
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks

Yehui Tang,1∗ Yunhe Wang,2 Yixing Xu,2 Boxin Shi,4,5 Chao Xu,1 Chunjing Xu,2 Chang Xu3

1Key Lab of Machine Perception (MOE), CMIC, School of EECS, Peking University, China
2Huawei Noah’s Ark Lab, 3School of Computer Science, Faculty of Engineering, The University of Sydney, Australia

4National Engineering Laboratory for Video Technology, Peking University, 5Peng Cheng Laboratory
{yhtang, shiboxin}@pku.edu.cn, {yunhe.wang, xuyixing, xuchunjing}@huawei.com,

chaoxu@cis.pku.edu.cn, c.xu@sydney.edu.au

Abstract

Deep neural networks often consist of a great number of train-
able parameters for extracting powerful features from given
datasets. One one hand, massive trainable parameters sig-
nificantly enhance the performance of these deep networks.
One the other hand, they bring the problem of over-fitting.
To this end, dropout based methods disable some elements in
the output feature maps during the training phase for reduc-
ing the co-adaptation of neurons. Although the generalization
ability of the resulting models can be enhanced by these ap-
proaches, the conventional binary dropout is not the optimal
solution. Therefore, we investigate the empirical Rademacher
complexity related to intermediate layers of deep neural net-
works and propose a feature distortion method for addressing
the aforementioned problem. In the training period, randomly
selected elements in the feature maps will be replaced with
specific values by exploiting the generalization error bound.
The superiority of the proposed feature map distortion for
producing deep neural network with higher testing perfor-
mance is analyzed and demonstrated on several benchmark
image datasets.

Introduction

The superiority of deep neural networks, especially convolu-
tional neural networks (CNNs) has been well demonstrated
in a large variety of computer vision tasks including im-
age recognition (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016a; Wang et al. 2018a), object detection (Ren
et al. 2015; Redmon et al. 2016), video analysis (Feichten-
hofer, Pinz, and Zisserman 2016), Natural Language Pro-
cessing (Wang, Li, and Smola 2019) etc. Actually, the huge
success of deep CNNs should be attributed to the larger
number of trainable parameters and available annotation
data, e.g. the ImageNet (Deng et al. 2009) dataset with over
1 million images from 1000 different categories.

Since deep networks are often over parameterized for
achieving higher performance on the training set, an impor-
tant problem is to avoid over-fitting, i.e. the excellent perfor-
mance achieved on the train set is expected to be repeated
on the test set (Hinton et al. 2012; Wang et al. 2018b). In

∗This work was done while visiting Huawei Noah’s Ark Lab.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other words, the empirical risk should be closed to the ex-
pected risk. To this end, (Hinton et al. 2012) first proposed
the conventional binary dropout approach, which reduces
the co-adaptation of neurons by stochastically dropping part
of them in the training phase. This operation can be either
regarded as a model ensemble technique or a data augmenta-
tion method, which significantly enhances the performance
of the resulting network on the test set.

To improve the performance of dropout implemented on
deep neural networks, (Ba and Frey 2013) adaptively ad-
justed the dropout probability of each neuron by interleaving
a binary belief network into the neural networks. Gaussian
Dropout (Srivastava et al. 2014) multiplying the outputs of
the neurons by Gaussian random noise is equal to the con-
ventional binary dropout. It was further analyzed from the
perspective of Bayesian regularization and the dropout prob-
ability can be optimized automatically (Kingma, Salimans,
and Welling 2015). Instead of disabling the activation, Drop-
Connect (Wan et al. 2013) randomly set a subset of net-
work weights to zero. (Wan et al. 2013) derived a bound
on the generalization performance for Dropout and Drop-
Connect. (Zhai and Wang 2018) connected the bound with
drop probability and optimized the dropout probability to-
gether with network parameters during the training. Focus-
ing on the convolutional neural networks, (Ghiasi, Lin, and
Le 2018) proposed to drop contiguous regions of a feature
map to obstruct the information flow more radically.

Existing variants of dropout have made tremendous ef-
forts for minimizing the gap between the expected risk and
the empirical risk, but they all follow the general idea of dis-
abling parts of the output of an arbitrary layer in the neural
network. The essence of the success is to randomly obscure
part of semantic information extracted by the deep neural
network and avoid the massive parameters to over-fit the
training set. Setting a certain number of the elements in the
feature map to zero is a straightforward way to disturb the
information propagation across layers in the neural network,
but it is by no means the only way to accomplish this goal.
Most importantly, such sort of hand-crafted operations are
hardly to be the optimal ones in most cases.

In this work, we propose a novel approach for enhancing
the generalization ability of deep neural networks by inves-

5964



tigating the distortion on the feature maps. The generaliza-
tion error bound of the given deep neural network is estab-
lished in terms of the Rademacher complexity of its interme-
diate layers. Distortion is introduced onto the feature maps
to decrease the associated Rademacher complexity, which is
then beneficial for improving the generalization ability of
the neural network. Besides minimizing the general clas-
sification loss, the proposed distortion can simultaneously
minimize the expected and empirical risks by adding distor-
tions on feature maps. An extension to convolutional layers
and corresponding optimization details are also provided.
Experimental results on benchmark image datasets demon-
strate that deep networks trained using the proposed feature
distortion method perform better than those generated using
state-of-the-art methods.

Preliminary

Dropout is a prevalent regularization technology to alleviate
over-fitting of models and has achieved great success. It has
been demonstrated dropout can improve the generalization
ability of models both theoretically (Wan et al. 2013) and
practically (Srivastava et al. 2014). In this section, we briefly
introduce the generalization theory and dropout method.

Generalization Theory

Generalization theory focuses on the relation between the
expected risk and the empirical risk. Considering an L-
layer neural network fL ∈ F , and a labeled dataset D =

{(xi,yi)}Ni=1 sampled from the ground-truth distribution
Q ∈ X × Y , in which xi ∈ X and yi ∈ Y . Denote the
weight matrix as Kl ∈ R

dl×dl−1

in which dl is the dimen-
sion of the feature map of l-th layer, and the corresponding
output features before and after activation functions φ of the
l-th layer as ol ∈ R

dl

and f l ∈ R
dl

, respectively. Omitting
bias, we have f l+1(xi) = φ(ol+1(xi)) = φ(Kl+1f l(xi)).
For simplicity, we further refer K:l as {K1, · · · ,Kl}.

Taking the image classification task as an example, the
expected risk R(fL) over the population and the empirical
risk R̂(fL) on the training set can be formulated as:

R(fL) = E
(x,y)∼Q

[[�(fL(x,K:L),y)]], (1)

R̂(fL) =
1

N

∑
(xi,yi)∈D

�(fL(xi,K:L),yi), (2)

where �(·) denotes 0-1 loss. Various techniques have been
developed to quantify the gap between the expected risk and
the empirical risk, such as PAC learning (Hanneke 2016)
, VC dimension (Sontag 1998) and Rademacher complex-
ity (Koltchinskii, Panchenko, and others 2002). Wherein, the
empirical Rademacher complexity (ERC) has been widely
used as it often leads to a much tighter generalization error
bound. The formal definition of ERC is given as follows:

Definition 1 For a given training dataset with N instances
D = {(xi,yi)} generated by the distribution Q, the em-
pirical Rademacher complexity of the function class of the

network fL is defined as:

R̃D(fL) =
1

N
E
σ

∣∣∣∣∣ supk,K:L

N∑
i=1

σif
L(xi,K:L)[k]

∣∣∣∣∣ , (3)

where Rademacher variables σ = {σ1, · · · , σN}, σi’s
are independent uniform random variables in {-1,+1} and
fL(xi,K:L)[k] is the k-th element in fL(xi,K:L).

Using empirical Rademacher complexity and MaDiarmid’s
inequality, the upper bound of the expected risk R(fL) can
be derived by Theorem 1 (Koltchinskii, Panchenko, and oth-
ers 2002).

Theorem 1 Given a fixed ρ > 0, for any δ > 0, with prob-
ability at least 1− δ, for all fL ∈ F

R(fL) ≤ R̂(fL) +
2(dL)2

ρ
R̃D(fL)

+

(
1 +

2(dL)2

ρ

)√
ln 1

δ

2N
,

(4)

where dL denotes the output dimension of the network.

According to Theorem 1 we can find that the gap between
expected and empirical risks can be bounded with the help
of the empirical Rademacher complexity R̃D(f) over the
specific neural network and dataset. Directly calculating the
ERC is vary hard (Kawaguchi, Kaelbling, and Bengio 2017),
and thus the upper bound or approximate values of the ERC
are usually used in the training phase for obtaining models
with better generalization (Kawaguchi, Kaelbling, and Ben-
gio 2017; Zhai and Wang 2018). (Kawaguchi, Kaelbling,
and Bengio 2017) obtained models with better generaliza-
tion by decreasing a regularization term related to the ERC.
The effectiveness of decreasing ERC in previous works in-
spires us to leverage ERC to refine the conventional dropout
methods.

Dropout

Dropout is a classical and effective regularization tech-
nology to improve the generalization capability of mod-
els. There are many variants of dropout,e.g. variational
dropout and (Kingma, Salimans, and Welling 2015) Drop-
Block (Ghiasi, Lin, and Le 2018)). Most of them follows the
technology of disabling part elements of the feature maps.
In general, these methods can be formulated as:

f̂ l(xi) = f l(xi)−ml
i ◦ f l(xi), (5)

where ◦ denotes the element-wise product, f l(xi)
1 and

f̂ l(xi) are the original feature and distorted features, re-
spectively. In addition, ml

i ∈ {0, 1}d
l

is the binary mask
applied on feature map f l(xi), and each element in ml

i is
draw from Bernoulli distribution, i.e. set to 1 with the drop-
ping probability p. Admittedly, implementing dropout on the
features in the training phase will force the given network

1Without ambiguity, f l(xi,K:l) is denoted as f l(xi) for sim-
plicity.

5965



paying more attentions on those non-zero regions, and par-
tially solve the “over-fitting”. However, disabling the origi-
nal feature is a heuristic approach and may not always leads
to the optimal solution for addressing the aforementioned
over-fitting problem in deep neural networks.

Approach

Instead of fixing the value of perturbation, we aim to learn
the distortion of the feature map by reducing the ERC of the
network. Generally, the disturbing operation employed on
the output feature f l(xi) of the l-th layer with input data xi

can be formulated as:

f̂ l(xi) = f l(xi)−ml
i ◦ εli, (6)

where εli ∈ R
dl

is the distortion applied the on feature map
f l(xi). Compared to the dropout method (Eq. (5)) which
manually set the distortion as εli = f l(xi), Eq. (6) auto-
matically learns the form of distortion in the guide of ERC.
Directly using R̃D(fL) which is the ERC of the network to
guide the distortion εli is very hard. Since R̃D(fL) is calcu-
lated on the final layer w.r.t. the output of the neural network,
and it is difficult to trace the intermediate feature maps of
the neural network during the training phase. Hence, we re-
formulate R̃D(fL) by considering the output feature of an
arbitrary layer, and obtain the following theorem based on
(Wan et al. 2013).

Theorem 2 Let Kl[k, :] denotes the k-th row of the weight
matrix Kl and ‖ · ‖p is the p-norm of vector. Assume that
‖Kl[k, :]‖p ≤ Bl, and then the ERC of output can be
bounded by the ERC of intermediate feature:

R̃D(fL) ≤ 2R̃D(oL) ≤ 2BLR̃D(fL−1) ≤ · · ·

≤ 2L−tR̃D(f t)

L∏
l=t+1

Bl ≤ 2L−t+1R̃D(ot)

L∏
l=t+1

Bl,
(7)

where ol and f l are the feature maps before and after acti-
vation function respectively.

The above theorem shows that the ERC of the network
R̃D(fL) is upper bounded by the ERC of output feature
R̃D(f t) or R̃D(ot) of t-th layer 2. Thus, decreasing R̃D(f t)

or R̃D(ot) can heuristically decrease R̃D(fL). Note that f t

is the feature map of arbitrary intermediate layer t of the
network, and the distortion is also applied on intermediate
features. Thus, R̃D(f t) or R̃D(ot) is used to guide the dis-
tortion in the following.

Feature Map Distortion

In this section, we will illustrate the way of decreasing ERC
by applying the distortion εl on the feature map of l-th layer

2The definition of R̃D(f t) and R̃D(ot) in t-th layer
has the same form as Definition 1, i.e. R̃D(f t) =
1
N

Eσ

∣∣∣supk,K:t

∑N
i=1 σif

t(xi,K:t)[k]
∣∣∣ and R̃D(ot) =

1
N

Eσ

∣∣∣supk,K:t

∑N
i=1 σio

t(xi,K:t)[k]
∣∣∣

f l(xi). By doing so, all the ERCs in the subsequent lay-
ers will be affected, and R̃D(ot) satisfying l < t ≤ L can
guide the distortion εl of l-th layer. Recall that in theorem
2, the closer a layer is to the output layer, the tighter the
upper bound of the ERC of the whole network is, and may
reduce R̃D(fL) more effectively. However, if t� l, the re-
lationship between R̃D(ot) and εl becomes complex and it
is difficult to guide εl with R̃D(ot). Thus, we use the ERC
of (l + 1)-th layer R̃D(ol+1) to guide the distortion εl in
l-th layer. Specifically, we reduce R̃D(ol+1) by optimizing
εl. Denoting

gl(x) =

N∑
i=1

σif̂ l(xi), (8)

for simplicity, gl(x) ∈ R
dl

has the same dimension as fea-
ture map f l(xi). And then, R̃D(ol+1) is calculated as:

R̃D(ol+1) =
1

N
E
σ

sup
k,K:l+1

∣∣〈Kl+1[k, :]T , gl(x)
〉∣∣ , (9)

whereKl+1[k, :] ∈ R
1×dl

denotes the k-th row of the weight
matrix Kl+1 and K:l+1 = {K1,K2, · · · ,Kl+1}. An ideal
εl will reduce the ERC of the next layer R̃D(ol+1) while
preserving the representation power.

During the training phase, considering a mini-batch x̄ =
{x1,x2, · · ·xN̄} with N̄ samples, the mask and distor-
tion of the l-th layer are ml = {ml

1,m
l
2, · · · ,ml

N̄
} and

εl = {εl1, εl2, · · · , εlN̄}, respectively. Taking the classifi-
cation problem as an example, the weights of the network
are updated via minimizing the cross-entropy loss. Based on
the current updated weights Kl and Rademacher variables
σ̄ = {σ1, σ2, · · · , σN̄}, the optimized disturbance ε̂l is ob-
tained by solving the optimization problem:

ε̂l = arg min
εl

T (x̄, εl), l = 1, 2, · · · , L (10)

where

T (x̄, εl)

=
1

N̄

⎡
⎣sup

k

∣∣〈Kl+1[k, :]T , gl(x̄)
〉∣∣+ λ

2

N̄∑
i=1

‖εli‖22

⎤
⎦ ,

(11)

in which ‖ · ‖2 denotes the l2-norm of the vector and λ is
a hyper-parameter balancing the objective function and the
intensity of distortion. Intuitively, a violent distortion will
destroy the original feature and reduce the representation
power.

Optimization of the Distortion

Our goal is to reduce the first term in Eq. (11) related to
ERC while constraining the intensity of distortion εli. Note
that the conventional dropout which sets εli = f l(xi) also
achieves the similar goal in a special situation. When the
drop probability p = 1 and all the elements in mask ml

i

are set to 1, the distortion εli = f l(xi) makes gl(x̄) = 0
and thus the first term in Eq. (11) is zero, showing that the

5966



dropout also has the potential to reduce ERC. However, the
semantic information is also dropped away and the network
will make random guess. In the general case where p < 1,
the conventional dropout disables part of the feature maps,
which may decrease the value of T (x̄, εl), but there is no ex-
plicit interaction with the empirical Rademacher complex-
ity. We choose f l(xi) as the initial value of εli and opti-
mize Eq. (10) with gradient descent. The partial derivative
of T (x̄, εl) w.r.t. εli is calculated as:

∂T (x̄, εl)
∂εli

= − 1

N̄
σisk̂K

l+l[k̂, :]T ◦ml
i +

λ

N̄
εli, (12)

where

k̂ = arg max
k

∣∣〈Kl+1[k, :]T , gl(x̄)
〉∣∣ , (13)

sk̂ = sign
〈
Kl+1[k̂, :]T , gl(x̄)

〉
. (14)

Eq. (13) chooses the row of weight matrix to obtain the max-
imum inner product

〈
Kl+1[k, :]T , gl(x̄)

〉
and Eq. (14) cal-

culates the sign of the inner product. The equations above
show that the optimization of distortion εl is related to
the feature f l(xi) and the weight Kl+1 in the following
layer. Note that precisely calculating the gradient ∂T (x,εl)

∂εl
i

is time-consuming and not necessary, and it can be ap-
propriately estimated without much influence of the per-
formance. Rademacher variable σi is randomly sampled
from {±1} with equal probability (Definition 1), and thus
the impact of sk̂ can be neglected. Selecting the row in-
dex k of Kl+1 is also related to the random variable σi,
and hence we leverage the random variables to approximate
the process. Denote Kl+1

M = [max(Kl+1[:, 1]),max(Kl+1[:
, 2]), · · · ,max(Kl+1[:, dl])]T in which the j-th element is
the maximum value of the j-th column of weight matrix
Kl+1. Then the gradient ∂T (x,εl)

∂εl
i

is approximated as:

∂T l+1

∂εli
≈ − 1

N̄
σiu ◦ Kl+1

M ◦ml
i +

λ

N̄
εli, (15)

where u ∈ dl is a random variable whose elements are sam-
pled from standard normal distribution N (0, 1) with zero
mean and standard deviation. u◦Kl+1

M is to approximate the
process of selecting the row of weightKl+1. Denote γ as the
step length and we can update εli along the negative gradient
direction:

εli ← εli − γ
∂T l+1

∂εli
. (16)

To train an optimal neural network, we tend to simultane-
ously reduce the empirical risk on the training dataset (e.g.
minimizing the cross entropy) and the Rademacher com-
plexity. There is thus a balance between the ordinary loss
and the reduction of Rademacher complexity. This can be re-
alized by alternatively optimizing between the ordinary loss
w.r.t. weights of the network and Rademacher complexity
w.r.t. the distortion εl. After obtaining the updated weights
of the network, the distortion εli is optimized to decrease
the objective T (x, εl). After each update of weights of the

Algorithm 1 Feature map distortion for training networks.

Input: Training data D = {(xi,yi)}Ni=1, The weights of
the network K:L = {K1,K2, · · · ,KL}

1: repeat
2: for l in 1, · · ·L do
3: Calculate the feature map f l(xi) of the l-th layer;
4: Generate the distortion εli and the corresponding

sample mask ml
i;

5: Obtain distorted feature f̂ l(xi) (Eq. (6));
6: Feed-forward the network using f̂ l(xi);
7: end for
8: Backward and update weights K:L in the network;
9: until Convergence;

Output: The resulting deep neural network.

network, the εli can be updated for several times, which is
usually adopted in practice for training efficiency (Good-
fellow et al. 2014). Using the case that applying distortion
on feature maps of all the layers as an example, the train-
ing procedure of the network is summarized in Algorithm 1.
Following dropout(Srivastava et al. 2014), the feature map is
rescaled by a factor of p at testing stage, which is equally im-
plemented as dividing p in the training phase in practice(Sri-
vastava et al. 2014).

Extension to Convolutional Layers

Convolutional layer can be seen as a special full-connected
layer with sparse connection and shared weights. Hence, the
distortion εl can be learned in the same way as that in the
FC layer. In the following, we focus on distorting the fea-
ture maps to reduce the empirical Rademacher complexity
in convolutional layers, considering the particularity of con-
volution operations.

The convolutional kernel of l-th layer is denoted as Kl ∈
R

dl
c×dl−1

c ×dl−1
h ×dl−1

w , and the corresponding output feature
maps before and after activation function φ are denoted as
Ol(xi) ∈ R

dl
c×dl

h′×dl
w′ and F l(xi) ∈ R

dl
c×dl

h′×dl
w′ , respec-

tively. dlh and dlw are the height and width of convolutional
kernels while dlh′ and dlw′ are those of the feature map. The
mask M l

i ∈ R
dl
c×dl

h′×dl
w′ and distortion εli ∈ R

dl
c×dl

h′×dl
w′

of the l-th layer have the same dimension as feature map
F l(xi) and is applied to F l(xi) to get the disturbed feature
map F̂ l(xi), i.e.

F̂ l(xi) = F l(xi)−M l
i ◦ εli. (17)

Similar to the fully-connected layer, the ERC R̃D(Ol+1) in
the (l+1)-th layer is used to guide the optimization of distor-
tion εl in layer l. Given a mini-batch x̄ = {x1,x2, · · ·xN̄}
together with mask M l = {M l

1,M
l
2, · · · ,M l

N̄
} and distor-

tion εl = {εl1, εl2, · · · , εlN̄}, and two symbols Gl(x̄) and

5967



Table 1: Accuracies of conventional CNNs on CIFAR-10 and CIFAR-100 datasets.

Method CIFAR-10 (%) CIFAR-100 (%)
CNN 81.99 49.72
CNN + Dropout (Srivastava et al. 2014) 82.95 54.19
CNN + Vardrop (Kingma, Salimans, and Welling 2015) 83.15 54.53
CNN + Sparse Vardrop (Molchanov, Ashukha, and Vetrov 2017) 82.13 54.26
CNN + RDdrop (Zhai and Wang 2018) 83.11 54.65
CNN + Feature Map Distortion 85.24 ± 0.08 56.23± 0.12

Ql+1(x̄) are defined for notion simplicity:

Gl(x̄) =

N∑
i=1

σiF̂
l(x̄i), (18)

Ql+1(x̄)[k, :, :] =

dl
c∑

c=1

Kl+1[k, c, :, :] ∗Gl[c, :, :], (19)

where ∗ denotes convolutional operation. Gl(x̄) is related
to the distorted feature and the Rademacher variable in the
l-th layer, and Eq. (19) applies the convolutional operation
on Gl(x̄). Given the notation mentioned above, εl can be
derived by minimizing the following objective function:

ε̂l = arg min
εl

T (x̄, εl), (20)

where

T (x̄, εl) = 1

N̄dl+1
h dl+1

w

sup
k

dl+1

h′∑
h′=1

dl+1

w′∑
w′=1

∣∣Ql+1(x̄)[k, h′, w′]
∣∣

+
λ

2N̄

N̄∑
i=1

‖εli‖22.

(21)

T (x̄, εl) comes from the simplified implementation
R̃D(Ol+1) which is the ERC in a mini-batch. As Eq. (21)
calculates average over the spatial dimension of Ql+1(x̄),
elements in different spatial locations of εli has equal contri-
bution to Ql+1(x̄). Thus, the partial derivative of Ql+1(x̄)
w.r.t. εli is:

∂T
∂εli[c, h

′, w′]
= − 1

N̄dl+1
h dl+1

w

σi

dl+1
h∑

h=1

dl+1
w∑

w=1

Kl+1[k̂, c, h, w]S[k̂, h, w]

+
λ

N̄
εli, h

′ ∈ {1, 2 · · · , dlh′}, w′ ∈ {1, 2 · · · , dlw′},
(22)

where

k̂ = arg max
k

dl+1

h′∑
h=1

dl+1

w′∑
w=1

∣∣Ql+1(x̄)[k, h′, w′]
∣∣ , (23)

S = sign
(
Ql+1(x̄)

)
(24)

in which S ∈ {±1}dl
c×dl

h′×dl
w′ is the sign of each element

in Ql+1(x̄). Considering the impact of Rademacher variable

σi and similar to the method in FC layer, random variables
S′ ∈ {±1}dl

h×dl
w and U ∈ R

dl
c×dl

h′×dl
w′ are introduced to

simply Eq. (22), which are used to approximate S and the
channel selection process of Kl+1 respectively. Each ele-
ment in S′ is ±1 with equal probability and each element in
U follows the standard normal distribution N (0, 1). Given
the gradient, the distortion εli is updated in a similar way
as FC layer. The algorithm of the feature distortion on the
convolutional layers is similar to Algorithm 1.

Different from the method applied on FC layers where
each element of the binary mask M l is sampled indepen-
dently, we draw lessons from DropBlock (Ghiasi, Lin, and
Le 2018) where elements in a contiguous square block with
given size block size of the feature map is distorted simul-
taneously. We denote the extension of the proposed method
to convolutional layers as “block feature map distortion”.

Experiments

In this section, we conduct experiments on several bench-
mark datasets to validate the effectiveness of the pro-
posed feature map distortion method. The method is imple-
mented on both FC layers and convolutional layers, which
are validated with conventional CNNs and modern CNNs
(e.g. ResNet) respectively. In order to set unified hyper-
parameters γ for different layers, we multiply γ by the stan-
dard deviation of the feature maps in each layer, and al-
ternately update the distortion and weight one step for ef-
ficiency. The distortion probability (dropping probability for
dropout and dropblock) increases linearly from 0 to the ap-
pointed distortion probability p following (Ghiasi, Lin, and
Le 2018).

Experiments on Fully Connected Layers

To validate the effect of the proposed feature map distortion
method implemented on the FC layers, we conduct exper-
iments on a conventional CNN on CIFAR-10 and CIFAR-
100 dataset. The proposed method is compared with multi-
ple state-of-the-art variants of dropout.

Dataset. CIFAR-10 and CIFAR-100 dataset both con-
tain 60000 natural images with size 32 × 32. 50000 images
are used for training and 10000 for testing. The images are
divided into 10 categories and 100 categories, respectively.
20% of the training data are regarded as validation sets. Data
augmentation method is not used for fair comparison.

Implementation details. The conventional CNN has
three convolutional layers with 96, 128 and 256 filters, re-
spectively. Each layer consists of a 5 × 5 convolutional op-

5968



Table 2: Accuracies of ResNet-56 on CIFAR10 and CIFAR-100 dataset.

Model CIFAR-10 (%) CIFAR-100 (%)
Resnet-56 93.95 ± 0.09 71.81 ± 0.21
Resnet-56 + DropBlock (Ghiasi, Lin, and Le 2018) 94.18 ± 0.14 73.08 ± 0.23
Resnet-56 + Block Feature Map Distortion 94.50 ± 0.15 73.71 ± 0.20

eration with stride 1 followed by a 3× 3 max-pooling oper-
ation with stride 2. Then the features are sent to two fully-
connected layers with 2048 hidden units each. We imple-
ment the distortion method on each FC layer. Distortion
probability p is selected from {0,4, 0.5, 0.6} and the step
length γ is set to 5. The model is trained for 500 epoch with
batchsize 128. The learning rate is initialized with 0.01, and
decayed by a factor of 10 at 200, 300 and 400 epochs. We
run our method 5 times with different random seeds and re-
port the average accuracy with standard deviation.

Compared methods. The CNN model trained without
extra regularization tricks is used as the baseline model. Fur-
ther more, we compare our method with the widely used
dropout method (Hinton et al. 2012) and several state-of-
the-art variants, including Vardrop (Kingma, Salimans, and
Welling 2015), Sparse Vardrop (Molchanov, Ashukha, and
Vetrov 2017) and RDdrop (Zhai and Wang 2018).

Results. The test accuracies on both CIFAR-10 and
CIFAR-100 are summarized in Table 1. The proposed fea-
ture map distortion method is superior to the compared
methods by a large margin on both two datasets. CNN
trained with the help of the proposed method achieves an
accuracy of 85.24%, which improves the performance of the
state-of-the-art RDdrop method with 2.13% and 1.58% on
CIFAR-10 and CIFAR-100 dataset, respectively. It shows
that the proposed feature map distortion method can reduce
the empirical Rademacher complexity effectively while pre-
serve the representation power of the model, resulting in a
better test performance.

Experiments on Convolutional Layers

It is much important to apply the proposed method to con-
volutional layer since modern CNN such as ResNet mostly
consist of convolutional layers. In this section, we apply the
proposed method on convolutional layers and conduct sev-
eral experiments on both CIFAR-10 and CIFAR-100 dataset.

Implementation details. The widely-used ResNet-56
(He et al. 2016b) which contains three groups of blocks is
used as the baseline model. DropBlock method (Ghiasi, Lin,
and Le 2018) is used as the peer competitor. Both the pro-
posed block feature map distortion method and DropBlock
method are implemented after each convolution layers in the
last group with block size=6, and the distortion probabil-
ity (dropping probability for DropBlock) p is selected from
{0.01, 0.02, · · · , 0.1}. The step length γ is set to 30 empir-
ically. Standard data augmentation including random crop-
ping, horizontal flipping and rotation(within ±15 degrees)
are conducted during training. The networks are trained for
200 epochs, batchsize is set to 128 and weight decay is set
to 5e-4. The initial learning rate is set to 0.1 and is decayed
by a factor of 5 at 60, 120 and 160 epochs. All the methods

Figure 1: Training curves on the CIFAR-100 dataset.

are repeated 5 times with different random seeds and the av-
erage accuracies with standard deviations are reported.

Results. The results on both CIFAR-10 and CIFAR-100
dataset are shown in Table 2. The proposed method is su-
perior to DropBlock method and improves the performance
with 0.32% and 0.63%, respectively. It shows that the pro-
posed feature map distortion methods suits for convolutional
layers and can improves the performance of modern network
structures.

Training curve. The training curves on CIFAR-100
dataset are shown in Figure 1. The solid line and dotted
line denote the test stage and the training stage respectively,
while the red line and blue line denote the proposed fea-
ture map distortion method and the baseline model. When
training converges, the baseline ResNet-56 traps in over-
fitting problem and achieves a higher training accuracy but
lower test accuracy, while the proposed feature map distor-
tion method overcome this problem and achieves a higher
test accuracy, which shows the improvement of model gen-
eralization ability.

Feature map distortion v.s. DropBlock. The test accu-
racy of our method (red) and the Dropblock method (green)
with various distortion probability (dropping probability) p
on CIFAR-100 dataset are shown in Figure 2(a). Increasing
the drop probability p enhances the effect of regularization,
and the test accuracy can be improved when setting p in an
appropriate range. Note that our method achieves a better
performance than DropBlock with p in a larger range, which
demonstrate the superior of feature map distortion.

Test accuracy v.s. accuracy gap. Figure 2(b) and (c)
show how test accuracy (red) and the accuracy gap between
training and testing accuracies (blue) vary when setting dif-
ferent distortion probability p and length step γ. Larger p
implies that more locations of the feature maps are distorted
while γ controls the intensity of disturbing in each loca-

5969



Table 3: Accuracies of ResNet-50 on ImageNet dataset.

Model Top-1 Accuracy (%) Top-5 Accuracy (%)
ResNet-50 76.51 ± 0.07 93.20 ± 0.05
ResNet-50 + Dropout (Srivastava et al. 2014) 76.80 ± 0.04 93.41 ± 0.04
ResNet-50 + DropPath (Larsson, Maire, and Shakhnarovich 2016) 77.10 ± 0.08 93.50 ± 0.05
ResNet-50 + SpatialDropout (Tompson et al. 2015) 77.41 ± 0.04 93.74 ± 0.02
ResNet-50 + Cutout (DeVries and Taylor 2017) 76.52 ± 0.07 93.21 ± 0.04
ResNet-50 + AutoAugment (Cubuk et al. 2018) 77.63 93.82
ResNet-50 + Label Smoothing (Szegedy et al. 2016) 77.17 ± 0.05 93.45 ± 0.03
ResNet-50 + DropBlock (Ghiasi, Lin, and Le 2018) 78.13 ± 0.05 94.02 ± 0.02
ResNet-50 + Feature Map Distortion 77.71 ± 0.05 93.89 ± 0.04
ResNet-50 + Block Feature Map Distortion 78.76 ± 0.05 94.33 ± 0.03

(a) (b) (c)

Figure 2: The impact of distortion probability p and step length γ on CIFAR-100 dataset. Test accuracies w.r.t. distortion
probability p for feature map distortion and dropblock are shown in (a). Test accuracies and accuracy gaps w.r.t. distortion
probability p and step length γ are shown in (b) and (c).

tion. Increasing either p or γ bring stronger regularization,
resulting in smaller gap between the training and testing
accuracies, which means a stronger generalization ability.
However, disturbing too many locations or disturbing a loca-
tion with too much intensity may destroy the representation
power and having negative impact on the final testing accu-
racy. Instead of using fixed intensity in conventional dropout
and DropBlock method, out method applies proper intensity
distortion on proper locations and results in better perfor-
mance.

Experiments on ImageNet Dataset

In this section, we conducts experiments on large-scale Im-
ageNet dataset and implement the feature map distortion
method with conventional dropout and the recent DropBlock
method, namely “Feature Map Distortion” and “Block Fea-
ture Map Distortion”, respective.

Dataset. ImageNet dataset contains 1.2M training im-
ages and 50000 validation images, consisting of 1000 cat-
egories. Standard data augmentation methods including ran-
dom cropping and horizontally flipping is conducted on
training data.

Implementation details. We follow the experimental set-
tings in (Ghiasi, Lin, and Le 2018) for fair comparison. The
prevalent ResNet-50 is used as the baseline model. The dis-
tortions are applied on the feature maps after both convo-
lutional layers and skip connections in the last two groups.

The step length is set to 5. For feature map distortion im-
plemented based on conventional dropout, distortion prob-
ability p (dropping probability) is set to 0.5 as suggested
by (Srivastava et al. 2014). For Block feature map distor-
tion, the block size and p (dropping probability) are set to
6 and 0.05 following (Ghiasi, Lin, and Le 2018). We report
the single-crop top-1 and top-5 accuracies on the validation
set and repeat the methods three time with different random
seeds.

Compared method. Multiple state-of-the-art regular-
ization methods are compared, including dropout based
methods, data augmentation and label smoothing. Drop-
Path(Larsson, Maire, and Shakhnarovich 2016), Spatial-
Dropout(Tompson et al. 2015) and Dropblock (Ghiasi, Lin,
and Le 2018) are the state-of-the-art variants of dropout.
Data augmentation including Cutout (DeVries and Taylor
2017) and AutoAugment (Cubuk et al. 2018)), and label
smoothing (Szegedy et al. 2016) are prevalent regularization
techniques to alleviate over-fitting.

Results. In Table 3, the proposed feature distortion
method can not only increase the performance of deep neu-
ral networks using conventional dropout method, but also
enhance the peformance of the recent Dropblock method,
since our method is also suitable and well adapted to con-
volutional layers. As a result, the feature map distortion im-
prove the accuracy from 76.80% to 77.71% compared to the
conventional dropout method . The block feature map dis-

5970



tortion method achieves top-1 accuracy 78.76%, which sur-
pass other state-of-the art methods from a large margin. The
results demonstrate that our method can simultaneously in-
crease the generalization ability and preserving the useful
information of original features.

Conclusion

Dropout based methods have been successfully used for en-
hancing the generalization ability of deep neural networks.
However, eliminating some of units in neural networks can
be seen as a heuristic approach for minimizing the gap be-
tween expected and empirical risks of the resulting network,
which is not the optimal one in practice. Here we propose to
embed distortions onto feature maps of the given deep neu-
ral network by exploiting the Rademacher complexity. We
further extend the proposed method to convolutional layers
and explore the detailed feed-forward and back-propagation
procedures. Thus, we can employ the proposed method into
any off-the-shelf deep neural architectures. Extensive exper-
imental results show that the feature distortion technique
can be easily embedded into mainstream deep networks to
achieve better performance on benchmark datasets over con-
ventional approaches.

Acknowledgments

This work is supported by National Natural Science Foun-
dation of China under Grant No. 61876007, 61872012 and
Australian Research Council under Project DE-180101438.

References
Ba, J., and Frey, B. 2013. Adaptive dropout for training deep neural
networks. In Advances in Neural Information Processing Systems,
3084–3092.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le, Q. V.
2018. Autoaugment: Learning augmentation policies from data.
arXiv preprint arXiv:1805.09501.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
2009 IEEE conference on computer vision and pattern recognition,
248–255. Ieee.
DeVries, T., and Taylor, G. W. 2017. Improved regulariza-
tion of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552.
Feichtenhofer, C.; Pinz, A.; and Zisserman, A. 2016. Convolu-
tional two-stream network fusion for video action recognition. In
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 1933–1941.
Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2018. Dropblock: A regular-
ization method for convolutional networks. In Advances in Neural
Information Processing Systems, 10727–10737.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Genera-
tive adversarial nets. In Advances in neural information processing
systems, 2672–2680.
Hanneke, S. 2016. The optimal sample complexity of pac learning.
The Journal of Machine Learning Research 17(1):1319–1333.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity mappings
in deep residual networks. In European conference on computer
vision, 630–645. Springer.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. R. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.
Kawaguchi, K.; Kaelbling, L. P.; and Bengio, Y. 2017. Generaliza-
tion in deep learning. arXiv preprint arXiv:1710.05468.
Kingma, D. P.; Salimans, T.; and Welling, M. 2015. Variational
dropout and the local reparameterization trick. In Advances in Neu-
ral Information Processing Systems, 2575–2583.
Koltchinskii, V.; Panchenko, D.; et al. 2002. Empirical margin
distributions and bounding the generalization error of combined
classifiers. The Annals of Statistics 30(1):1–50.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, 1097–1105.
Larsson, G.; Maire, M.; and Shakhnarovich, G. 2016. Fractal-
net: Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648.
Molchanov, D.; Ashukha, A.; and Vetrov, D. 2017. Variational
dropout sparsifies deep neural networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, 2498–
2507. JMLR. org.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016. You
only look once: Unified, real-time object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
779–788.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks.
In Advances in neural information processing systems, 91–99.
Sontag, E. D. 1998. Vc dimension of neural networks. NATO ASI
Series F Computer and Systems Sciences 168:69–96.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. The journal of machine learning
research 15(1):1929–1958.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z.
2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 2818–2826.
Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; and Bregler, C.
2015. Efficient object localization using convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 648–656.
Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; and Fergus, R. 2013.
Regularization of neural networks using dropconnect. In Interna-
tional conference on machine learning, 1058–1066.
Wang, Y.; Xu, C.; Chunjing, X.; Xu, C.; and Tao, D. 2018a. Learn-
ing versatile filters for efficient convolutional neural networks. In
Advances in Neural Information Processing Systems, 1608–1618.
Wang, Y.; Xu, C.; Xu, C.; and Tao, D. 2018b. Packing convolu-
tional neural networks in the frequency domain. IEEE transactions
on pattern analysis and machine intelligence.
Wang, C.; Li, M.; and Smola, A. J. 2019. Language models with
transformers. CoRR abs/1904.09408.
Zhai, K., and Wang, H. 2018. Adaptive dropout with rademacher
complexity regularization.

5971


