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Abstract

Channel pruning is effective in compressing the pretrained
CNNs for their deployment on low-end edge devices. Most
existing methods independently prune some of the original
channels and need the complete original dataset to fix the
performance drop after pruning. However, due to commercial
protection or data privacy, users may only have access to a
tiny portion of training examples, which could be insufficient
for the performance recovery. In this paper, for pruning with
limited data, we propose to use all original filters to directly
develop new compact filters, named reborn filters, so that all
useful structure priors in the original filters can be well pre-
served into the pruned networks, alleviating the performance
drop accordingly. During training, reborn filters can be eas-
ily implemented via 1 × 1 convolutional layers and then be
fused in the inference stage for acceleration. Based on reborn
filters, the proposed channel pruning algorithm shows its ef-
fectiveness and superiority on extensive experiments.

Introduction

There are always strict limits on memory and inference
speed of deep convolutional neural networks (CNNs) de-
ployed on various low-end edge devices (e.g., mobile
phones, tablets and wearable gadgets) (Cheng et al. 2017;
Wang, Li, and Smola 2019). However, popular CNN mod-
els such as VGGNet (Simonyan and Zisserman 2014) and
ResNet (He et al. 2016) have a huge number of model pa-
rameters and fail to meet the demands (Kim, Park, and Kwak
2018; Louizos, Ullrich, and Welling 2017; Wang et al. 2016;
You et al. 2017b).

Model compression serves as a remedy by investigating
and further eliminating the redundancy in the networks (Al-
varez and Salzmann 2017; You et al. 2017a). For exam-
ple, quantization (Courbariaux, Bengio, and David 2015;
Rastegari et al. 2016; Li et al. 2017) attempts to reduce the
redundancy on numerical precision, and sparse connection
(Han, Mao, and Dally 2015; Wen et al. 2016; Alvarez and
Salzmann 2016) or tensor factorization (Lebedev et al. 2014;
Novikov et al. 2015) seek to make the parameters to be
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sparse or low-rank. However, most of them (e.g., (Han, Mao,
and Dally 2015)) may need special hardwares for real accel-
eration. In contrast, prevalent channel-pruning methods tend
to identify and eliminate redundant channels, which lead to a
significant decrease of the size of feature maps and CNN fil-
ters. Most importantly, network structure of the pruned net-
work will not be changed, so it is friendly for the off-the-
shelf deep learning frameworks and complementary to other
compression methods.

In channel pruning, one of the mainstream practices is to
prune the channels (i.e. removing the corresponding filters)
according to the layer-wise reconstruction error (He, Zhang,
and Sun 2017; Luo, Wu, and Lin 2017). Most methods just
evaluate the importance of filters channel by channel, and
remove them for good. Nevertheless, this brings in the elim-
ination of redundant information as well as the risk of dis-
carding some useful individual information, which usually
induces large reconstruction error and the common catas-
trophic drop phenomenon on the network performance af-
ter the pruning. Therefore, most methods need to fine-tune
the pruned network over sufficient data (ideally the complete
original dataset) to recover the performance. It has been em-
pirically found that even the training-from-scratch method
(Liu et al. 2018) is also capable of recovering the perfor-
mance, when all training data sample are used.

However, in many real-world applications, users may not
have the access to sufficient or complete data used for train-
ing the original networks. This scenario is rather practical
when it comes to some considerations such as commercial
interests or user’s experience. For example,

• Powerful models trained on fairly large datasets are re-
leased while the dataset is not available due to commercial
profits. (Mahajan et al. 2018) trained CNNs on 940 mil-
lion of Instagram images and released pre-trained mod-
els1, whose accuracy on image recognition task was much
higher than those trained on public datasets. However,
only some example images can be found, and the train-
ing dataset will not be released as mentioned in the paper.

• For the model compression service provided by the cloud,
asking consumers to upload the whole huge training

1https://github.com/facebookresearch/WSL-Images
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Figure 1: Pruning pipeline with reborn filters. Dashed blue line for original networks and solid green line for pruned networks.
Reborn filters are developed by refining all the original convolutional filters in a layer, and making their input channels sparse
(dashed green cubes) will induce pruning the input feature maps.

dataset (e.g. ImageNet with over 120GB file size) with
limited transmission speed (e.g. 20M/s) is unpractical,
which takes a long time and does harm user’s experience.
Instead, the cloud only needs the trained models (only
several MB parameters, e.g. 45 MB for Resnet-18) and
very few sample data to complete the compression task.

With these limited data, the effect of both fine-tuning and
training from scratch will be restricted, and they can not re-
cover the missed information after pruning especially for a
large pruning ratio. Then the ultimate performance of the
compressed networks is mainly up to the extent of catas-
trophic drop before fine-tuning.

In this paper, we reduce the information loss of original
networks via refining all the original filters during pruning to
achieve the goal of channel pruning using limited data and
directly alleviate the performance drop. Instead of explor-
ing the individual redundancy for each channel, we examine
it from a group (layer) perspective, and all filters in a layer
are used to develop new compact filters, named reborn fil-
ters as Figure 1 shows. In this way, the information of the
original filters, which guarantees the performance, are well
preserved in the reborn filters, thus the performance drop
will be minimized accordingly. These structure priors from
original filters help the limited data to learn compact reborn
filters for pruning. Concretely, we assume at a certain layer,
each input channel of a reborn filter is constructed as a linear
representation across all input channels of an original filter
to inherit the discovered patterns or structures. In a layer-
wise manner, reborn filters are used to reconstruct the fea-
ture maps of examples under a compactness constraint, i.e.,
with sparse input channels. Then we implement pruning to
the zero channels of the learned reborn filters.

Moreover, reborn filters are easy to implement by 1 × 1
convolutional layers with linear activations, which are im-
posed right before the traditional CNN layers as Figure 2
shows later. During the test, 1 × 1 convolutional layers can
be fused with traditional CNN layers for acceleration. We
have conducted extensive experiments on the benchmark
CIFAR-10 dataset and the large-scale ImageNet dataset. The
results demonstrate the effectiveness and superiority of our
proposed method.

Formulation of Reborn Filters

In this section, we first introduce definition of the proposed
reborn filters and elaborate how they are constructed by the

original filters. Then we discuss how compact reborn filters
relate to the channel pruning. Without loss of generality, we
focus on the CNN filters at a certain layer, and we aim to
prune the channels of its input feature maps as (He, Zhang,
and Sun 2017; Luo, Wu, and Lin 2017; Zhuang et al. 2018).

Reborn filters

For a pre-trained CNN model (e.g., VGGNet and ResNet),
its convolutional filters indicate our understanding of intrin-
sic patterns underlying original training data, and are the key
components for its powerful ability. At a certain layer 2, the
convolutional filters of the pre-trained model can be denoted
as a 4-dimensional tensor W ∈ R

n×m×dh×dw , where n and
m are the number of output channels and input channels,
respectively; dh and dw are the window size of the convolu-
tion, e.g., 3 × 3. Then Wi,j,:,: represents the 2-dimensional
convolutional filter for the i-th output channel and j-th input
channel.

The various Wi,j,:,:’s in pre-trained model extract infor-
mative patterns and structures, such as some low-level edges
and semantic-related textures. These learned filters are sup-
posed to be highly relevant with the task and contribute to
the performance. Since in model compression, the pruned
network has a lower network capacity than that of the orig-
inal network. To preserve the original recognition perfor-
mance, a natural idea is to inherit these well trained filters.
For each output channel i, we formulate a reborn filter as a
linear combination of its corresponding input channels, i.e.,
for reborn filter W̃i,j,:,:,

W̃i,j,:,: =

m∑

k=1

akjWi,k,:,:, ∀i ∈ [1 : n], j ∈ [1 : m], (1)

where akj is the element of matrix A ∈ R
m×m in the

k-th row and the j-th column. In the sequel, we use the
mark tilde ˜ over a symbol to indicate the feature maps
or convolutional filters related to the reborn filters. In this
way, reborn filters can inherit the knowledge embedded
in original convolutional filters that have been trained for
days or weeks. This practice coheres with the idea of mul-
tiple kernel learning (MKL) (Gönen and Alpaydın 2011;
Bucak, Jin, and Jain 2014), which seeks to learn an optimal
combination of pre-defined kernels (aka the original filters),

2For simplicity of illustration, we omit the layer index since our
reborn filters fit for all layers.
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so that we can adequately exploit the knowledge within the
already-learned filters.

Compactness of the reborn filters

In channel pruning, most methods follow a selecting strat-
egy, i.e., directly selecting some original filters via weighting
(He, Zhang, and Sun 2017), scaling factors in batch normal-
ization layers (Liu et al. 2017) or greedy selection (Luo, Wu,
and Lin 2017; Zhuang et al. 2018). In contrast, we propose
to directly develop new and compact reborn filters using all
the original filters, so that the useful information can be ac-
tually maintained. And those redundant ones can be pruned
naturally, making both the model size and calculation com-
plexity decreased.

Concretely, we denote the vector-form of original fil-
ter Wi,k,:,: as fik = vec(Wi,k,:,:) ∈ R

dhdw , where
vec(·) is the vectorization of matrixes according to columns.
Then all m filters w.r.t., the i-th output channel is Fi =
[fi1,fi2, ...,fim] ∈ R

dh∗dw×m, and Eq. (1) can be equiv-
alently written into

f̃ij = vec(W̃i,j,:,:) =
m∑

k=1

akjfik = Fiaj . (2)

Letting F̃i = [f̃i1, f̃i2, ..., f̃im], we also have F̃i = FiA. By
denoting a filter matrix F as

F = [FT
1 , FT

2 , ..., FT
n ]T = [f1, ...,fm] ∈ R

n∗dh∗dw×m,

we have all reborn filters F̃ represented by the original filters
F and the coefficient matrix A, i.e., F̃ = FA, each column
of which corresponds to the filters for each input channel.
Then for compact reborn filters w.r.t. input channels, we en-
courage the reborn filter matrix F̃ to have sparse columns,
which is reflected by its �2,0-norm, i.e.,

∥∥∥F̃
∥∥∥
2,0

= ‖FA‖2,0 =

m∑

i=1

B(‖Fai‖2 > 0), (3)

where B(·) is the Boolean indicator function.
Remark. Note that current works (Luo, Wu, and Lin

2017; Zhuang et al. 2018; He, Zhang, and Sun 2017) exactly
remove some columns of F for good, which might cause in-
formation loss and this loss can not be compensated by the
limited data. In contrast, we construct compact F̃ = FA
using F , so that the complete information about F can be
well preserved in F̃ . And the redundant filters can be auto-
matically obtained by mutual determination of all channels
(columns), instead of being identified harshly via selection.
As a result, the performance drop can be minimized, which
benefits the limited data case. 3

Channel Pruning with Reborn Filters

Reborn filters inherit the information of all original filters.
Then feature maps are expected to be reconstructed with

3In the following, we seamlessly use the filter notations W and
its vector form F . The choice depends on the simplicity of mathe-
matical expressions.

smaller errors, which is the key to ensure the performance
of the pruned network with limited data. Now we formally
present our channel pruning approach based on reborn fil-
ters. Our solution also consists of three procedures: first, re-
born filters are used to reconstruct its output feature maps
with sparse input channels, then redundant input channels
of reborn filters are pruned as well as the corresponding in-
put feature maps. Finally the labels are used to fine-tune the
pruned network slightly, but we suggest that it will not be
necessary if the data are quite limited since the improvement
will be fairly small.

Layer-wise reconstruction

At a certain layer, given N examples {xi}Ni=1 and the
original filter W ∈ R

n×m×dh×dw , the corresponding in-
put feature maps and output feature maps are denoted as
two 4-dimensional tensors X ∈ R

N×m×h×w and Z ∈
R

N×n×h′×w′
, respectively, where h × w and h′ × w′ are

corresponding feature map size. Then for the t-th example
xt, the i-th channel of the output tensor Z, i.e., Zt,i,:,: ∈
R

h′×w′
, is calculated via the convolution of the input tensor

Xt,:,:,: ∈ R
m×h×w and the corresponding filters Wi,:,:,: ∈

R
m×dh×dw , i.e.,

Zt,i,:,: =

m∑

j=1

Wi,j,:,: ∗Xt,j,:,:, (4)

where ∗ is the 2D convolutional operator. In this way, the
output tensor with reborn convolutional filters is thus

Z̃t,i,:,: =
m∑

j=1

W̃i,j,:,: ∗Xt,j,:,: (5)

=
m∑

j=1

(
m∑

k=1

akjWi,k,:,:

)
∗Xt,j,:,: (6)

=
m∑

j=1

m∑
k=1

akj(Wi,k,:,: ∗Xt,j,:,:). (7)

Then to maintain the network performance of the original
network, reborn filters are supposed to reconstruct the orig-
inal output feature maps by minimizing the reconstruction
error measured by the mean squared error (MSE) between
two output feature maps, i.e.,

�re(A;xt) =
1

2

n∑

i=1

∥∥∥Z̃t,i,:,: −Zt,i,:,:

∥∥∥
2

F
, (8)

where ‖·‖F is the Frobenius norm of a matrix or a vector.
And the reconstruction error over all examples is

Lre(A;D) =
1

N

N∑
t=1

�re(A;xt)

=
1

2N

N∑
t=1

n∑
i=1

∥∥∥∥∥∥Zt,i,:,: −
m∑

k,j=1

akjOt,i,k,j

∥∥∥∥∥∥
2

F

, (9)

where Ot,i,k,j = Wi,k,:,: ∗Xt,j,:,: ∈ R
h′×w′

is a fixed data
matrix. Following Eq. (3), in channel pruning besides the
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reconstruction ability, we aim to encourage the reborn filters
to be sparse over the input channels. Thus for a predefined
pruning rate r ∈ (0, 1) (Alvarez and Salzmann 2016; Liu et
al. 2017), we cast the problem as follows,

min
A

Lre(A;D) s.t. ‖FA‖2,0 ≤ 1− �rm�, (10)

where �rm� is the largest integer no larger than rm. How-
ever, solve this �20 minimization problem Eq. (10) is NP-
hard. Hence, we adopt a sparsity-induced surrogate �21
norm, i.e., ‖FA‖2,1 =

∑m
i=1 ‖Fai‖2, and relax problem

Eq. (10) into the minimizing the objective

Ltr(A;D) =
1

N

N∑

t=1

�re(A;xt) + λ ‖FA‖2,1 , (11)

where λ > 0 is a constant to control the sparsity. From
the optimization perspective, Eq. (11) is a group fused lasso
problem (Simon et al. 2013), which can be solved by many
off-the-shelf convex toolboxes, such as CVX (Grant and
Boyd 2014) and SPAMS (Mairal et al. 2010). In our paper,
we adopt the widely-used alternating direction method of
multipliers (ADMM) algorithm (Boyd et al. 2011) since it
enjoys fast convergence rate O(1/T ) with the number of it-
erations T . In particular, to save the computation cost, we
choose a fast stochastic version (Zhong and Kwok 2014) of
ADMM while having the same convergence rate as the tra-
ditional batch ADMM. Details refer to the supplementary
materials.

Pruning and fine-tuning

After solving Eq. (11), the matrix FA will have sparse
columns. Denote the index set of its non-zero columns as
Ω ⊂ [1 : m] and its complementary set as Ω̄ = [1 : m]− Ω.
Then we just prune the input channels of reborn filters ac-
cording to the index set Ω̄. After obtaining the compact re-
born filters, we can fine-tune the remaining reborn filters
slightly to further reduce the reconstruction error as well as
accommodate the new layer structure as (He, Zhang, and
Sun 2017; Zhuang et al. 2018), and then move on to the
next layer until the final softmax layer is reached. The ob-
tained network is denoted as ÑΩ. Finally we can use the
labels to fine-tune the whole pruned network ÑΩ via a reg-
ular cross-entropy loss for further boosting the classification
performance. Nevertheless, we empirically find that the fi-
nal fine-tuning has little effect on the performance improve-
ment when the training data are quite limited. By controlling
the reconstruction error layer-wisely, the original network
provides additional strict supervision signals for the pruned
network, enabling the classification performance to be in-
herited as much as possible. In this sense, our approach can
also handle the case when ground-truth labels of the limited
training data are unknown.

Reborn filters and 1×1 convolution

As illustrated before, reborn filters are developed by the lin-
ear combination of the convolutional filters from the origi-
nal network. Now we proceed from a different perspective,
and suggest that reborn filters can be easily realized by the

Input Feature 

Maps

Output Feature 

Maps

1 1 Conv

Filters

Original 

Filters

Compact 

Reborn Filters

Training Stage Testing Stage 

Fusion

Figure 2: Using 1×1 convolution to implement the reborn
filters.

widely-used 1×1 convolution, which benefits the implemen-
tation of reborn filters in various real-world applications.

By rewriting Eq. (5), we have

Z̃t,i,:,: =

m∑
j=1

m∑
k=1

akj(Wi,k,:,: ∗Xt,j,:,:) (12)

=

m∑
k=1

Wi,k,:,: ∗ (
m∑

j=1

akjXt,j,:,:) (13)

=
m∑

k=1

Wi,k,:,: ∗ (Ak,: �Xt,:,:,:), (14)

where Ak,: indicates the k-th row of matrix A, and � stands
for the 1×1 convolution. As a result, the normal convolu-
tion using reborn filters is decomposed into two procedures:
first, we implement 1×1 convolution on the input feature
maps using each of A’s row as the weights, with m new
input channels obtained; second, we implement the normal
convolution on the new input feature maps using the original
filters.

The diagram of using 1×1 convolution to implement re-
born filters is shown in Figure 2. As we can see, the reborn
filters are equivalently m 1×1 convolutional layers imposed
before the input feature maps with linear activations. Dur-
ing training, the layer-wise reconstruction can be viewed
as a fairly shallow network with the original filters fixed.
This perspective enables us to fastly calculate the gradients
over A in optimizing ADMM (see line 6 of Algorithm 1
in supplementary materials) by dint with the BP algorithm.
Furthermore, when pruning the network, we can simply
let those 1×1 convolutional weights corresponding to the
pruned channels be zero and fixed. Note that for reborn fil-
ters, we do not necessarily need the 1×1 convolutional layer
to be sparse; actually, dense 1×1 filters and dense original
filters can also develop compact reborn filters, which is de-
termined automatically by exploring the group redundancy
of all original filters. As for the test stage, to obtain a real
pruned network, we need to eliminate those 1×1 convolu-
tional layers by fusing them into the ordinary convolutional
layers as reborn filters Eq. (1). The use of 1×1 convolution
can also refer to (Li et al. 2018); however, the difference lies
in that (Li et al. 2018) adopts 1×1 convolution as a man-
ner for knowledge distillation in a teacher-student paradigm
while we use 1×1 convolution to develop new compact fil-
ters from original filters for channel pruning.

Experimental Results

In this section, we empirically investigate the performance
of our introduced reborn filters and proposed algorithm. We
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Table 1: Top-1 accuracy and compression & acceleration rates of the pruned VGGNet and ResNet-56 with N = 500 (1%)
training examples on CIFAR-10 dataset. The testing accuracies of pre-trained VGGNet and ResNet-56 are 93.99% and 93.80%
respectively.

Model VGGNet ResNet-56
Method Slimming DCP Scratch Ours Slimming DCP Scratch Ours

# Training data 500 500 500 500 500 500 500 500
#Param ↓ ∼ 6× ∼ 2× ∼ 6× ∼ 6× ∼ 2× ∼ 2× ∼ 2× ∼ 2×

#FLOPs ↓ ∼ 2× ∼ 2× ∼ 2× ∼ 2× ∼ 2× ∼ 2× ∼ 2× ∼ 2×
Accuracy (%) 87.51±0.54 89.94±0.19 56.69±1.31 93.03±0.19 78.74±0.86 83.19±0.47 52.74±1.15 90.11±0.45
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(b) ResNet-56
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(c) Without final fine-tuning

Figure 3: Accuracy drop of the pruned VGGNet and ResNet-56 on CIFAR-10 dataset w.r.t. different number N of training
examples, with about 2× #FLOPs ↓ for both VGGNet and ResNet-56.

select state-of-the-art end-to-end training-based Slimming
method (Liu et al. 2017) and reconstruction-based DCP
(Discrimination-aware Channel Pruning) method (Zhuang et
al. 2018)) as our comparison methods. To show the base-
line performance when the training data are limited, we also
train the pruned network from scratch by randomly initializ-
ing the weights, which is denoted as “Scratch”. For fairness
of the comparison, we implement pruning the VGGNet and
ResNet on the benchmark CIFAR-10 and ImageNet dataset
since comparison methods (Liu et al. 2017) and (Zhuang et
al. 2018) have been optimized to achieve state-of-the-art per-
formance on them.

Implementation details. In our experiment, we ran-
domly sample N images from the training set for prun-
ing, and vary N to analyze how the number of training
examples influences network compression. For CIFAR-10
dataset, we use the original testing set for testing while
for ImageNet dataset, the original validation images are
used. During training, the default value of batchsize is 128,
and random cropping and mirror are used for augmenta-
tion. The sparsity weight λ in Eq.(11) is selected from
{0.5, 0.4, 0.3, 0.2, 0.1, 0.05} to obtain reborn filters with dif-
ferent sparsity, then filters with norm less than a threshold
(set as 0.0005) are pruned, resulting in different acceleration
rates. Details of the optimizers (ADMM and SGD) on two
datasets refer to the supplementary materials. The proposed
method is implemented with Pytorch (Paszke et al. 2017) on
NVIDIA 1080 Ti GPUs.

Experiments on CIFAR-10

Dataset and pre-trained networks. The CIFAR-10 dataset
consists of 60,000 RGB images from ten exclusive cate-
gories with size 32×32. Among these images, 50,000 of
them are for training while the remaining 10,000 images

are for testing.The testing accuracies of pre-trained VGGNet
and ResNet-56 are 93.99% and 93.80% respectively. Be-
sides, VGGNet has 20M parameters and 399M FLOPs while
ResNet-56 has 0.86M parameters and 126M FLOPs.

Results. We sample only 1% images (N = 500) as the
training set for pruning, and the obtained accuracies on test-
ing dataset and compression statistics are shown in Table
1. All the methods are run five times with different random
seeds. We can see with similar acceleration rate and even
higher compression rate, our method significantly outper-
forms other comparison methods. For VGGNet, with high
compression rate 6× and acceleration rate 2×, our method
can achieve accuracy 93.03% though the training data are
quite limited. Note that the training-from-scratch method
only achieves accuracy of 56.69% due to the limited data,
which indicates the necessary to inherit the original filters.
ResNet-56 is more challenging than VGGNet; nevertheless,
with about 2 × compression(0.4M) and acceleration(63M),
our pruned networks still have acceptable classification ac-
curacy (90.11%), while those pruned by other methods all
fail to meet the accuracy demands for real applications (less
than 83.19%).

To comprehensively investigate the superiority of our
method with respect to different number of training exam-
ples, we conduct pruning with increasing training examples
N , and the accuracy is presented in Figure 3. From Figure
3 (a) and (b), we can see that our method enjoys huge su-
periority over other comparison methods when the training
data are limited. We also report the accuracy without the fi-
nal fine-tuning in Figure 3 (c). It can be seen that with quite
limited data (e.g., < 5k), the effect of final fine-tuning is
slight, and the performance before the final fine-tuning dom-
inates the performance of the pruned networks. When the
channels are pruned layer-wisely, our method can exactly
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Table 2: Top-5 accuracy (%) and acceleration rates of the pruned VGGNet-16 and ResNet-50 with N = 1k training examples (<
1‰) on ImageNet dataset.The top-5 accuracies of pre-trained VGGNet-16 and ResNet-50 are 91.50% and 92.87% respectively.

Model Performance Slimming DCP Scratch Ours

VGGNet-16
# Training data 1000 1000 1000 1000

#FLOPs ↓ ∼ 2 × ∼ 2 × ∼ 2 × ∼ 2 ×
Accuracy(%) 42.60±0.12 85.27±0.03 6.67±0.85 89.40±0.03

ResNet-50
# Training data - 1000 2.00 × 1000

#FLOPs ↓ - ∼ 2 × ∼ 2 × ∼ 2 ×
Accuracy(%) - 82.85±0.04 6.51±0.96 90.03±0.05

(a) input image (b) “newly constructed” (c) “exactly inherited” (d) redundant

Figure 4: Visualization of feature maps w.r.t. learned reborn filters for the VGGNet-16 on ImageNet dataset. The top row
indicates the original filters while the bottom row is for reborn filters.

Table 3: Top-5 accuracy (%) of the pruned VGGNet-16 on
ImageNet dataset with 2× #FLOPs ↓.The top-5 accuracy of
pre-trained VGGNet-16 is 91.50%.

N Slimming DCP Scratch Ours

VGGNet-16

100 25.08 78.74 2.58 88.73
1k 42.6 85.27 6.67 89.40
5k 58.02 87.38 12.34 89.52

10k 68.18 87.76 20.05 89.69
100k 82.77 88.3 74.1 90.04
All 91.57 91.68 91.46 91.75

Table 4: Top-5 accuracy drop (%) of the pruned ResNet-18
on ImageNet dataset with 1.5× #FLOPs ↓. The top-5 accu-
racy of pre-trained ResNet-18 is 89.08%.

N DCP Scratch Ours

ResNet-18

100 67.74 1.92 84.11
1k 78.12 6.63 84.84
5k 80.63 10.63 85.14
10k 82.05 21.62 85.32

100k 83.24 68.50 85.67
All 88.73 88.65 88.89

ensure a nice accuracy by reducing the information loss and
using the original structure priors. This also indicates in a
way the ground-truth labels are not necessarily needed for
our method when the training data are quite limited. With
increasing training examples, the performance improves ac-
cordingly. Note that when the training data are sufficient
(50k), the performance of pruned networks tend to be sim-
ilar for all methods, which further validates that for a given
“pruned” network, its performance is up to inheriting the
original network when the training data are limited; other-
wise, the performance is mainly dominated by the training
data. Moreover, since reborn filters maintain the original fil-
ters, our method is more steady w.r.t. the number of training

examples. Specially for VGGNet with only 10 examples, our
method still can achieve accuracy 92.56%. In contrast, the
accuracies of other comparison methods are up to 81.75%.

Experiments on ImageNet (ILSVRC2012)

Dataset and pre-trained networks. The ImageNet
(ILSVRC2012) dataset (Russakovsky et al. 2015) is com-
posed of 1.28 million training images and 50k validation
images from 1000 categories. The widely-used VGGNet-
16, ResNet-18 and ResNet-50 released by Pytorch 4 are
adopted as pre-trained CNNs, whose single-view top-5 error
are 91.50%, 89.08% and 92.87%, respectively. Besides,
VGGNet-16, ResNet-18 and ResNet-50 respectively have
15.5B,1.8B and 4.1B FLOPs.

Results. For Table 2, with different random seeds, we
randomly sample 1k (< 1‰) training images and run all
the methods 3 times. Although the very low accuracy of
training from scratch (less than 10%) indicates that only
1000 data can not support the training of the network for
recognizing natural images of 1000 categories, our method
still achieve acceptable accuracies and significantly out-
performs other comparison methods for both VGGNet-16
and ResNet-50. For example, with 2× acceleration rate,
our pruned VGGNet-16 can achieve top-5 accuracy 89.4%
while other methods fail to have acceptable classification
performance (less than 85.27%). Note that for limited data
(≤ 100k), the results of layer-wise reconstruction methods
(DCP and ours) refer to the accuracy without final fine-
tuning; we empirically find that the final fine-tuning almost
makes no difference when training data are quite limited,
i.e., only about 0.1% improvement.

By varying the number of training data from 0.1k to 100k,
Table 3 shows that the accuracy increases accordingly, and

4https://pytorch.org/docs/master/torchvision/models.html
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Figure 5: Accuracy drop of the pruned VGGNet on CIFAR-
10 dataset with different acceleration rates (#FLOPs ↓). N =
500.

when the data are limited, our method enjoys great supe-
riority. Moreover, we accelerate the ResNet-18 1.5 × (the
pruned network with only 1.2B Flops), and show the top-5
accuracies with various numbers of training images in Table
4 . Results show that although ResNet-18 is more difficult
to prune than VGGNet-16, our method can still have sat-
isfying classification performance with limited data, which
validates the effectiveness of reborn filters to maintain the
information of original filters. Note that for both VGGNet-
16 and ResNet-18, when we use the entire training dataset,
all comparison methods show comparable classification per-
formance since it is sufficient for the pruned networks to
learn useful filters from the data.

Ablation studies

Performance with different acceleration rates To study
the performance limit of the pruned networks with differ-
ent acceleration rates when the number of training data is
fixed, we prune the VGGNet on the CIFAR-10 dataset with
1% training images. For fair comparison, the acceleration
rate is controlled roughly from 1.5× to 4× by adjusting
λ. When the acceleration rate is higher, it is more chal-
lenging to prune the networks with limited data since more
channels are removed with significant information loss. As
shown Figure 5, the accuracy of the pruned networks de-
grades with higher acceleration rate. However, compared
with state-of-the-art Slimming(Liu et al. 2017), our method
degrades much slower and the accuracy is still acceptable.
For example, our method still achieves accuracy 90.07%
with 3× acceleration rate while the accuracy of Slimming
method is only 80.15%.

Effect of sparsity weight λ The sparsity weight λ con-
trols sparse degree of the reborn filters as well as the prun-
ing rate r. To understand the effect of λ, we focus on prun-
ing a single layer (i.e., conv1 2) of VGGNet-16 on Im-
ageNet dataset following (Zhuang et al. 2018), as shown
in Table 5. Large λ leads to prune more channels and get
higher pruning rate r. Besides testing accuracy, we also re-
port the reconstruction error of feature maps on the training
data (5k images) and testing data (50k images), denoted as
“ReErr-Train” and “ReErr-Test” in Table 5, respectively. For
conv1 2 in VGGNet-16, when λ is less than 0.3, the re-
construction error can almost be neglected (i.e., smaller than
0.003), implying that our method squeezes the redundancy

Table 5: The pruned VGGNet-16 on ImageNet dataset with
different λ’s for a single layer (i.e., conv1 2). r refers to the
pruning rate. ReErr-Train and ReErr-Test are the recontruc-
tion error on the training and testing dataset, respectively.
Acc-Test is the testing top-5 accuracy. N = 5k.

λ r ReErr-Train ReErr-Test Acc-Test
0 0% 0 0 91.52

0.1 59% 0.0020 0.0021 91.45
0.2 73% 0.0032 0.0033 91.38
0.3 78% 0.0030 0.0030 91.40
0.4 81% 0.0072 0.0075 91.16
0.5 86% 0.0141 0.0145 85.45

but preserves valuable information well. Note that the re-
construction error on test dataset is roughly equal to that on
training dataset. It shows that our method generalizes well
even when the training dataset is very limited since we in-
herit the original filters.

Visualization of reborn filters and feature maps

For better intuitive understanding, we implement visualiza-
tion about reborn filters as well as the original filters of a
layer (i.e., conv2 1) in VGGNet-16 on ImageNet dataset.
To show the development of reborn filters more visually, we
display the feature maps produced by original filters and re-
born filters, respectively. And for clarity we decompose the
convolution of a single output channel into two steps, i.e.,
convolution channel-wisely and summing the results.

As Figure 4 (b) shows, some reborn filters are actu-
ally constructed by multiple original filters, with different
and enhanced feature maps obtained accordingly. Moreover,
some reborn filters in Figure 4 (d) are of small values, and
thus are reckoned as redundant filters and need pruned. Note
that their corresponding original filters are not necessarily
redundant since they are involved to develop other useful
reborn filters. We also notice that some of reborn filters as
Figure 4 (c) just inherit the original filters, i.e., nearly copy-
ing, we argue this results from that these original filters are
essentially informative and important for the performance of
networks. Thus we can see that our reborn filters are capa-
ble of identifying the important channels automatically and
re-generating newly valuable channels. More visualization
results refer to the supplementary materials.

Conclusion

This paper introduces reborn filters for channel pruning of
convolutional neural networks with limited data. The reborn
filters inherit the informative structure priors of the original
filters, so that the performance of original network can be
maintained to a large extent. Moreover, reborn filters can be
easily implemented using 1 × 1 convolution with linear ac-
tivations, making it friendly for various applications in end-
to-end fashion. Our proposed pruning algorithm shows the
effectiveness and superiority on extensive experimental re-
sults. With quite limited (e.g., 1‰) examples, our pruned
network is still comparable to those trained with complete
dataset on the classification accuracy. As for future work,
we will investigate nonlinear fashion (e.g., using networks)
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to model the construction of reborn filters using original fil-
ters, which may be related to the tools in meta-learning and
continual learning.
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