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Abstract

In this paper, we propose a novel single-task continual
learning framework named Bi-Objective Continual Learning
(BOCL). BOCL aims at both consolidating historical knowl-
edge and learning from new data. On one hand, we propose
to preserve the old knowledge using a small set of pillars,
and develop the pillar consolidation (PLC) loss to preserve
the old knowledge and to alleviate the catastrophic forget-
ting problem. On the other hand, we develop the contrastive
pillar (CPL) loss term to improve the classification perfor-
mance, and examine several data sampling strategies for effi-
cient onsite learning from ‘new’ with a reasonable amount of
computational resources. Comprehensive experiments on CI-
FAR10/100, CORe50 and a subset of ImageNet validate the
BOCL framework. We also reveal the performance accuracy
of different sampling strategies when used to finetune a given
CNN model. The code will be released.

Introduction
In recent years, Convolutional Neural Networks (CNNs)
have achieved superior performances in a broad range of
computer vision tasks (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2015; Wang et al. 2010; Ren et al. 2015;
Redmon et al. 2015; Cheng et al. 2016; Shun et al. 2016;
Long, Shelhamer, and Darrell 2015; Chen et al. 2017;
Liu et al. 2017; Deng et al. 2018; Tusng-Yu, Aruni, and
Subhransu 2015; Wei et al. 2018a; 2018b). Nonetheless,
when a CNN model is put into a continuous use, it will in-
evitably encounter new data it has never seen before, and
may produce erroneous recognition results. For a model to
stand the test of time, it is crucial to learn from new data and
evolve to adapt to the changes continuously. This ability is
referred to as continual learning (CL) (Parisi et al. 2019) in
the literature.

Recent CL works (Kirkpatrick et al. 2017; Zenke, Poole,
and Ganguli 2017; Li and Hoiem 2018; Lee et al. 2017;
Lopez-Paz and others 2017; Chaudhry et al. 2018) usu-
ally conduct their research under a multi-task (MT) setting,
where the model is required to learn a sequence of indepen-
dent tasks. Each task is assigned with a specific classification
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Table 1: A comparison of the CL problem settings

Setting task-free classifiers NC NI
MT no task-specific perhaps perhaps
ST-CIL yes unified yes no
ST-NIL yes unique no yes

layer for prediction during the test phase. Such setting re-
quires task identity for selecting the task-specific classifier,
which is hard to be satisfied in practical where task infor-
mation is typically unknown. Another series of work (Re-
buffi et al. 2017; Castro et al. 2018; Wu et al. 2019) carries
out research under a single-task, class-incremental-learning
(ST-CIL) setting, where the model meets a sequence of new
class training samples and is required to incrementally learn
a unified classification layer for all encountered classes. This
CIL setting is based on the assumption that new training data
comes from new classes.

In practical use, the deployed models are often exposed to
new instances of existing classes with new patterns. It is cru-
cial for the model to learn from them to improve the recog-
nition performance continuously. This scenario is common
in real-world applications, but is seldom explored by current
CL research. In this paper, we organize our study based on
this scenario. We adopt a single-task, new-instance learn-
ing (ST-NIL) setting that aims to improve the recognition
performance on existing classes by continuously learning
on new instances. ST-NIL is originally proposed in (Mal-
toni and Lomonaco 2018) with a naı̈ve baseline that simply
finetunes the model on new instances. Table 1 compares the
differences of the three settings mentioned above.

To accomplish CL, a straightforward approach is to re-
train the model on both old and new data. It is inefficient or
even prohibitive in practical, especially for embedded sys-
tems where resources are too limited to perform retraining.
Alternatively, we can finetune the model on new data. How-
ever, this is prone to catastrophic forgetting (French 1999)
that the performance on old data deteriorates drastically.
Hence current CL works mainly focus on mitigating forget-
ting. Some works attempt to preserve old tasks’ knowledge
by imposing regularization to the network weights (Kirk-
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Figure 1: Conceptual visualization of the PLC and CPL loss terms. (a) The pillars {A,B, · · · , G} maintain the key memories
of the historical knowledge in the feature space. The edge between two pillars indicates they are topologically adjacent. (b)
Finetuning on new data breaks the topology and causes catastrophic forgetting. (c) The PLC term fastens the pillar points to
stabilize the memories of old knowledge and alleviate forgetting. (d) The CPL term pushes the new training example to its
nearest matching pillar with the same class label (C), while pulling it away from those with different labels (A and B).

patrick et al. 2017; Zenke, Poole, and Ganguli 2017). These
methods are typically based on certain naı̈ve assumptions
about the weights’ posterior distribution, which may not
hold in complex scenarios. Another series of work intro-
duces the idea of knowledge distillation (Hinton, Vinyals,
and Dean 2015) into CL, where a distillation loss is used
for maintaining the old knowledge contained in the output
logits. As a supplement, they usually adopt the rehearsal
(Lopez-Paz and others 2017) technique that stores or gen-
erates a small set of samples representative of old data for
mitigating forgetting.

In this paper, we focus on ST-NIL setting and propose a
novel CL framework named Bi-Objective Continual Learn-
ing (BOCL), which aims at both consolidating historical
knowledge and learning from new data, as shown in Fig-
ure 1. On one hand, to mitigate forgetting, we propose to
preserve the old knowledge using pillars, which are linked
to the representative feature points of the historical data,
and develop the Pillar Consolidation (PLC) loss term to
penalize the shift of pillars in the feature space during the
subsequent learning sessions. On the other hand, to effi-
ciently learn new patterns from new data, we propose the
Contrastive Pillar (CPL) loss term that pushes a new train-
ing example to its nearest pillar with the same labels, while
pulling it away from those with different labels. We also ex-
amine several data sampling strategies to tackle the endless
new data amassed over time. In practical applications such
as ‘smart album’ on mobile devices, there is no bound on the
amount of new data as time goes by, and thus their size may
go far beyond the system limits in memory and computa-
tional power. Therefore, an effective sampling scheme must
be provided to finetune the model using reasonable amount
of memory and computational resources.

We perform comprehensive experiments on CI-
FAR10/100, CORe50 and a subset of ImageNet, and
demonstrate the effectiveness of the proposed BOCL
framework for the ST-NIL setting. We also reveal the
performance of different sampling strategies when used for
finetuning a given CNN model. To summarize, the main
contributions of the paper include:

• We focus on the challenging, practical ST-NIL setting and

propose a bi-objective continual learning (BOCL) frame-
work to reconcile both learning from new data and con-
solidating historical knowledge.

• We propose to preserve the old knowledge using a small
set of pillars, and develop the PLC term in the loss func-
tion to alleviate the catastrophic forgetting problem.

• We develop the CPL loss term to improve the classifica-
tion performance of the onsite ‘learning from new’ phase
using the pillars. Moreover, we examine several data sam-
pling strategies for learning with reasonable amount of
computational resources.

Related Work

Multi-task (MT) methods. A series of works adopts the
MT setting for CL. Most of them focus on overcoming
catastrophic forgetting. An earlier work LwF (Li and Hoiem
2018) firstly introduces the idea of knowledge distillation
(Hinton, Vinyals, and Dean 2015) into multi-task CL to
mitigate forgetting. It uses the distillation loss to stabilize
the old tasks’ output during finetuning on new task. EWC
(Kirkpatrick et al. 2017) and its variant, SI (Zenke, Poole,
and Ganguli 2017) attempt to alleviate forgetting by impos-
ing constraint to the network weights related to old tasks.
They approximate the posterior distribution of the weights
as Gaussian distribution to measure their importance. IMM
(Lee et al. 2017) incrementally matches the moment of the
posterior distribution of the networks trained on the old and
new tasks, respectively. It requires to average two networks
for prediction. GEM and its accelerated version, A-GEM,
use an external memory to store representative examples of
historical tasks. The pre-stored examples are used for com-
puting and constraining old tasks’ losses.

In contrast to these MT methods, we focus on the single-
task (ST) setting, which treats the whole learning process
as one task and use a unique classification layer for all en-
countered data. For comparison purpose, we adapt some rep-
resentative MT methods to the ST-NIL setting, including
EWC, SI, IMM and A-GEM.
Single-task class-incremental learning (ST-CIL) meth-
ods. The ST-CIL methods incrementally learn a unified clas-
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sification layer to recognize all encountered classes. Many
of them adopt the distillation technique to alleviate forget-
ting on old classes, where the distillation loss is applied to
the output logits/probabilities corresponding to old classes
(Rebuffi et al. 2017; Castro et al. 2018; Wu et al. 2019).

These distillation-based ST-CIL methods can not be di-
rectly used for the ST-NIL setting, as new training data has
the same classes as the old one and the number of output
logits remains unchanged during the whole training process.
For comparison, we adapt the representative EEIL (Castro
et al. 2018) method to ST-NIL setting by using the examples
of old data for computing the distillation loss.

Problem Description

We define the single-task, new-instance learning (ST-NIL)
problem setting as follows. The entire set of training data
is divided into N independent training sessions S =

{S1, S2, · · · , SN}, where Si = {(Xj , yj)}|Si|
j=1, Xj and yj

are the training image and label, respectively. Each session
contains new training patterns of the same classes from a
predefined, common label space L = {1, · · · , C}, where C
is the number of classes. The model is learned on all training
sessions in S in a sequential manner with a unique classifi-
cation layer, and gradually improve the recognition perfor-
mance on the common test set T .

Bi-Objective Continual Learning Framework

Given an input X, a CNN can be seen as a composition
of a feature extractor f(X; θ) and a cascaded classification
layer that predicts the probabilities over classes. To accom-
plish the ST-NIL setting, we start by training the network
on S1 from scratch with the cross-entropy loss. Then, we
finetune the model on the subsequent sessions {S2, · · · , Sn}
one by one. Directly finetuning on Si, i > 1 would degrade
the performance on previous sessions {S1, · · · , Si−1}, due
to catastrophic forgetting. To address this problem, we try
to preserve the old knowledge using a small set of pillars
P = {pk}|P|

k=1. A pillar is a representative point in the fea-
ture space defined by f(·; θ), which can be seen as a key
memory of the knowledge. It takes the form of a 4-tuple:
pk = (ak,ωk, Ik, bk), where k denotes the index, ak ∈ R

n

is the n-dim feature vector, ωk ∈ R
n is a vector that stores

important statistics for ak. We additionally store a sample
image Ik and its corresponding label bk to compute the ac-
tive values of ak, which is f(Ik; θ).

By using the pillars to represent the knowledge, we for-
mulate ST-NIL as the bi-objective optimization problem.
The overall loss function at the i-th session is defined as:

�(Si,Pi−1; θi) = �lfn(Si,Pi−1; θi)+λ�plc(Pi−1; θi). (1)

In the above equation, �lfn is the loss term for learning
new knowledge from new data, and �plc is the Pillar Consol-
idation (PLC) term for consolidating the old knowledge. We
use θi to denote the active values of θ at session i. The hyper-
parameter λ > 0 balances the strength of �lfn and �plc. We
name the overall framework as the Bi-Objective Continual
Learning (BOCL) framework. In the following subsections,
we will elaborate the components of BOCL in detail.
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Figure 2: Illustration of the self-organizing map (SOM).

Pillar Set Generation

After training on session Si, we extract the set of feature
vectors Fi = {f(X; θi)|X ∈ Si}, and generate the pil-
lar set Pi on Fi. To achieve this purpose, we try to map
high-dimensional Fi to low-dimensional Pi using a self-
organizing map (SOM) (Kohonen 2013). SOM is a neu-
ral network that produces a low-dimensional (typically 2D),
discretized representation of the input space of the training
data. As shown in Figure 2, it consists of an input layer,
which is fed with the feature vectors inFi, and a competitive
layer, which contains K × K nodes organized in a regular
2D gridMi = {m(i)

k }K
2

k=1, where m(i)
k denotes the centroid

vector of node k. SOM maintains the neighbourhood rela-
tionship of the centroid vectors in topology space: similar
centroids are located closer while less similar ones gradually
farther away. This property makes SOM efficient for search-
ing nearest neighbours. Given an input vector f ∈ Fi, SOM
finds the ‘winner’ node c hit by f , by picking the centroid
vector mc closest to f :

c = argmin
k

‖f −mk‖22. (2)

When training SOM on Fi, mc is updated by averaging all
feature vectors that hit node c using the batching-computing
technique in (Kohonen 2013). Therefore, each centroid can
represent the set of the feature vectors closest to it, which
reflects the distribution of the neighbourhood feature space.
Moreover, we can adapt SOM to new data easily and effi-
ciently by updating the centroids. All these properties make
SOM a good choice for generating pillars.

We train a SOM of size K × K to generate K2 pillars,
where each SOM node corresponds to a pillar point. For the
k-th pillar pk = (ak,ωk, Ik, bk) generated by the k-th SOM
node, we define ωk as the weighting vector that measures
the importance of each dimension of ak. Some dimensions
of ak may encode semantic attributes of high intra-class di-
versity (e.g. color), and we should allow free adaptations of
these dimensions in order to learn new patterns better. This
is achieved by assigning a smaller weight to these dimen-
sions when consolidating them for mitigating forgetting. To
get ωk, we compute the variance for each dimension of the
feature vectors that hit SOM node k, which we have:

ωk = (
1

υ1
k

,
1

υ2
k

, · · · , 1

υn
k

), (3)
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Algorithm 1 Generating the pillar set.

Input: Si, Fi,Mi−1, Pi−1, K. ci−1 = {c(i−1)
k }K2

k=1 is for
counting the hits of each SOM node by the input.
Output:Mi, Pi, ci

1: Initialize an SOM of K ×K nodesMi using the tech-
nique in (Kohonen 2013).

2: TrainMi on Fi.
3: for k = 1 to K2 do
4: Count the hits of node k and store it in c

(i)
k .

5: Compute ωk using Eq. (3).
6: end for

// mergeMi−1 intoMi.
7: for k = 1 to K2 do
8: m

(i)
k ← (c

(i−1)
k m

(i−1)
k + c

(i)
k m

(i)
k )/(c

(i−1)
k + c

(i)
k ).

9: c
(i)
k ← (c

(i−1)
k + c

(i)
k ).

10: end for
// mix old pillars’ feature vectors and Fi, and re-sample
pillars via SOM.

11: D ← {a| ∀(a,ω, I, b) ∈ Pi−1} ∪ Fi.
12: for k = 1 to K2 do
13: Find the index of the nearest sample:

j = argmins ‖fs −m
(i)
k ‖22, ∀fs ∈ D.

14: Pi ← Pi ∪ {(fj ,ωj ,Xj , yj)}.
15: D ← D \ {fj}.
16: end for

where υj
k denotes the variance at the j-th feature vector di-

mension. The pillar set generation algorithm is shown in Al-
gorithm 1. It takes the previously generated pillars Pi−1 and
SOM Mi−1 as the input, and outputs the newly generated
pillars Pi and the updated SOMMi.

Pillar Consolidation

Given the pillar set Pi−1 = {pk}|Pi−1|
k=1 constructed from

the previous sessions, PLC accomplishes the objective of
preserving the old knowledge by constraining the pillars to
remain as stable as possible in the feature space. Expressing
this in math form, we have:

�plc(Pi−1; θi) =

|Pi−1|∑

k=1

‖ωk � f(Ik; θi)− ωk � ak‖22, (4)

where � denotes the element-wise multiplication between
the two vectors of the same dimension. We re-weight each
dimension of the pillar’s feature vectors f(Ik; θi) (active)
and ak (pre-stored) using ωk computed in Eq. (3), allow-
ing those dimensions of high diversity freely adapt to new
training patterns contained in new instances.

Figure 1(a-c) illustrates the motivation of the proposed
PLC term. A small set of pillar points represents the topo-
logical structure of the historical data distribution in the fea-
ture space, and can be considered as the key memories of
the historical knowledge. The conventional way of finetun-
ing the model on new data breaks this topological structure,
causing the catastrophic forgetting problem. PLC strives to
alleviate catastrophic forgetting by maintaining this topolog-
ical structure in the feature space.

Onsite Learning with Contrastive Pillar Term

Given Si and the pillar set Pi−1, we enforce the learned fea-
ture of a new training instance (Xj , yj) ∈ Si to be as close
as possible to its nearest matching pillar with the same class
label bn = yj , and as far away as possible to other pillars
with different labels. Figure 1(d) illustrates the motivation
of the proposed CPL term. Cooperating CPL term with the
cross-entropy loss, we formulate �lfn as:

�lfn(Si,Pi−1; θi) =

|Si|∑

j=1

(− log p̂yj
(Xj ; θi)+

γ
‖f(Xj ; θi)− am‖22∑

l �=yj

∑
n∈Nj,l

‖f(Xj ; θi)− an‖22
). (5)

The first term on the right-hand side of Eq. (5) is the cross-
entropy loss, where p̂yj

(Xj ; θi) is the estimated probability
of the label yj . The second term is the proposed CPL term,
where am is the feature vector of the nearest matching pillar
of f(Xj ; θi) with the label bm = yj , and Nj,l is the index
set of the Kp nearest neighbours of the feature f(Xj ; θi)
subject to ∀t ∈ Nj,l, at ∈ Pi−1 and bt = l. As discussed
above, we use SOM to select nearest neighbours efficiently.
γ is used for controlling the strength of the CPL term.

Sampling Strategies for Onsite Learning

Generally speaking, a large volume of training data are de-
sirable to guarantee a high-quality model training. Thus ex-
isting methods usually use all the new data for ‘present’ ses-
sion. Nonetheless, it is problematic to learn from unlimited
data stream in mobile devices with limited computational
power and energy consumption. Therefore, to provide more
computationally efficient solutions, we sample a subset S̃i

from Si using some strategy R and finetune the network θi
only on S̃i, where S̃i = R(Si). As the data distribution of
S̃i may vary from that of Si, the recognition performance
of the trained model is affected by different sampling strate-
gies. Therefore, we explore several sampling strategies R
for on-site learning and compare their performance for CL.

Random sampling (Rrnd): We finetune the model us-
ing Ks examples randomly sampled from Si as the baseline
sampling strategy.

Sampling hard examples (Rhard): We finetune the
model only by hard examples, which are mined by comput-
ing the classification loss for each (X,y) ∈ Si using the
network θi−1 trained on Si−1, and then selecting Ks exam-
ples with the highest losses.

Sampling misclassified examples (Rerr): A straightfor-
ward way to boost the performance of an existing model is to
learn from misclassified examples (Dalal and Triggs 2005).
We randomly pick a set of Ks examples {(Xj , yj)}Ks

j=1 ⊂
Si that are misclassified by the network θi−1 trained on
Si−1, and finetune the model only using these Ks examples.

Experiments

Experimental Setups

We conduct experimental evaluations using the ST-NIL
problem setting. We use CIFAR10/100 (Krizhevsky and
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Hinton 2009), CORe50 (Lomonaco and Maltoni 2017) and
a 1000-class subset of ImageNet (Deng et al. 2009) as the
benchmark datasets.1

CIFAR10/100 dataset. Both datasets contain 60,000 natural
RGB images of the size 32 × 32, including 50,000 training
and 10,000 test images. CIFAR10 has 10 classes, while CI-
FAR100 has 100 classes. We further split the training images
into 5 sessions, and apply different illumination and satura-
tion for each subsequent session as new training patterns.
CORe50 dataset. It consists of 164,866 images of 50 do-
mestic objects, which are split into eleven sessions. Three
sessions (#3, #7 and #10) are selected for test and the
remaining ones for training. Each session contains about
15,000 RGB-D images of the size 128× 128.
SubImageNet. We select a 1000-class subset from the orig-
inal ImageNet-1k dataset as the subImageNet. It contains
250,000 training images that are split into 5 training ses-
sions. Each image is resized and cropped to 224 × 224. We
use the original 50,000 validation images as the test set.

We use the popular ResNet18 (He et al. 2015) (and the
thumbnail version for CIFAR) as the baseline CNN model.
For CIFAR10/100, the models are trained on each session
using SGD with a mini-batch size of 100. When training on
S1, we set the initial learning rate to 0.01, and decrease it
to 0.001 after 15 epochs. We stop training when the cross-
entropy loss becomes stable, which takes about 20 epochs in
total. Then, we use a constant learning rate of 0.001 and fine-
tune each subsequent session for 20 epochs. For CORe50,
we adopt the training setting in (Lomonaco and Maltoni
2017). While for subImageNet, we train the models on each
session for 60 epochs with a larger initial learning rate 0.1.
After training on Si, we evaluate the model θi on the test set
T and report the classification accuracy. All reported results
are averaged over 5 runs.

We use SOMs of sizes 15 × 15, 32 × 32, 25 × 25, and
64 × 64 for CIFAR10/100, CORe50 and subImageNet, re-
spectively. We extract feature vectors from CNN’s penulti-
mate fc layer as f , for Eq. (4) and (5). We set λ = 10 in
Eq. (1), γ = 10 and Kp = 1 (for simplicity, we pick 1 near-
est pillar for Nj,l ) in Eq. (5).

Using each of the sampling strategies described in Sec-
tion , we sample Ks = 1, 000 examples for CIFAR10/100
and CORe50, and Ks = 10000 for subImageNet, from Si

to form the training set S̃i. We use the abbreviation ‘Our-
PLC’ for finetuning with PLC term, and ‘Our-PLC-CPL’
for using both PLC and CPL terms. As very few methods
are designed for ST-NIL setting, for comparison purpose,
we adapt the state-of-the-art regularization and rehearsal
methods to this setting, including EWC (Kirkpatrick et al.
2017), SI (Zenke, Poole, and Ganguli 2017), IMM (Lee et
al. 2017), A-GEM (Chaudhry et al. 2018), and EEIL (Cas-
tro et al. 2018). We also compare with the ‘naı̈ve’ solution
in (Maltoni and Lomonaco 2018) that originally proposes
the new instances setting, and the upper bound ‘cumulative’
method that jointly trains all encountered data. For fair com-
parison, we implement all methods using the same network
(ResNet18) and measure each method under the same size

1The code is released at https://github.com/xyutao/bocl.

of the memory that stores pillars or image exemplars.

Comparison Results

We compare the proposed BOCL with the state of the arts
on CIFAR10, CIFAR100, CORe50 and subImageNet. The
results are shown in Figure 3. All the methods are finetuned
on the full and the Rrnd sampled set for each training ses-
sion, respectively. We choose Rrnd as our final sampling
strategy, because it outperforms other strategies. In all the
figures, the green line corresponds to the naı̈ve finetuning
method. The deep blue line represents the upper-bound cu-
mulative method that jointly trains all encountered data. We
use the red and orange lines for Our-PLC and Our-PLC-
CPL, respectively. The experimental results in Figure 3 are
summarized as follows:

• With both datasets, and for training on both the full and
the sampled set, our proposed BOCL outperforms other
state-of-the-art methods on each encountered session, and
its accuracy curves is the closest to that of the upper bound
cumulative method.

• By comparing each pair of the red and green lines in
Figure 3, we can easily observe that the BOCL with
PLC alone outperforms the naı̈ve method by up to
9.22%. Moreover, using both PLC and CPL terms fur-
ther achieves up to 1.53% accuracy gain than using PLC
alone. It is thus safe to conclude that both two terms con-
tribute to the models’s performance improvement.

• With CIFAR10, after learning all the sessions, BOCL
achieves accuracy of 77.43% and 72.10% when finetun-
ing on the full and randomly sampled training set, re-
spectively. In comparison, the second best one namely
A-GEM∗ achieves the accuracy of 75.16% and 70.97%,
correspondingly. BOCL outperforms the best A-GEM∗
method by up to 2.27%.

• With CIFAR100, BOCL achieves the final accuracy of
53.76% and 41.87% when finetuning on the full and ran-
domly sampled training set, respectively, while the second
best one A-GEM∗ achieves the accuracy of 51.24% and
40.89%, correspondingly. BOCL outperforms A-GEM∗
by up to 2.52%.

• With CORe50, BOCL achieves the accuracy of 74.31%
and 67.83% when finetuning on the full and randomly
sampled training set, respectively, while the correspond-
ing accuracy achieved by A-GEM∗ are 71.54% and
65.23%, respectively. BOCL outperforms A-GEM∗ by up
to 2.77%.

• With subImageNet, when finetuning on the full training
set, BOCL achieves the top-5 accuracy of 50.32%, ex-
ceeding the second best IMM∗ (48.52%) by 1.80%; while
for randomly sampled training set, BOCL achieves the
top-5 accuracy of 37.77%, outperforming the second best
A-GEM∗ (34.53%) by 3.24%. It demonstrate the effec-
tiveness of BOCL on the dataset with a large number of
classes.
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Figure 3: Comparison results on CIFAR10, CIFAR100, subImageNet and CORe50. All methods are finetuned on the full and
Rrnd sampled set of the training sessions, respectively. The results are averaged over 5 runs.

Figure 4: Comparison results of different sampling strategies with different methods. The left three figures compare the perfor-
mance of naı̈ve, cumulative and our BOCL under different sampling strategies. The right three figures compare the performance
of different sampling strategies implemented using different methods. The results are averaged over 5 runs.

Ablation Study

To investigate the impact of each component of BOCL,
we perform comprehensive ablation studies on CIFAR10
dataset using full set of new data. In our BOCL, we train
a SOM to generate the pillar set that represents the knowl-
edge in the feature space, which is used by PLC term for
mitigating forgetting and CPL term for improving feature
learning on new instances. Alternatively, we can use ran-
dom sampling as in (Castro et al. 2018) to select representa-
tive examples, and then impose quadratic constraint to their
features or compute distillation loss to mitigate forgetting.

Table 2 compares the test accuracy at the last session
achieved by different terms with different strategy for pre-
serving the knowledge. PLC− denotes the quadratic feature
regularization term without the re-weighting vector ωk. We
can learn that using pillars and feature re-weighting tech-
nique achieves the best accuracy, as it provides more com-
prehensive statistics of the feature space (i.e., ω) to facilitate
the consolidation of old knowledge.

Table 2: Comparison of the test accuracy at the last session.

Method random selection SOM pillars
PLC− (w/o ω) 75.72 75.93
PLC 75.72 76.98
PLC-CPL 76.62 77.43

Study of Sampling Strategies

To examine the three sampling strategies, we compare the
naı̈ve, cumulative , and our BOCL on the CIFAR10 train-
ing sessions sampled with Rrnd, Rhard, and Rerr, respec-
tively, as illustrated in Figure 4 (a - c). For the random
sampling strategy Rrnd in Figure 4 (a), the BOCL method
(the red solid lines) has a steady-state growth in accuracy
and are close to the cumulative method (the blue dashed
lines). For the other two strategies Rhard and Rerr in Fig-
ure 4 (b) and (c), the performance of the naı̈ve method (the
green dashed lines) drops significantly for subsequent ses-
sions which indicates the occurrence of catastrophic for-
getting. BOCL method can effectively alleviate catastrophic
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Table 3: Classification accuracy w.r.t. different λ after learn-
ing all sessions, with γ = 10.

λ 0.1 1 5 10 50
Acc. (%) 69.77 70.14 71.61 72.10 72.06

Table 4: Classification accuracy w.r.t. different γ after learn-
ing all sessions, with λ = 10.

γ 0.1 1 5 10 50
Acc. (%) 71.31 71.85 72.07 72.10 71.92

forgetting and maintain the recognition performance.
Figure 4 (d - f) further compare different sampling strate-

gies implemented with naı̈ve, cumulative and BOCL, re-
spectively. We can learn that regardless of the upper bound
strategy that uses all data for training, the random sampling
strategyRrnd significantly outperforms the other two strate-
giesRhard andRerr, whileRhard is the worst.

We analyze the reason why theRhard andRerr sampling
strategies achieve inferior performance as follows. Hard ex-
amples are usually those difficult to be separated by the de-
cision boundary. However, it is prone to catastrophic forget-
ting when finetuning only on hard ones, which may overfit
to noise. A similar case occurs if we only finetune on mis-
classified examples. In real applications, the distribution of
the incoming new data is uncertain and dynamic, and we
typically have no knowledge about it. As a consequence, a
specifically designed sampling technique (e.g. Rhard) may
fail. Not surprisingly, the simple random sampling becomes
the most versatile and effective strategy since it makes no
assumptions about the distribution of the entire dataset.

Sensitivity Study of Hyper-parameters

We perform the sensitivity study of λ (Eq. (1)) and γ
(Eq. (5)) about how the performance accuracy varies with
different settings of hyper-parameters. Tables 3 and 4 report
the classification accuracy on CIFAR10 test set after learn-
ing all sessions with the sampling strategy Rrnd, w.r.t. dif-
ferent settings of λ and γ, respectively. We can see that a
large value of λ and γ can strengthen the effect of the PLC
and CPL loss term, respectively. However, too large values
may destabilize the convergence of the training phase and
weaken the contribution of the cross-entropy loss and the
classification accuracy. To determine their values, we split
a temporary validation set out of the training sessions, train
the networks with different hyper-parameter values, and then
pick the ones with the best accuracy on the validation set,
which are λ = 10 and γ = 10.

Analysis of the Number of Pillars

The proposed BOCL employs the pillars generated by an
SOM of a specific size to represent the old knowledge. Here
we conduct an analysis to reveal how different number of
pillars affects the performance. Table 5 shows the accuracy
on the CIFAR10 test set after learning all the sessions with
the sampling strategy Rrnd w.r.t. different numbers of pil-
lars. We observed that using a moderate number of pillars

Table 5: Classification accuracy w.r.t. different numbers of
pillars after learning all sessions

Num. of pillars 10 25 100 225 400
Acc. (%) 69.43 69.82 71.64 72.10 72.08

helps to achieve a better recognition performance, while too
many pillars will lead to the performance saturation and
higher computation cost. We choose the number of pillars
based on the scale of the dataset. Heuristically, we set the
number of pillars to about

√
NC/2, where N is the number

of training samples of each session, and C is the number of
classes.

Discussion

The proposed BOCL method avoids catastrophic forgetting
using the PLC term that penalizes the shift of the pillars
in the feature space f (Eq. (4)). In comparison, other ap-
proaches typically impose constraints to the network’s pa-
rameter space θ, such as EWC (Kirkpatrick et al. 2017), or
to the network’s classification outputs, such as EEIL (Cas-
tro et al. 2018). On the contrary, BOCL constrains the pil-
lars in the feature space, avoiding the pillars from shift-
ing, while allowing the feature space adapting for new data
freely. The feature space has higher dimensionality than the
output space and contains richer information for represent-
ing the learned knowledge. Thus constraining the feature
space is more effective for learning ‘new’ while consolidat-
ing ‘known’, which is demonstrated by the experimental re-
sults shown in Figure 3.

We also investigated three different sampling strategies
for onsite learning: random sampling, hard-example sam-
pling and misclassified-example sampling. Experimental
evaluations have revealed that random sampling is the sim-
plest yet most effective sample strategy for finetuning the
model on new data.

Conclusion

We focus on the single-task new-instance learning (ST-
NIL) problem and propose a bi-objective continual learning
framework. For alleviating forgetting, we propose the PLC
loss term to penalize the shift of pillars in the feature space
during finetuning. For efficient on-site learning from new
data, we propose the CPL loss term to enhance the classi-
fication performance. By using pillars as a carrier of the past
knowledge, the PCL term provides a seamless mechanism to
link the target of ‘learning from new’ to those of ‘consolidat-
ing old’. We also investigate different strategies for sampling
new instances. Experimental results show that the proposed
BOCL remarkably outperforms the state-of-the-art methods.
BOCL is simple and efficient, with less computational and
storage overhead when cooperating with deep CNNs. Next
we will generalize BOCL to more applications and put it
into practical use.
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