
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Parameterized Indexed Value Function for
Efficient Exploration in Reinforcement Learning

Tian Tan,1∗† Zhihan Xiong,2∗ Vikranth R. Dwaracherla3

1Department of Civil and Environmental Engineering, Stanford University
2Department of Statistics, Stanford University

3Department of Electrical Engineering, Stanford University
{tiantan, zxiong9, vikranth}@stanford.edu

Abstract

It is well known that quantifying uncertainty in the action-
value estimates is crucial for efficient exploration in rein-
forcement learning. Ensemble sampling offers a relatively
computationally tractable way of doing this using random-
ized value functions. However, it still requires a huge amount
of computational resources for complex problems. In this pa-
per, we present an alternative, computationally efficient way
to induce exploration using index sampling. We use an in-
dexed value function to represent uncertainty in our action-
value estimates. We first present an algorithm to learn pa-
rameterized indexed value function through a distributional
version of temporal difference in a tabular setting and prove
its regret bound. Then, in a computational point of view, we
propose a dual-network architecture, Parameterized Indexed
Networks (PINs), comprising one mean network and one un-
certainty network to learn the indexed value function. Finally,
we show the efficacy of PINs through computational experi-
ments.

Introduction

Efficient exploration is a long-established problem and an
active research area in reinforcement learning (RL). It is
well known in the RL community that maintaining an un-
certainty estimate in the value functions is crucial for ef-
ficient exploration (Russo et al. 2018), (Ghavamzadeh et al.
2015), (Osband, Aslanides, and Cassirer 2018). Convention-
ally, dithering methods, such as ε-greedy and Boltzmann ε-
greedy, induce exploration by randomly selecting and ex-
perimenting with actions. This is one of the common explo-
ration schemes used in many applications (Mnih et al. 2015),
(He et al. 2015), (Tan et al. 2019), for its simplicity. How-
ever, these schemes do not take uncertainty into account in
their value estimates. As a result, they require a huge amount
of data to learn a desirable policy through dithering in an en-
vironment with sparse and delayed reward signals.

Although there has been a growing interest in quantifying
uncertainty, such as dropout (Srivastava et al. 2014), (Gal

∗Equal contribution.
†Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Ghahramani 2016) and variational inference (Fortunato
et al. 2017), (Touati et al. 2018), these methods are typi-
cally not suitable for sequential decision making (Osband,
Aslanides, and Cassirer 2018). Instead, ensemble sampling
(Osband et al. 2016), (Lu and Van Roy 2017), (Osband,
Aslanides, and Cassirer 2018), which represents uncertainty
by learning an approximate posterior distribution over value
functions via bootstrapping, has achieved remarkable suc-
cess in RL. Each member in the ensemble, typically a neural
network, learns a mapping from the input state or feature
space to action values from a perturbed version of the ob-
served data. However, ensemble sampling methods demand
learning and maintaining many neural networks in parallel,
which can be both computation and memory intensive.

Index sampling (Dwaracherla, Van Roy, and Ibrahimi
2019) offers a possibility to distill the ensemble process into
a “single” network which learns a mapping from the state or
feature space and a random index space to the action values.
The random index z, can be thought as an independent ran-
dom variable drawn from a fixed distribution pz . After learn-
ing this mapping, the resulting model can be approximately
sampled from the posterior over networks conditioned on
the observed data by passing different indices. Therefore,
one effectively samples a value function from its posterior
by sampling a random index z.

In this paper, we consider index sampling via a class of
Gaussian indexed value functions as we explicitly param-
eterize the action-value function as Qz(x, a) = ν(x, a) +
m(x, a)z, where (x, a) represents a state-action pair, z ∼
N (0, 1), v(x, a) and m(x, a) are real valued functions rep-
resenting mean and standard deviation of the action-values
or commonly known as Q-values. We present an algo-
rithm to learn such a parameterized indexed value func-
tion via a distributional variation of temporal difference
(TD) learning, which we refer to as the distributional TD
or Wasserstein TD when Wasserstein distance is used as
the distance metric. We prove that this algorithm enjoys
a Bayesian regret bound of Õ

(
H2

√|X | |A|L) in finite-
horizon episodic MDPs, where H is the episode length, L
is the number of episodes, and |X | and |A| are the cardi-
nality of the state and action spaces. Then, we propose a
dual-network architecture Parameterized Indexed Networks

5948

(PINs) to generalize with complex models in deep reinforce-
ment learning. PINs consist of a mean network for learn-
ing ν(x, a), and an uncertainty network for m(x, a). We
demonstrate the efficacy of PINs on two benchmark prob-
lems, Deep-sea and Cartpole Swing-up, that require deep
exploration from Deepmind bsuite (Osband et al. 2019).
Our open-source implementation of PINs can be found at
https://github.com/tiantan522/PINs.

Related Work

In the model-based setting, the optimal exploration strategy
can be obtained through dynamic programming in Bayesian
belief space given a prior distribution over MDPs (Guez,
Silver, and Dayan 2012). However, the exact solution is in-
tractable. An alternative way for efficient exploration is via
posterior sampling. Motivated by Thompson Sampling, the
posterior sampling reinforcement learning (PSRL) was first
introduced in (Strens 2000) mainly as a heuristic method.
The theoretical aspects of PSRL were poorly understood un-
til very recently. Osband et al. (Osband and Van Roy 2017)
established an Õ(H

√|X | |A|L) Bayesian regret bound for
PSRL in finite-horizon episodic MDPs. Note that this re-
sult improves upon the best previous Bayesian regret bound
of Õ(H |X |√|A|L) for any reinforcement learning al-
gorithm. Although PSRL enjoys state-of-the-art theoreti-
cal guarantees, it is intractable for large practical systems.
Approximations are called for when exact solution is in-
tractable.

The RLSVI algorithm in (Osband et al. 2017) approxi-
mates the posterior sampling for exploration by using ran-
domized value functions sampled from a posterior distri-
bution. However, its performance is highly dependent on
choosing a reasonable linear representation of the value
function for a given problem. To concurrently perform gen-
eralization and efficient exploration with a flexible nonlin-
ear function approximator, (Osband et al. 2016) proposed
a bootstrapped Deep Q-Network (BootDQN) which learns
and maintains an ensemble of neural networks in parallel,
each trained by a perturbed version of the observed data.
The issue with bootstrapping is that it possesses no mecha-
nism for estimating uncertainty that does not come from the
observed dataset. This restrains BootDQN from performing
well in environments with delayed rewards. A simple rem-
edy was proposed recently in (Osband, Aslanides, and Cas-
sirer 2018) where each of the ensemble members is trained
and regularized to a prior network/function that is fixed after
random initialization. Equivalently, this amounts to adding
a randomized untrainable prior function to each ensemble
member in linear representation. This additive prior mecha-
nism can also be viewed as some form of self-motivation or
curiosity to direct learning and exploration if the agent has
never observed a reward.

Index sampling presented in (Dwaracherla, Van Roy, and
Ibrahimi 2019) in a bandit setting aims to learn a posterior
distribution over value functions with an extra random in-
dex as input. In this paper, we extend this to RL setting
using distributional TD approach. We first present an algo-
rithm for learning a parameterized indexed value function

and the corresponding Bayesian regret analysis. The formu-
lation inspired us to design PINs which combines reinforce-
ment learning with deep learning.

Analysis of Parameterized Indexed Value

Function

We first consider learning a parameterized indexed value
function in a tabular setting. The environment is modelled
as an episodic Markov Decision Process (MDP).

Markov Decision Process Setup

Our MDP formulation is adopted from (Osband et al. 2017),
which is stated as the following assumption.

Assumption 1. The MDPM = (S,A, H,R,P, ρ) is finite-
horizon time-inhomogeneous such that the state space can
be factorized as S = S0∪S1∪· · ·∪SH−1 and each sh ∈ Sh
can be written as a pair sh = (h, x) , x ∈ X for each time
step h ∈ {0, 1, . . . , H − 1} with |X | <∞. Further, we have
|A| < ∞ and P (sh+1 ∈ Sh+1 | sh ∈ Sh, ah) = 1 for any
ah ∈ A, h < H − 1 and the MDP will terminate with
probability 1 after taking action aH−1. Finally, the reward
is always binary, which means thatR (s, a) ∈ {0, 1} for any
s ∈ S, a ∈ A.

Then, for each state-action pair (h, x, a), the transition
leads to an observation of o = (r, x′) pair consisting of the
next x′ ∈ X and a reward r ∈ {0, 1} after taking action a.
We denote this pair o as an outcome of the transition. Let
Ph,x,a be a categorical distribution after taking an action a
in state (h, x) over the 2 |X | possible outcomes, which are
finite because of the binary reward. We make the following
assumption in our analysis:

Assumption 2. With the above setup, for each (h, x, a) ∈
{0, 1, . . . , H − 2} × X × A, the outcome distribution is

drawn from a Dirichilet prior Ph,x,a ∼ Dirichlet
(
α0

h,x,a

)
for α0

h,x,a ∈ R
2|X |
+ , and each Ph,x,a is drawn indepen-

dently. Further, assume that there exists some β ≥ 3 such
that 1Tα0

h,x,a = β for all (h, x, a).

The Dirichilet distribution is chosen because it is a con-
jugate prior of categorical distribution. This helps in sim-
plifying our analysis on Bayesian regret bound. Neverthe-
less, one may extend our analysis to the reward which has a
bounded support in [0, 1] by using techniques from (Agrawal
and Goyal 2012).

We define a policy to be a mapping from S to a proba-
bility distribution over A, and denote the set of all policies
by Π. For any MDPM and policy π ∈ Π, we can define a
value function V π

M,h (x) = EM,π[
∑H−1

t=h rt+1|xh = x] as
the expected sum of rewards starting from x at time step h
and following policy π. Then, the optimal value function can
be defined as V ∗

M,h (x) = maxπ V
π
M,h (x), and the optimal

state-action value function at time h can be defined accord-
ingly:

Q∗
M,h (x, a) =

EM
[
rh+1 + V ∗

M,h+1 (xh+1) | xh = x, ah = a
] (1)

5949

Algorithm for Tabular RL

In this section, we present our algorithm for learning a pa-
rameterized indexed value function in the above tabular set-
ting, which is summarized as Algorithm 1.

Here we explicitly parameterize the state-action value
function in episode l as Ql

Z,h (x, a) = νl (h, x, a) +

ml (h, x, a)Zh,x,a, where Zh,x,a ∼ N (0, 1) is assumed to
be independent for each state-action pair (h, x, a) for the
ease of analysis. To simplify notation, when Z appears as
a subscript of Q function, it implicitly depends on the state-
action input of Q. With a slight abuse of notation, we some-
times use a lowercase subscript Ql

z,h (x, a) = νl(h, x, a) +

ml(h, x, a)zh,x,a as a sampled value function, where zh,x,a
is a sample from a standard Gaussian. Further, let Q ∼
N (

θ̄, σ2
0

)
be a prior of the Q function for all (h, x, a).

Denote Dl−1
h,x,a =

{
(rjh+1, x

j
h+1) | xjh = x, ajh = a, j < l

}
,

which includes all observed transition outcomes for (h, x, a)
up to the start of episode l, and nl (h, x, a) =

∣∣∣Dl−1
h,x,a

∣∣∣.
In the spirit of temporal difference learning, ∀(r, x′) ∈
Dl−1

h,x,a and nl (h, x, a) �= 0, we define a learning target for
our parameterized indexed value function Ql

Z,h (x, a) as:

yl(h, x, a, r, x′) = r +
σZ√

nl (h, x, a)
+ max

a′∈A
Ql

z̃,h+1 (x
′, a′)

where z̃h+1,x′,a′ ∼ N (0, 1) is independently sampled for
each (h+1, x′, a′), σ is a positive constant added to perturb
the observed reward, and Z ∼ N (0, 1) is a standard nor-
mal random variable. This target is similar to the one used
in RLSVI (Osband et al. 2017) except that Z is a random
variable and the added noise σ is divided by

√
nl (h, x, a).

This decay of noise σ is needed to show concentration in the
distribution of value function as we gather more and more
data.

The learning target resembles traditional TD in the sense
that it can be viewed as one-step look-ahead. However, a ran-
dom variable Z is needed in the target for indexing. Specifi-
cally, any realization of Z reduces it to a TD error between a
current estimate at the sampled index and a perturbed scalar
target. To take all values of Z into account, we propose to
match their distributions directly, resulting in a distributional
version of TD learning. We refer it as distributional temporal
difference, or more specifically Wasserstein temporal differ-
ence when p-Wasserstein distance is used as a metric. In the
tabular setting, this leads to the following loss function:

Lp

(
νl (h, x, a) ,ml (h, x, a)

)
=∑

(r,x′)∈Dl−1
h,x,a

Wp

(
Ql

Z,h (x, a) , y
l (h, x, a, r, x′)

)2
, (2)

whereQl
Z,h (x, a) = νl (h, x, a)+ml (h, x, a)Zh,x,a. Here,

Wp(·, ·) is the p-Wasserstein distance between two distribu-
tions. Similarly, we can define a regularization to the prior
as ψp (ν,m) = βWp

(
ν +mZ, Q

)2
, where β = σ2

σ2
0
. There-

fore, when updating the parameters (ν,m), one need to solve
min(ν,m) {Lp + ψp}.

For two Gaussian random variables X ∼ N (
μX , σ

2
X

)
and Y ∼ N (

μY , σ
2
Y

)
the 2-Wasserstein distance between

them is simply W2 (X,Y)
2
= (μX − μY)

2
+ (σX − σY)2.

Therefore, we can minimize L2 + ψ2 exactly by

νl (h, x, a) =∑
(r,x′)∈Dl−1

h,x,a

(
r +maxa′∈AQl

z̃,h+1 (x
′, a′)

)
+ βθ̄

nl (h, x, a) + β

(3)

ml (h, x, a) =

√
nl (h, x, a)σ + βσ0
nl (h, x, a) + β

(4)

By combining these steps, we get Algorithm 1 for tabular
RL. As a sanity check, we see that the standard deviation
term ml will shrink and decrease to zero as nl →∞, which
is achieved by decaying σ by

√
nl in the learning target.

Algorithm 1: Tabular Wasserstein TD (WTD)
1 For all l ∈ {0, 1, . . . , L}, h ∈ {0, . . . , H − 1}, x ∈ X

and a ∈ A, initialize Dl
h,x,a = ∅ and

νl (H,x, a) = ml (H,x, a) = 0
2 for l = 1, . . . , L do
3 Sample z̃h,x,a ∼ N (0, 1) for all x ∈ X , a ∈ A and

h ∈ {0, . . . , H − 1}
4 for h = H − 1, . . . , 0 do
5 for x ∈ X , a ∈ A do

6 Update νl (h, x, a) and ml (h, x, a) using
equations (3) and (4)

7 end

8 end
9 Observe x0

10 Dl
h,x,a ← Dl−1

h,x,a for all x ∈ X , a ∈ A and
h ∈ {0, . . . , H − 1}

11 for h = 0, . . . , H − 1 do

12 Take action ah = argmaxa∈AQ
l
z̃,h (xh, a) and

observe (rh+1, xh+1)
13 Dl

h,xh,ah
← Dl

h,xh,ah
∪ {(rh+1, xh+1)}

14 end

15 end

Bayesian Regret Bound

The following theorem is the main result of our analysis
which establishes a Bayesian regret bound for Algorithm 1.
Theorem 1. Consider an agent WTD with infinite buffer,
greedy actions and an MDP stated in Assumption 1 with
planning horizon H . Under Assumption 2 with β ≥ 3, if
Algorithm 1 is applied with σ2 = 3H2, θ̄ = H and σ2

σ2
0
= β,

for any number of episodes L ∈ N, we have

BayesRegret (WTD, L)

≤ 5H2
√

β |X | |A|L log+ (2 |X | |A|HL) log+

(
1 +

L

|X | |A|
)

= Õ
(
H2

√
|X | |A|L

)

5950

where Õ (·) ignores all poly-logarithmic terms and
log+ (x) = max {1, log (x)}.
Proof. The complete proof is included in the supplemental
material C. Here, we provide a sketch of the proof, whose
framework takes the analysis of RLSVI in (Osband et al.
2017) as reference. We first define a stochastic Bellman op-
erator as follows.
Stochastic Bellman Operator Based on the updating
rules (3) and (4), for a general function Q ∈ R

|X ||A|, Al-
gorithm 1 defines a functional operator Fl,h:

Fl,hQ (x, a) =

∑
(r,x′)∈Dl−1

h,x,a
(r +maxa′∈A Q (x′, a′)) + βθ̄

nl (h, x, a) + β

+

√
nl (h, x, a)σ + βσ0

nl (h, x, a) + β
· Zh,x,a

where Zh,x,a ∼ N (0, 1) is independent from Q. Specif-
ically, with this operator, we have Ql

Z,h = Fl,hQ
l
Z′,h+1,

Z,Z ′ are independent.
Recall the definition of Q∗

M,h in equation (1). We denote
FM,h as the true Bellman operator that satisfies Q∗

M,h =
FM,hQ

∗
M,h+1.

To prove Theorem 1, we resort to the following key
lemma proved in (Osband et al. 2017).

Lemma 1. Let
(
Ql

Z,0, . . . , Q
l
Z,H

)
be the sequence of

state-action value function learned by Algorithm 1, where
Ql

Z,H = 0, and πl be the greedy policy based on these Q-
values. For any episode l ∈ N, if we have

E

[
max
a′∈A

Ql
Z,0

(
xl0, a

′)] ≥ E

[
max
a′∈A

Q∗
M,0

(
xl0, a

′)] (5)

then, by defining Δl = V ∗
M,0

(
xl0

)−V πl

M,0

(
xl0

)
, we can have

E [Δl] ≤ E

[
H−1∑
h=0

(
(Fl,h − FM,h)Q

l
Z,h+1

) (
xlh, a

l
h

)]
(6)

In order to use the bound (6), it is necessary to verify that
the condition (5) is satisfied by our Algorithm 1. To achieve
this, we resort to the concept of stochastic optimism, which
is defined as the following:

Stochastic Optimism A random variable X is stochasti-
cally optimistic with respect to another random variable Y ,
denoted as X ≥SO Y , if E [u (X)] ≥ E [u (Y)] holds for all
convex increasing function u : R �→ R.

If Assumption 2 holds, by additionally assuming some
technical conditions on parameters σ2, θ̄ and β, it is possible
to show that

Ql
Z,0 (x, a) | Hl−1 ≥SO Q∗

M,0 (x, a) | Hl−1

for any history Hl−1 =
⋃l−1

k=1

{(
h, xkh, a

k
h, r

k
h+1

) | h < H
}

and (x, a) ∈ X ×A.
By using Lemma 2 in (Osband et al. 2017) on preservation

of optimism, we can then further show that

EHl−1

[
max
a′∈A

Ql
Z,0

(
xl0, a

′)] ≥ EHl−1

[
max
a′∈A

Q∗
M,0

(
xl0, a

′)]
Therefore, condition (5) can be obtained by simply taking
expectation over all possibleHl−1.

Towards Regret Bound After verifying condition (5), we
can then apply bound (6) in Lemma 1 to our Algorithm 1 to
get

BayesRegret (WTD, L) = E

[
L∑

l=1

Δl

]

≤ E

[
L∑

l=1

H−1∑
h=0

(
(Fl,h − FM,h)Q

l
Z,h+1

) (
xlh, a

l
h

)]
Finally, after some algebraic manipulations, it is possible

to bound this term by Õ
(
H2

√
L |X | |A|

)
, which completes

the proof.

Parameterized Indexed Networks

Previously we have proved the efficiency of Wasserstein
TD for learning a parameterized indexed value function in
the tabular setting. We next discuss the application of this
methodology to deep RL. We note that some of the con-
ditions to derive Theorem 1 are violated in most cases of
deep RL, which puts us in the territory of heuristics. More
precisely, technical conditions on parameters σ2, θ̄ may
not hold, the number of visitations nl (h, x, a) cannot be
counted in general, and as we will see soon that the in-
dependence among sampled z̃’s (in Algorithm 1) required
for analysis can be violated owing to algorithmic consider-
ations. Nevertheless, insights from the previous algorithm
helped us for our design of a deep learning algorithm that
can perform well in practice.

We first recall the essence of index sampling, which aims
to effectively sample one value function from posterior by
sampling an index z ∼ N (0, 1). To induce temporally con-
sistent exploration or deep exploration (Osband et al. 2016),
the agent needs to follow a greedy policy according to the
sampled value function in the next episode of interaction.
This insight bears a resemblance to the idea of Thompson
sampling (Thompson 1933) for balancing between explo-
ration and exploitation, and it amounts to sampling one sin-
gle zl per episode in index sampling. A general algorithm
describing the interaction between an agent with index sam-
pling (IS) and its environment is summarized in Algorithm
2 live IS. Note that we use live IS as an off-policy algorithm
since the agent samples from a replay buffer containing pre-
viously observed transitions to obtain its current policy (in
line 3).

We realize that for any realization of zl that is fixed
within an episode, applying the updating rules for action-
value function (3) and (4) in the tabular case then gives

Ql
zl,h (x, a) =

∑
(r,x′)∈Dl−1

h,x,a

(
r +Ql

zl,h+1
(x′, ã)

)
+ βθ̄

nl (h, x, a) + β

+

√
nl (h, x, a)σ + βσ0

nl (h, x, a) + β
zl

=

∑
(r,x′)∈Dl−1

h,x,a

(
r + νl (h+ 1, x′, ã)

)
+ βθ̄

nl (h, x, a) + β

+

√
nl (h, x, a)σ + βσ0 +

∑
(r,x′)∈Dl−1

h,x,a
ml (h+ 1, x′, ã)

nl (h, x, a) + β
zl

5951

Algorithm 2: live IS

Input: agent, environment
1 for l in (1, 2, . . .) do

2 Sample zl ∼ N (0, 1)
3 agent.learn from buffer()
4 history← environment.reset()
5 while history is not terminal do

6 action← agent.act(history)
(
zl
)

7 history← environment.step(action)
8 end
9 agent.update buffer(history)

10 end

where ã = argmaxa′∈AQ
l
zl,h+1 (x

′, a′) is the best action
with respect to the sampled value function at the next time
step. Notice that this update for Q function is equivalent to
compute the minimization of the distributional loss (2) with
a modified target:(

νl (h, x, a) ,ml (h, x, a)
)
=

min
ν,m

∑
(r,x′)∈Dl−1

h,x,a

W2

(
ν +mZ, ỹl

)2
+ ψ2 (ν,m) ,

where

ỹl (h, x, a, r, x′) = r +
σZ√

nl (h, x, a)
+Ql

Z,h+1 (x
′, ã)

= r + νl(h+ 1, x′, ã)︸ ︷︷ ︸
mean target

+(
σ√

nl (h, x, a)
+ml(h+ 1, x′, ã))

︸ ︷︷ ︸
uncertainty target

Z

Note that in target ỹl the subscript Z is a random variable
instead of a realization. We see that the uncertainty measure
at the next step h + 1 is propagated into the uncertainty at
the current step h. Although derived from a completely dif-
ferent perspective, this is consistent with previous findings
in (O’Donoghue et al. 2017).

Network Design

According to the above derivation from index sampling,
Wasserstein TD for learning a parameterized indexed value
function is essentially trying to fit the point estimate ν(s, a)
and the uncertainty estimate m(s, a) to their one-step look-
head mean target and uncertainty target respectively as illus-
trated in ỹl. When W2(·, ·) is used as metric, this reduces to
minimizing two separate squared errors. Hence, we propose
to use a dual-network architecture named Parameterized In-
dexed Networks (PINs) for deep RL consisting of a mean
network for learning ν(s, a) and an uncertainty network for
learningm(s, a). The two networks are joined by a Gaussian
with index Z ∼ N (0, 1).

Let θ = (φ, ω) be parameters of the trainable/online
PINs, where φ, ω are parameters of the mean and the un-
certainty network respectively, and let θ̃ = (φ̃, ω̃) be the
parameters of the target nets (Mnih et al. 2015). Then, in
learn from buffer() of Algorithm 2, the agent is essentially

trying to minimize the following distributional loss:

Ldist

(
θ, θ̃, D̃

)
= βW2

(
Qθ,Z , Q

)2
+

∑
(s,a,r,s′)∈D̃

W2

(
Qθ,Z (s, a) , r + σ(l)Z + γQθ̃,Z (s′, ā)

)2

where Q is a prior distribution, β is a prior scale which is
treated as a hyperparameter, Z ∼ N (0, 1), γ is a discount
factor, D̃ represents sampled minibatch of data consisting of
past transitions from a replay buffer, and σ(l) is a pertur-
bation added to observed reward r. Further, being consistent
with our previous analysis, we can consider slowly decaying
the added noise variance σ (l)2 after each episode of learn-
ing to improve concentration.

For action selection in the learning target, we find
empirically that the ã, obtained by taking argmax
on the sampled value function, can sometimes af-
fect learning stability. Therefore, we instead use ā ∈
argmaxa′∈A E

[
Qθ̃,Z′ (s′, a′)

]
= argmaxa′∈A νφ̃(s

′, a′)
for action selection, and the mean network reduces to a Deep
Q-Network. We include a performance comparison between
ã and ā for action selection in supplemental material B.

MLP MLP Prior MLP MLP Prior

*+

+ *

+ *

Figure 1: Parameterized Indexed Networks

The overall architecture of PINs is depicted in Figure 1.
We incorporate a prior mechanism by following (Osband,
Aslanides, and Cassirer 2018), where each trainable network
is paired with an additive prior network. Instead of explic-
itly regularizing to a prior, i.e. the βW2

(
Qθ,Z , Q

)2
term in

Ldist, we add a randomized prior function to the Q function
(Osband, Aslanides, and Cassirer 2018). The prior networks
share the exact same architecture as their paired trainable
networks and are fixed after random initialization. The struc-
ture of the uncertainty network is different from that of the
mean network in the following manner:
• Softplus (Glorot, Bordes, and Bengio 2011) output layer

to ensure non-negativity in output values;
• Multiple bootstrapped output heads to encourage diver-

sity in uncertainty estimates: the last hidden layer of the
uncertainty net spins out U different output heads. Head

5952

0 2000 4000 6000

0

2000

4000

N = 15

0 2000 4000 6000

N = 20

0 2000 4000 6000

N = 25

0 2000 4000 6000

N = 30

0 2000 4000 6000

0

2000

4000

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0 2000 4000 6000

0

2000

4000

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0 2000 4000 6000

0

2000

4000

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0 2000 4000 6000

0

2000

4000

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

BSP5

BSP7

BSP10

BS10

episode

cu
m
ul
at
iv
e
re
w
ar
d

seed1 seed2 seed3 seed4 seed5

Deep-sea

PINs

Figure 2: Comparison on cumulative reward with different problem size Ns among PINs, BSP5, BSP7, BSP10 and BS10

u ∈ {1, . . . , U} maps the input state s to uncertainty es-
timates mu

ω(s, a) for all a ∈ A. Despite that all but the
output layer are shared among different heads, we pro-
mote diversity by (1) applying a bootstrap mask Ber(0.5)
to each output head so that data in buffer is not completely
shared among heads (Osband et al. 2016), and (2) each
head is paired and trained together with a slightly differ-
ent prior m̄u

ω̄(s, a).

For each episode l, we first sample an index zl ∼ N (0, 1)
and an output head u ∼ Unif({1, . . . , U}). The agent then
acts greedily with respect to the sampled value function with
additive priorsQu

zl = ν+muzl+β1ν̄+β2m̄
uzl for consis-

tent exploration in episode l, where β1, β2 are scaling hyper-
parameters for the mean prior and the uncertainty prior, re-
spectively. Here the additive prior distribution can be seen
as Q

u

zl = β1ν̄ + β2m̄
uzl. A detailed training algorithm for

PINs is included in supplemental material A.

Experimental Results
We evaluate the performance of PINs on two benchmark
problems, Deep-sea and Cartpole Swing-up, that highlight
the need for deep exploration from Deepmind bsuite (Os-
band et al. 2019), and compare it with the state-of-the-art en-
semble sampling methods: the bootstrapped DQN with ad-
ditive prior networks (BSPK) (Osband, Aslanides, and Cas-
sirer 2018) and the bootstrapped DQN without prior mech-
anism (BSK) (Osband et al. 2016), where K denotes the
number of networks in the ensemble.

Deep-sea

Deep-sea is a family of grid-like deterministic environments
(Osband et al. 2017), which are indexed by a problem size
N ∈ N, with N × N cells as states, and sampled action
mask Mij ∼ Ber(0.5), i, j ∈ {1, . . . , N}. Action set A =
{0, 1}, and at cell (i, j), Mij represents action “left” and
1 −Mij represents action “right”. The agent always starts
in the upper-left-most cell at the beginning of each episode.
At each cell, action “left” (“right”) takes the agent to the

5953

cell immediately to the left (right) and below. Thus, each
episode lasts exactly N time steps and the agent can never
revisit the same state within an episode. No cost or reward is
associated with action “left”. However, taking action “right”
results in a cost of 0.01/N in cells along the main diagonal
except the lower-right-most cell where a reward of 1 is given
for taking action “right”. Therefore, the optimal policy is
picking action “right” at each step giving an episodic reward
of 0.99. All other policies generate zero or negative rewards.
The usual dithering methods will need Ω

(
2N

)
episodes to

learn the optimal policy, which grows exponentially with the
problem size N .

Figure 2 shows the cumulative reward of our PINs and
various ensemble models on Deep-sea with four different
sizes N = 15, 20, 25, 30 for 6K episodes of learning. Each
approach is evaluated over 5 different random seeds. We
consider that the agent has learned the optimal policy when
there is a linear increase in cumulative reward by the end
of training. For example, our agent with PINs successfully
learned the optimal policy in 3/5 seeds when N = 30, in
4/5 seeds when N = 25 within 6K episodes. All networks
are MLP with 1 hidden layer. For PINs, the mean network
has 300 units and the uncertainty network has 512 units with
U = 10 output heads in the output layer. We set σ = 2
for the added noise without any decay for experiments on
Deep-sea, and β1 = β2 = 2. For ensemble models (Osband,
Aslanides, and Cassirer 2018), each single network in the
ensemble contains 50 hidden units, and we set prior scale
β = 10 for BSP as recommended in (Osband, Aslanides,
and Cassirer 2018). For BS, we simply let β = 0 to ex-
clude the prior mechanism. For all bootstrapping, we use
Bernoulli mask with p = 0.5. We see that the performance
of PINs is comparable to that of ensemble methods BSP5

and BSP7 with additive priors. Also, note that the PINs are
relatively more efficient in computation as PINs only require
2 back-propagations per update while BSPK need K back-
ward passes per update. In addition, even equipped with 10
separate networks, BS10 struggles to learn the optimal pol-
icy as N increases, which highlights the significance of a
prior for efficient exploration.

Conceptually, the main advantage of our PINs is that it
distributes the tasks of learning an value function and mea-
suring uncertainty in estimates into two separate networks.
Therefore, it is possible to further enhance exploration by
using a more carefully-crafted and more complex design
of the uncertainty network and its prior without concerning
about the stability of learning in the mean network. As an
example, a more delicate design that induces diverse uncer-
tainty estimates for unseen state-action pairs can potentially
drive exploration to the next-level. We consider experiment-
ing with different architectures of the uncertainty network as
our future work.

Cartpole Swing-up

We next present our results on a classic benchmark prob-
lem: Cartpole Swing-up (Sutton and Barto 2018), (Osband et
al. 2019), which requires learning a more complex mapping

0 500 1000 1500 2000 2500 3000

episode

0

200

400

600

800

sm
o
ot
h
ed

ep
is
o
d
ic

re
w
ar
d

PINs
BSP5

BSP7

BSP10

Cartpole Swing-up

Figure 3: Comparison on smoothed episodic reward: each
point is the maximum episodic reward within the most re-
cent 100 episodes. We plot the average performance over 5
random seeds for each method and the shaded area repre-
sents +/− standard deviation.

from continuous states1 to action values. Unlike the original
cartpole, the problem is modified so that the pole is hanging
down initially and the agent only receives a reward of 1 when
the pole is nearly upright, balanced, and centered2 Further, a
cost of 0.05 is added to move the cart and the environment
is simulated under timescale of 0.01s with a maximum of
1000 time-steps per episode.

Figure 3 shows a comparison on smoothed episodic re-
ward in 3000 episodes of learning over 5 different random
seeds. We failed to train a BS10 agent that can learn a perfor-
mant policy on this environment; thus, the results are omit-
ted. To demonstrate computational savings of PINs, all net-
works used here have 3 hidden layers with 50 units in each
layer. Besides, the uncertainty network spins out only U = 2
output heads. For added noise in PINs, we use σ = 2 and
linearly decay it to 1 over the course of training to promote
concentration in the approximate posterior distribution. As
for prior scale, we use β1 = β2 = 2 for our PINs, and
β = 30 for BSP as in (Osband, Aslanides, and Cassirer
2018). We see that PINs achieved similar performance to
that of the ensemble models but with only two separate neu-
ral networks. Additionally, although PINs seem to progress
slowly compared to BSPK , they exhibit smaller variance in
performance by the end of learning. This experiment demon-
strates the computational efficiency that can be brought by
PINs and by index sampling for representing uncertainty in
action-value estimates.

1A 8 dimensional vector in bsuite where we set the threshold of
position x to be 5.

2Reward 1 only when cos(θ) > 0.95, |x| < 1, |ẋ| < 1 and
|θ̇| < 1.

5954

Conclusion

In this paper, we present a parameterized indexed value
function which can be learned by a distributional version of
TD. After proving its efficiency in the tabular setting, we in-
troduce a computationally lightweight dual-network archi-
tecture, Parameterized Indexed Networks (PINs), for deep
RL and show its efficacy through numerical experiments. To
the best of our knowledge, we lead the first study of index
sampling to achieve efficient exploration in the field of RL.

However, several open questions are still left unanswered.
It would be worthwhile to explore other designs for uncer-
tainty and prior networks, and experiment with other distri-
butional metrics to see if one can obtain stronger theoretical
guarantees and/or better empirical performance. It would be
very7 interesting to combine the ideas of PINs with more ad-
vanced neural architectures such as convolutional networks,
and evaluate its performance on Atari games with sparse re-
wards. We leave this and many possible extensions of PINs
as our future work, and we hope that this work can serve as
a starting point for future studies on the potential of index
sampling for efficient RL.

Acknowledgement

We thank Benjamin Van Roy, Chengshu Li for the insightful
discussions, and Rui Du for comments on the earlier drafts.

References

Agrawal, S., and Goyal, N. 2012. Analysis of thompson
sampling for the multi-armed bandit problem. In Conference
on Learning Theory, 39–1.
Dwaracherla, V. R.; Van Roy, B.; and Ibrahimi, M. 2019.
Posterior sampling networks. In Reinforcement Learning
and Decision Making Conference, 366–370.
Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, I.;
Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.;
et al. 2017. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059.
Ghavamzadeh, M.; Mannor, S.; Pineau, J.; Tamar, A.; et al.
2015. Bayesian reinforcement learning: A survey. Founda-
tions and Trends R© in Machine Learning 8(5-6):359–483.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 315–323.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient
bayes-adaptive reinforcement learning using sample-based
search. In Advances in neural information processing sys-
tems, 1025–1033.
He, J.; Chen, J.; He, X.; Gao, J.; Li, L.; Deng, L.; and Osten-
dorf, M. 2015. Deep reinforcement learning with a natural
language action space. arXiv preprint arXiv:1511.04636.

Lu, X., and Van Roy, B. 2017. Ensemble sampling. In
Advances in neural information processing systems, 3258–
3266.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
O’Donoghue, B.; Osband, I.; Munos, R.; and Mnih, V. 2017.
The uncertainty bellman equation and exploration. arXiv
preprint arXiv:1709.05380.
Osband, I., and Van Roy, B. 2017. Why is posterior sam-
pling better than optimism for reinforcement learning? In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 2701–2710. JMLR. org.
Osband, I.; Aslanides, J.; and Cassirer, A. 2018. Random-
ized prior functions for deep reinforcement learning. In
Advances in Neural Information Processing Systems, 8617–
8629.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped dqn. In Advances in neu-
ral information processing systems, 4026–4034.
Osband, I.; Van Roy, B.; Russo, D.; and Wen, Z. 2017. Deep
exploration via randomized value functions. arXiv preprint
arXiv:1703.07608.
Osband, I.; Doron, Y.; Hessel, M.; Aslanides, J.; Sezener,
E.; Saraiva, A.; McKinney, K.; Lattimore, T.; Szepesvári, C.;
Singh, S.; Van Roy, B.; Sutton, R.; Silver, D.; and van Has-
selt, H. 2019. Behaviour suite for reinforcement learning.
Russo, D. J.; Van Roy, B.; Kazerouni, A.; Osband, I.; and
Wen, Z. 2018. A tutorial on thompson sampling. Founda-
tions and Trends R© in Machine Learning 11(1):1–96.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research 15(1):1929–1958.
Strens, M. 2000. A bayesian framework for reinforcement
learning. In ICML, volume 2000, 943–950.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tan, T.; Bao, F.; Deng, Y.; Jin, A.; Dai, Q.; and Wang, J.
2019. Cooperative deep reinforcement learning for large-
scale traffic grid signal control. IEEE transactions on cyber-
netics.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4):285–294.
Touati, A.; Satija, H.; Romoff, J.; Pineau, J.; and Vincent, P.
2018. Randomized value functions via multiplicative nor-
malizing flows. arXiv preprint arXiv:1806.02315.

5955

