (1)

For ease of subsequent notations, we also write psk = pk(x
s)

and ptk = pk(x
t). Then, such a network is trained by the

classification-aware adversarial learning objective

min
F
− 1

ns

ns∑
i=1

log pys
i
(xs

i )−
1

nt

nt∑
j=1

log pK+1(x
t
j) (2)

max
G

1

ns

ns∑
i=1

log p̄ys
i
(xs

i ) + λ
1

nt

nt∑
j=1

log(1− pK+1(x
t
j)),

where λ balances category classification and domain adver-
sarial losses. The mechanism of this objective to align the
joint distributions across domains is rather implicit.

To make it more explicit, based on the integrated
classifier F (·), we propose a novel adversarial learning
method termed Discriminative Adversarial Domain Adapta-
tion (DADA), which explicitly enables a discriminative inter-
play of predictions among the domain and K categories for
any input instance, as illustrated in Figure 1. This discrimi-
native interaction underlies the ability of DADA to promote
the joint distribution alignment, as explained shortly.

Discriminative Adversarial Learning

To establish a direct interaction between category and do-
main predictions, we propose a novel source discriminative
adversarial loss that is tailored to the design of the integrated
classifier F (·). The proposed loss is inspired by the principle
of binary cross-entropy loss. It is written as

Ls(G,F ) = − 1

ns

ns∑
i=1

[(1− pK+1(x
s
i )) log pys

i
(xs

i )

+ pK+1(x
s
i ) log

(
1− pys

i
(xs

i )
)
].

(3)

Intuitively, the proposed loss (3) establishes a mutually in-
hibitory relation between pys(xs) of the prediction on the

true category of xs, and pK+1(x
s) of the prediction on the

domain of xs. We first discuss how the proposed loss (3)
works during adversarial training, and we show that under
practical conditions, minimizing (3) over the classifier F (·)
has the effects of discriminating among task categories while
distinguishing the source domain from the target one, and
maximizing (3) over the feature extractor G(·) can discrim-
inatively align the source domain to the target one.
Discussion We first write the gradient formulas of Ls on any
source instance xs w.r.t. psys and psK+1 as

∇ps
ys

=
∂Ls

∂psys

=
psyspsK+1 − (1− psys)(1− psK+1)

psys(1− psys)
,

∇ps
K+1

=
∂Ls

∂psK+1

= log
psys

1− psys

.

Since both psys and psK+1 are among the K + 1 output
probabilities of the classifier F (G(xs)), we always have
psys ≤ 1−psK+1 and psK+1 ≤ 1−psys , suggesting∇ps

ys
≤ 0.

When the loss (3) is minimized over F (·) via stochastic gra-
dient descent (SGD), we have the update psys ← psys−η∇ps

ys

where η is the learning rate, and since ∇ps
ys
≤ 0, psys in-

creases; when it is maximized over G(·) via stochastic gra-
dient ascent (SGA), we have the update psys ← psys+η∇ps

ys
,

and since ∇ps
ys
≤ 0, psys decreases. Then, we discuss the

change of psK+1 in two cases: (1) in case of psys > 0.5 that
guarantees ∇ps

K+1
> 0, when minimizing the loss (3) over

F (·) by SGD update psK+1 ← psK+1−η∇ps
K+1

, we have de-
creased psK+1, and when maximizing it over G(·) by SGA
update psK+1 ← psK+1+η∇ps

K+1
, we have increased psK+1;

(2) in case of psys < 0.5 that guarantees ∇ps
K+1

< 0, when
minimizing the loss (3) over F (·) by SGD update, we have
increased psK+1, and when maximizing it over G(·) by SGA
update, we have decreased psK+1, as shown in Figure 2.

For discriminative adversarial domain adaptation, we ex-
pect that (1) when minimizing the proposed loss (3) over
F (·), task categories of the source domain is discriminative
and the source domain is distinctive from the target one,
which can be achieved when psys increases and psK+1 de-
creases; (2) when maximizing it over G(·), the source do-
main is aligned to the target one while retains discriminabil-
ity, which can be achieved when psys decreases and psK+1
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Figure 2: Changes of psys and psK+1 when minimizing and
maximizing the loss (3) in the two cases.

increases in the case of psys > 0.5. To meet the expecta-
tions, the condition of psys > 0.5 for all source instances
should be always satisfied. This is practically achieved by
pre-training DADA on the labeled source data using a K-
way cross-entropy loss, and maintaining in the adversarial
training of DADA the same supervision signal. We present
in the supplemental material empirical evidence on bench-
mark datasets that shows the efficacy of our used scheme.

To achieve the joint distribution alignment, the explicit
interplay between category and domain predictions for any
target instance should also be created. Motivated by recent
works (Pei et al. 2018; Long et al. 2018b) which alleviate the
issue of mode collapse by aligning each instance to several
most related categories, we propose a target discriminative
adversarial loss based on the design of the integrated classi-
fier F (·), by using the conditional category probabilities to
weight the domain predictions. It is written as

Lt
F (G,F ) = − 1

nt

nt∑
j=1

K∑
k=1

p̄k(x
t
j) log p̂

k
K+1(x

t
j)

Lt
G(G,F ) =

1

nt

nt∑
j=1

K∑
k=1

p̄k(x
t
j) log(1− p̂kK+1(x

t
j)),

(4)

where the k′th element of the domain prediction vector p̂k

for the kth category is written as follows

p̂kk′(x) =

⎧⎨
⎩

pk′(x)

pk(x) + pK+1(x)
, k′ = k,K + 1

0 , otherwise

. (5)

An intuitive explanation for our proposed (4) is provided in
the supplemental material.

Established knowledge from cluster analysis (Nalewajski
2012) indicates that we can estimate clusters with a low
probability of error only if the conditional entropy is small.
To this end, we adopt the entropy minimization principle
(Grandvalet and Bengio 2005), which is written as

Lt
em(G,F ) =

1

nt

nt∑
j=1

H(p̄(xt
j)), (6)

where H(·) computes the entropy of a probability vector.
Combining (3), (4), and (6) gives the following minimax
problem of our proposed DADA

min
F
LF = λ(Ls + Lt

F )− Lt
em

max
G
LG = λ(Ls + Lt

G)− Lt
em,

(7)

where λ is a hyper-parameter that trade-offs the adversar-
ial domain adaptation objective with the entropy minimiza-
tion one in the unified optimization problem. Note that in the
minimization problem of (7), Lt

em serves as a regularizer for
learning F (·) to avoid the trivial solution (i.e. all instances
are assigned to the same category), and in the maximization
problem of (7), it helps learn more target-discriminative fea-
tures, which can alleviate the negative effect of adversarial
feature adaptation on the adaptability (Liu et al. 2019).

By optimizing (7), the joint distribution alignment can be
enhanced. This ability comes from the better use of discrim-
inative information from both the source and target domains.
Concretely, DADA constrains the domain classifier so that it
clearly/explicitly knows the classification boundary, thus re-
ducing false alignment between different categories. By de-
ceiving such a strong domain classifier, DADA can learn a
feature extractor that better aligns the two domains. We also
theoretically prove in the supplemental material that DADA
can better bound the expected target error.

Extension for Partial Domain Adaptation

Partial domain adaptation is a more realistic setting, where
the target label space is subsumed by the source one. The
false alignment between the outlier source categories and the
target domain is unavoidable. To address it, existing meth-
ods (Cao et al. 2018a; Zhang et al. 2018; Cao et al. 2018b)
utilize the category or domain predictions, to decrease the
contribution of source outliers to the training of task or do-
main classifiers. Inspired by these ideas, we extend DADA
for partial domain adaptation by using a reliable category-
level weighting mechanism, which is termed DADA-P.

Concretely, we average the conditional probability vectors
p̄(xt) ∈ [0, 1]K over all target data and then normalize the
averaged vector c̄ ∈ [0, 1]K by dividing its largest element.
The category weight vector c ∈ [0, 1]K with ck as its kth el-
ement is derived by a convex combination of the normalized
vector and an all-ones vector 1, as follows

c̄ =
1

nt

nt∑
j=1

p̄(xt
j)

c = λ
c̄

max(c̄)
+ (1− λ)1,

(8)

where λ ∈ [0, 1] is to suppress the detection noise of out-
lier source categories in the early stage of training. Then, we
apply the category weight vector c to the proposed discrim-
inative adversarial loss for any source instance, leading to

Ls(G,F ) = − 1

ns

ns∑
i=1

cys
i
[(1− pK+1(x

s
i )) log pys

i
(xs

i )

+ pK+1(x
s
i ) log

(
1− pys

i
(xs

i )
)
]. (9)

Since predicted probabilities on the outlier source cate-
gories are more likely to increase when minimizing −Lt

em
over F (·), which incurs negative transfer. To avoid it, we
minimize Lt

em over F (·) and the objective of DADA-P is

min
F
LF = λ(Ls + Lt

F ) + Lt
em

max
G
LG = λ(Ls + Lt

G)− Lt
em.

(10)
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By optimizing it, DADA-P can simultaneously alleviate neg-
ative transfer and promote the joint distribution alignment
across domains in the shared label space.

Extension for Open Set Domain Adaptation

Open set domain adaptation is a very challenging setting,
where the source label space is subsumed by the target one.
We denominate the shared category and all unshared cate-
gories between the two domains as the “known category”
and “unknown category” respectively. The goal of open set
domain adaptation is to correctly classify any target instance
as the known or unknown category. The false alignment be-
tween the known and unknown categories is inevitable. To
this end, the work (Saito et al. 2018c) proposes to make a
pseudo decision boundary for the unknown category, which
enables the feature extractor to reject some target instances
as outliers. Inspired by this work, we extend DADA for open
set domain adaptation by training the classifier to classify all
target instances as the unknown category with a small prob-
ability q, which is termed DADA-O. Assuming the predicted
probability on the unknown category as the Kth element
of p(xt), i.e., pK(xt), the modified target adversarial loss
when minimized over the integrated classifier F (·) is

Lt
F (G,F ) =

− 1

nt

nt∑
j=1

q log pK(xt
j)− (1− q) log pK+1(x

t
j),

(11)

where 0 < q < 0.5. When maximized over the feature ex-
tractor G(·), we still use the discriminative loss Lt

G in (4).
Replacing Lt

F in (7) with (11) gives the overall adversarial
objective of DADA-O, which can achieve a balance between
domain adaptation and outlier rejection.

We utilize all target instances to obtain the concept of
“unknown”, which is very helpful for the classification of
unknown target instances as the unknown category but can
cause the misclassification of known target instances as the
unknown category. This issue can be alleviated by selecting
an appropriate q. If q is too small, the unknown target in-
stances cannot be correctly classified; if q is too large, the
known target instances can be misclassified. By choosing
an appropriate q, the feature extractor can separate the un-
known target instances from the known ones while aligning
the joint distributions in the shared label space.

Experiments

Datasets and Implementation Details

Office-31 (Saenko et al. 2010) is a popular benchmark do-
main adaptation dataset consisting of 4, 110 images of 31
categories collected from three domains: Amazon (A), We-
bcam (W), and DSLR (D). We evaluate on six settings.
Syn2Real (Peng et al. 2018) is the largest benchmark.
Syn2Real-C has over 280K images of 12 shared categories
in the combined training, validation, and testing domains.
The 152, 397 images on the training domain are synthetic
ones by rendering 3D models. The validation and test do-
mains comprise real images, and the validation one has

55, 388 images. We use the training domain as the source do-
main and validation one as the target domain. For partial do-
main adaptation, we choose images of the first 6 categories
(in alphabetical order) in the validation domain as the target
domain and form the setting: Synthetic 12 → Real 6. For
open set domain adaptation, we evaluate on Syn2Real-O,
which includes two domains. The training/synthetic domain
uses synthetic images from the 12 categories of Syn2Real-
C as “known”. The validation/real domain uses images of
the 12 categories from the validation domain of Syn2Real-
C as “known”, and 50k images from 69 other categories as
“unknown”. We use the training and validation domains of
Syn2Real-O as the source and target domains respectively.
Implementation Details We follow standard evaluation
protocols for unsupervised domain adaptation (Ganin et al.
2016; Wang et al. 2019): we use all labeled source and
all unlabeled target instances as the training data. For all
tasks of Office-31 and Synthetic 12 → Real 6, based on
ResNet-50 (He et al. 2016), we report the classification re-
sult on the target domain of mean(±standard deviation) over
three random trials. For other tasks of Syn2Real, we evalu-
ate the accuracy of each category based on ResNet-101 and
ResNet-152 (for closed and open set domain adaptation re-
spectively). For each base network, we use all its layers up
to the second last one as the feature extractor G(·), and set
the neuron number of its last FC layer as K + 1 to have the
integrated classifier F (·). Exceptionally, we follow the work
(Peng et al. 2018) and replace the last FC layer of ResNet-
152 with three FC layers of 512 neurons. All base networks
are pre-trained on ImageNet (Russakovsky et al. 2015). We
firstly pre-train them on the labeled source data, and then
fine-tune them on both the labeled source data and unlabeled
target data via adversarial training, where we maintain the
same supervision signal as the pre-training.

We follow DANN (Ganin et al. 2016) to use the SGD
training schedule: the learning rate is adjusted by ηp =

η0

(1+αp)β
, where p denotes the process of training iterations

that is normalized to be in [0, 1], and we set η0 = 0.0001,
α = 10, and β = 0.75; the hyper-parameter λ is initialized
at 0 and is gradually increased to 1 by λp = 2

1+exp(−γp) −1,
where we set γ = 10. We empirically set q = 0.1. We imple-
ment all our methods by PyTorch. The code will be avail-
able at https://github.com/huitangtang/DADA-AAAI2020.

Analysis

Ablation Study We conduct ablation studies on Office-31
to investigate the effects of key components of our proposed
DADA based on ResNet-50. Our ablation studies start with
the very baseline termed “No Adaptation” that simply fine-
tunes a ResNet-50 on the source data. To validate the mu-
tually inhibitory relation enabled by DADA, we use DANN
(Ganin et al. 2016) and DANN-CA (Tran et al. 2019) respec-
tively as the second and third baselines. To investigate how
the entropy minimization principle helps learn more target-
discriminative features, we remove the entropy minimiza-
tion loss (6) from our main minimax problem (7), denoted as
“DADA (w/o em)”. To know effects of the proposed source
and target discriminative adversarial losses (3) and (4), we
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Table 1: Ablation studies using Office-31 based on ResNet-50. Please refer to the main text for how they are defined.
Methods A→W D→W W→ D A→ D D→ A W→ A Avg
No Adaptation 79.9±0.3 96.8±0.4 99.5±0.1 84.1±0.4 64.5±0.3 66.4±0.4 81.9
DANN 81.2±0.3 98.0±0.2 99.8±0.0 83.3±0.3 66.8±0.3 66.1±0.3 82.5
DANN-CA 85.4±0.4 98.2±0.2 99.8±0.0 87.1±0.4 68.5±0.2 67.6±0.3 84.4
DADA (w/o em + w/o td) 91.0±0.2 98.7±0.1 100.0±0.0 90.8±0.2 70.9±0.3 70.2±0.3 86.9
DADA (w/o em) 91.8±0.1 99.0±0.1 100.0±0.0 92.5±0.3 72.8±0.2 72.3±0.3 88.1
DADA 92.3±0.1 99.2±0.1 100.0±0.0 93.9±0.2 74.4±0.1 74.2±0.1 89.0

Table 2: Results for closed set domain adaptation on Office-31 based on ResNet-50. Note that SimNet is implemented by an
unknown framework; MADA and DANN-CA are implemented by Caffe; all the other methods are implemented by PyTorch.

Methods A→W D→W W→ D A→ D D→ A W→ A Avg
No Adaptation (He et al. 2016) 79.9±0.3 96.8±0.4 99.5±0.1 84.1±0.4 64.5±0.3 66.4±0.4 81.9
DAN (Long et al. 2018a) 81.3±0.3 97.2±0.0 99.8±0.0 83.1±0.2 66.3±0.0 66.3±0.1 82.3
DANN (Ganin et al. 2016) 81.2±0.3 98.0±0.2 99.8±0.0 83.3±0.3 66.8±0.3 66.1±0.3 82.5
ADDA (Tzeng et al. 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
MADA (Pei et al. 2018) 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
VADA (Shu et al. 2018) 86.5±0.5 98.2±0.4 99.7±0.2 86.7±0.4 70.1±0.4 70.5±0.4 85.4
DANN-CA (Tran et al. 2019) 91.35 98.24 99.48 89.94 69.63 68.76 86.2
GTA (Sankaranarayanan et al. 2018) 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD (Saito et al. 2018b) 88.6±0.2 98.5±0.1 100.0±0.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN+E (Long et al. 2018b) 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
TADA (Wang et al. 2019) 94.3±0.3 98.7±0.1 99.8±0.2 91.6±0.3 72.9±0.2 73.0±0.3 88.4
SymNets (Zhang et al. 2019) 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
TAT (Liu et al. 2019) 92.5±0.3 99.3±0.1 100.0±0.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4
DADA 92.3±0.1 99.2±0.1 100.0±0.0 93.9±0.2 74.4±0.1 74.2±0.1 89.0

Figure 3: Average probability on the true category over all
target instances by task classifiers of different methods.

remove both (6) and (4) from (7), denoted as “DADA (w/o
em + w/o td)”.

Results in Table 1 show that although DANN improves
over “No Adaptation”, its result is much worse than DANN-
CA, verifying the efficacy of the design of the integrated
classifier F (·). “DADA (w/o em + w/o td)” improves over
DANN-CA and “DADA (w/o em)” improves over “DADA
(w/o em + w/o td)”, showing the efficacy of our proposed
discriminative adversarial learning. DADA significantly out-
performs DANN and DANN-CA, confirming the efficacy of
the proposed mutually inhibitory relation between the cate-
gory and domain predictions in aligning the joint distribu-
tions of feature and category across domains. Table 1 also
confirms that entropy minimization is helpful to learn more

target-discriminative features.
Quantitative Comparison To compare the efficacy of dif-
ferent methods in reducing domain discrepancy at the cate-
gory level, we visualize the average probability on the true
category over all target instances by task classifiers of No
Adaptation, DANN, DANN-CA, and DADA on A→W in
Figure 3. Note that here we use labels of the target data for
the quantization of category-level domain discrepancy. Fig-
ure 3 shows that our proposed DADA gives the predicted
probability on the true category of any target instance a bet-
ter chance to approach 1, meaning that target instances are
more likely to be correctly classified by DADA, i.e., a better
category-level domain alignment.

Results

Closed Set Domain Adaptation We compare in Tables 2
and 3 our proposed method with existing ones on Office-
31 and Syn2Real-C based on ResNet-50 and ResNet-101
respectively. Whenever available, results of existing meth-
ods are quoted from their respective papers or the recent
works (Pei et al. 2018; Long et al. 2018b; Liu et al. 2019;
Saito et al. 2018b). Our proposed DADA outperforms exist-
ing methods, testifying the efficacy of DADA in aligning the
joint distributions of feature and category across domains.
Partial Domain Adaptation We compare in Table 5 our
proposed method to existing ones on Syn2Real-C based on
ResNet-50. Results of existing methods are quoted from the
work (Cao et al. 2018b). Our proposed DADA-P substan-
tially outperforms all comparative methods by +15.53%,
showing the effectiveness of DADA-P on reducing the neg-
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Table 3: Results for closed set domain adaptation on Syn2Real-C based on ResNet-101. Note that all compared methods are
based on PyTorch implementation.

Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean
No Adaptation (He et al. 2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN (Ganin et al. 2016) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN (Long et al. 2018a) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
MCD (Saito et al. 2018b) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
GPDA (Kim et al. 2019) 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3
ADR (Saito et al. 2018a) 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
DADA 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8

Table 4: Results for open set domain adaptation on Syn2Real-O based on ResNet-152. Known indicates the mean classification
result over the known categories whereas Mean also includes the unknown category. The table below shows the results when the
Known-to-Unknown Ratio in the target domain is set to 1 : 10. All compared methods are based on PyTorch implementation.

Known-to-Unknown Ratio = 1 : 1
Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck unk Known Mean
No Adaptation (He et al. 2016) 49 20 29 47 62 27 79 3 37 19 70 1 62 36 38
DAN (Long et al. 2018a) 51 40 42 56 68 24 75 2 39 30 71 2 75 41 44
DANN (Ganin et al. 2016) 59 41 16 54 77 18 88 4 44 32 68 4 61 42 43
AODA (Saito et al. 2018c) 85 71 65 53 83 10 79 36 73 56 79 32 87 60 62
DADA-O 88 76 76 64 79 46 91 62 52 63 86 8 55 66 65

Known-to-Unknown Ratio = 1 : 10
AODA (Saito et al. 2018c) 80 63 59 63 83 12 89 5 61 14 79 0 69 51 52
DADA-O 77 63 75 71 38 33 92 58 47 50 89 1 50 58 57

Table 5: Results for partial domain adaptation on Syn2Real-
C based on ResNet-50. Note that all compared methods are
based on PyTorch implementation.

Methods Synthetic 12→Real 6
No Adaptation (He et al. 2016) 45.26
DAN (Long et al. 2018a) 47.60
DANN (Ganin et al. 2016) 51.01
RTN (Long et al. 2016) 50.04
PADA (Cao et al. 2018b) 53.53
DADA-P 69.06

ative influence of source outliers while promoting the joint
distribution alignment in the shared label space.
Open Set Domain Adaptation We compare in Table 4 our
proposed method with existing ones on Syn2Real-O based
on ResNet-152. Results of existing methods are quoted from
the recent work (Peng et al. 2018). Our proposed DADA-
O outperforms all comparative methods in both evalua-
tion metrics of Known and Mean, showing the efficacy of
DADA-O in both aligning joint distributions of the known
instances and identifying the unknown target instances. It
is noteworthy that DADA-O improves over the state-of-the-
art method AODA by a large margin when the known-to-
unknown ratio in the target domain is much smaller than 1,
i.e. the false alignment between the known source and un-
known target instances will be much more serious. This ob-
servation confirms the efficacy of DADA-O.

We provide more results and analysis for the three prob-
lem settings in the supplemental material.

Conclusion

We propose a novel adversarial learning method termed
Discriminative Adversarial Domain Adaptation (DADA) to
overcome the limitation in aligning the joint distributions of

feature and category across domains, which is due to an is-
sue of mode collapse induced by the separate design of task
and domain classifiers. Based on an integrated task and do-
main classifier, DADA has a novel adversarial objective that
encourages a mutually inhibitory relation between the cat-
egory and domain predictions, which can promote the joint
distribution alignment. Unlike previous methods, DADA ex-
plicitly enables a discriminative interaction between cate-
gory and domain predictions. Except for closed set domain
adaptation, we also extend DADA for more challenging
problem settings of partial and open set domain adaptation.
Experiments on benchmark datasets testify the efficacy of
our proposed methods for all the three settings.
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