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Abstract

With rapid adoption of deep learning in critical applications,
the question of when and how much to trust these models of-
ten arises, which drives the need to quantify the inherent un-
certainties. While identifying all sources that account for the
stochasticity of models is challenging, it is common to aug-
ment predictions with confidence intervals to convey the ex-
pected variations in a model’s behavior. We require prediction
intervals to be well-calibrated, reflect the true uncertainties,
and to be sharp. However, existing techniques for obtaining
prediction intervals are known to produce unsatisfactory re-
sults in at least one of these criteria. To address this challenge,
we develop a novel approach for building calibrated estima-
tors. More specifically, we use separate models for predic-
tion and interval estimation, and pose a bi-level optimization
problem that allows the former to leverage estimates from the
latter through an uncertainty matching strategy. Using experi-
ments in regression, time-series forecasting, and object local-
ization, we show that our approach achieves significant im-
provements over existing uncertainty quantification methods,
both in terms of model fidelity and calibration error.

Introduction

Data-driven learning methods, in particular deep learning,
have led to incredible advances in a wide variety of commer-
cial AI applications, and are rapidly being adopted in high
impact applications such as healthcare, autonomous driv-
ing, and scientific discovery. Consequently, it has become
critical to enable deep models to reliably assess their con-
fidence in scenarios different from the training regime and
to verify that predictions arise from generalizable patterns
rather than artifacts in the training data. In practice, a variety
of sources including data sampling errors, model approxi-
mations and the inherent data uncertainties can contribute
to stochasticity in deep models (Gal 2016). Hence, captur-
ing these uncertainties when making predictions can shed
light onto when and how much to trust the results (Leibig
et al. 2017a; Ching et al. 2018; Kendall and Gal 2017;
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Levasseur, Hezaveh, and Wechsler 2017). Furthermore, ac-
curate uncertainty estimates are essential for solving a va-
riety of practical machine learning challenges including
knowledge transfer (Wen et al. 2019), active learning (Wang
et al. 2016), and anomaly detection (Leibig et al. 2017b).

In recent years, several classes of uncertainty estima-
tion techniques have been proposed (Gal and Ghahramani
2016; Gal, Hron, and Kendall 2017; Lakshminarayanan,
Pritzel, and Blundell 2017; Ghahramani 2015). An inher-
ent limitation of these uncertainty quantification (UQ) tech-
niques is the lack of suitable validation strategies. A typ-
ical workaround is to evaluate prediction intervals (PIs)
via their calibration, without distinguishing the uncertainty
sources (Heskes 1997): A PI is well calibrated if the likeli-
hood of true target falling in the interval is consistent with
the confidence level of the interval. In the context of cali-
bration, most existing UQ methods in deep learning are not
inherently calibrated (Kuleshov, Fenner, and Ermon 2018).

In this paper, we argue that producing well-calibrated pre-
diction intervals requires the identification of informative
and uninformative uncertainties. When a model is equally
confident in all parts of the data space, the uncertainties are
considered uninformative. In practice, it is typical to use an
additional recalibration dataset to refine the uncertainty es-
timates. In contrast, we propose to effectively leverage the
informative uncertainties from a model through the use of
an auxiliary interval estimator that is exclusively optimized
for the calibration objective, and a novel uncertainty match-
ing process. More specifically, we use a primary network for
producing mean estimates with prediction uncertainties and
an auxiliary network for obtaining calibrated PIs, and for-
mulate a bi-level optimization approach for jointly training
the two networks. To this end, we develop two uncertainty
matching strategies to leverage the intervals during the mean
estimation process, namely Sigma Fit and IQR Fit. By incor-
porating the calibration step into the training process, our
method is able to produce predictive models with signifi-
cantly improved accuracy as well as better calibration.

Contributions:

• A novel framework to produce reliable prediction inter-
vals in continuous-valued regression, that are sharp and
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well calibrated for any required confidence level;

• An approach to estimate means and prediction intervals
as a bi-level optimization and an alternating optimization
strategy for model inference;

• A new regularization for estimating means along with pre-
diction uncertainties based on uncertainty matching;

• Two different uncertainty matching strategies, namely
Sigma Fit and IQR Fit; and

• A rigorous evaluation on different use-cases and model
architectures including regression with FCNs, time-series
forecasting with LSTMs and object localization with
CNNs, all producing better generalization performance
and calibration error compared to the state of the art.

Related Work

Broadly, there are two important sources of prediction
uncertainties in deep models: epistemic uncertainty, also
known as model uncertainty that can be eliminated given
enough training data, and aleatoric uncertainty, which de-
pends on stochasticity inherent to the data. A variety of es-
timators have been proposed in the literature for measuring
these uncertainties, most often with classification models.
For example, Bayesian neural nets (Blundell et al. 2015),
Monte-Carlo dropout (Gal and Ghahramani 2016), concrete
dropout (Gal, Hron, and Kendall 2017) and ensemble tech-
niques (Lakshminarayanan, Pritzel, and Blundell 2017) are
commonly utilized to estimate the epistemic uncertainties.
On the other hand, Tagasovska et al. recently proposed a
conditional quantile based estimator for measuring aleatoric
uncertainties (Tagasovska and Lopez-Paz 2018).

Due to the lack of suitable evaluation mechanisms for
validating the quality of these estimates, it is common to
utilize calibration as a quality metric. Interestingly, it has
been reported in several studies that these estimators are not
inherently calibrated (Kuleshov, Fenner, and Ermon 2018).
Consequently, a large class of techniques that are aimed at
calibrating pre-trained classifiers has been developed (Guo
et al. 2017; Seo, Seo, and Han 2019; Nixon et al. 2019;
Kuleshov and Liang 2015). In comparison, calibration for
regression tasks has received limited attention (Gneiting
and Raftery 2007; Kuleshov, Fenner, and Ermon 2018;
Levi et al. 2019). For example, a two-stage recalibration
technique was proposed in (Kuleshov, Fenner, and Ermon
2018) which re-calibrates the PI estimates from the classi-
fier model. This approach requires sufficient i.i.d. data to
perform recalibration and can arbitrarily alter the true uncer-
tainties to achieve the calibration objective (Levi et al. 2019).
Another important limitation of recalibration methods is that
they do not distinguish between informative and uninfor-
mative uncertainties. In order to circumvent this challenge,
recently, Levi et al. proposed to match the heteroscedas-
tic variances to the residuals from the predictions (Levi et
al. 2019), through a strategy similar to temperature scal-
ing (Guo et al. 2017). In contrast, our approach attempts to
utilize the informative uncertainties for producing calibrated
intervals, through an auxiliary interval estimator model and
a novel uncertainty matching strategy.
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Figure 1: An illustration of our approach to produce PI,
for any specified confidence α, and perform PI-regularized
mean estimation via a bi-level optimization technique.

Proposed Approach

In this section, we describe the proposed approach (see Fig-
ure 1) for building deep predictive models, which employs
a novel uncertainty matching strategy to produce estimators
that are both accurate and well-calibrated.
Notations. Denoting the input data by x ⊂ X ∈ R

d, our
goal is to build a predictive model F : x �→ y, where
y ⊂ Y ∈ R and an interval estimator I : x �→ R

2. Here,
X and Y indicate spaces of inputs and outputs respectively.
Note, the model I produces δu and δl, which denote widths
of the interval in the positive/negative direction respectively,
thus producing a total interval width w = δu+ δl. The mod-
els F and I are described using parameters Θ and Φ respec-
tively. A labeled dataset of N samples is comprised of tuples
{(xi, yi)}, i = 1, · · · , N . We denote all estimated quanti-
ties with a hat symbol, e.g. ŷ = F(x). Though our focus is
on predicting continuous-valued outputs, the proposed tech-
niques can be easily generalized to classification problems.

Formulation

In this paper, we hypothesize that integrating the task of
calibration into the predictive modeling process can pro-
vide useful regularization to its optimization, thus producing
higher fidelity models that are also well-calibrated. To this
end, our approach employs two separate models – one for
predicting the target and the other for estimating the predic-
tion intervals, and pose a bi-level optimization formulation
that allows the mean estimator to identify prediction uncer-
tainties that are the most informative for matching the inter-
vals from the PI estimator. Let F(x;Θ) denote the mean es-
timator and I(x; Φ∗)denote the PI estimator parameterized
by Θ and Φ respectively. The overall objective is

min
Θ

LF (Θ; x, y, I(x; Φ∗)) ,

s.t. Φ∗ = argmin
Φ

LI(Φ; x,F(x;Θ)). (1)

Here, the first term represents an improved mean estimator
that takes the intervals into account for identifying informa-
tive uncertainties, and the second term exclusively optimizes
for calibration, based on the current mean estimator. Intu-
itively, the auxiliary task of obtaining prediction intervals,
i.e., minimizing LI , is used to regularize the primary task
of fitting a predictive model by constraining its uncertainty
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estimates to match the estimated intervals. We refer to this
process as uncertainty matching. Though this can be imple-
mented with any existing uncertainty estimation technique,
we use heteroscedastic neural networks (HNN) and condi-
tional quantile estimators in our setup.
PI Estimator Design. While the mean estimate is a random
variable, an interval estimate is a random interval. For an
output variable y, let yl and yu denote its lower and up-
per bounds. While an interval does or does not contain a
certain value, a random interval has a certain probability
of containing a value. Suppose that p(yl ≤ y ≤ yu) =
α, where α ∈ [0, 1], then the random interval [yl, yu] is re-
ferred as a 100 × α% interval of y. When this holds, we
expect that when we sample a large number of xi from a
validation set and predict F(xi) and I(xi), then yi will be
contained in I(xi) 100× α% of the trials.

The PI estimator network is designed to produce inter-
vals that are well-calibrated and can reflect the underlying
prediction uncertainties. In contrast to existing approaches
which attempt to produce uncertainties that can be calibrated
to any α by applying appropriate scaling, our method oper-
ates with a specific α and implements the calibration task as
a differentiable function. As expressed in Eq. (1), the loss LI
is constructed based on the current state of Θ for the mean
estimator network F . We use the following term to optimize
for the quality of calibration, which measures the empirical
probability of the true target lying in the estimated intervals:

Lemce =

∣∣∣∣∣α− 1

N

N∑
i=1

�
[
(ŷi − δli) ≤ yi ≤ (ŷi + δui )

]∣∣∣∣∣ ,
(2)

where � is the indicator function and ŷi = F(xi; Θ) are the
mean predictions. We implement the indicator function as
Sigmoid(η × (yi − yli)(y

u
i − yi)), where ŷli = ŷi − δli,

ŷui = ŷi + δui , and η is a large scaling factor. This empiri-
cal objective does not require any distributional assumption
on data. Next, in order to ensure that the intervals reflect
the underlying uncertainty, the widths wi are matched to the
residual r from F .

Lnoise =

N∑
i=1

∥∥∥∥
(
0.5 ∗ wi − |ri|

)∥∥∥∥
1

, (3)

where ‖.‖1 denotes the �1 norm, wi = δui + δli and the resid-
ual ri = yi − F(xi; Θ). Finally, the widths of estimated
intervals are regularized to avoid non-trivial solutions of ar-
bitrarily large intervals.

Lsharp =

N∑
i=1

‖ŷui − yi‖1 +
∥∥yi − ŷli

∥∥
1
. (4)

Hence the overall objective can be written as:

Φ∗ = argmin
Φ

LI

= argmin
Φ

Lemce + βnLnoise + βsLsharp, (5)

where βn, βs are penalty terms.
Mean Estimation with Uncertainty Matching. As formu-
lated in Eq. (1), the goal is to leverage the calibrated inter-
vals from the PI estimator, through uncertainty matching, to

Algorithm 1: Building calibrated deep predictive
models.

Input: Labeled data {(xi, yi)}Ni=1, Desired
calibration level α, Number of epochs nm and
nc.

Output: Trained mean and interval estimators F and
I

Initialization:Randomly initialize parameters
Θ∗,Φ∗;

while not converged do
for nm epochs do

Compute intervals δui , δ
l
i = I(xi; Φ∗) ;

Compute loss function LF using Eq. (7) for
Sigma Fit or Eq. (10) for IQR Fit ;

Update Θ∗ = argminΘ LF ;
end
for nc epochs do

Obtain predictions ŷi = F(xi; Θ
∗) ;

Compute loss function LI using Eq. (5) ;
Update Φ∗ = argminΦ LI ;

end

end

optimize for parameters Θ. The F network is designed to
predict the target along with uncertainty estimates, and the
loss function LF is designed such that the fidelity of the pre-
dictions is measured with respect to the true targets, while
the uncertainties are guided by the interval estimates from
I. We find that, by allowing the structure of estimated un-
certainties to follow the pseudo-supervisory signal from I,
one can obtain higher quality estimates ŷ. Now, we explain
the two proposed strategies for uncertainty matching.
a. Sigma Fit: In this variant, the predictive model F is de-
signed as a heteroscedastic neural network, i.e. it returns
mean and variance estimates (ŷi, σ̂2

i ) for a given sample xi,
and is optimized using the heteroscedastic loss (Gal 2016).
Note that, this loss function is defined by assuming the pre-
dictions to follow a Gaussian distribution, and the estimated
variances from the HNN can be used to estimate intervals
for different levels of calibration α,

PI = [ŷ − z(1−α)/2σ̂, ŷ + z(1−α)/2σ̂], (6)

where z indicates the z−score (i.e. z(1−α)/2 = 1.96, for
95% calibration). We enforce the estimated σ̂ to match the
appropriately scaled version of the interval width w, based
on the calibration level achieved by I on the training dataset.
Formally, the optimization objective can be written as:

LF =
1

N

N∑

i=1

‖yi −F(xi; Θ)‖22
2σ2

i

+
1

2
log σ2

i +λm‖σi−γ
wi

2
‖1, (7)

where λm is a penalty term, the scale γ = 1/z(1−αv)/2 with
αv being the calibration level achieved by I.
b. IQR Fit: In this strategy, we propose to obtain uncertainty
estimates based on conditional quantiles of the target y and
enforce them to match the intervals from the PI estimator.
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Figure 2: Convergence behavior of the proposed approach
on the held-out test data for the Boston housing (top) and
Parkinsons (bottom) datasets, for a target calibration level
of 95% and 99% respectively : As the algorithm progresses,
we observe that both the RMSE and calibration consistently
improve. At the same time, the interval widths become sharp
even while achieving high calibration.

Let F (y) = P (y ≤ y) be the strictly monotonic cumula-
tive distribution function of y assuming real values y and
F−1(τ) = inf{y : F (y = y) ≥ τ} denotes the quantile
distribution function for 0 ≤ τ ≤ 1. Quantile regression is
aimed at inferring a desired quantile τ for the target y, when
the input x = x, i.e., F−1(τ |x = x). This model can be es-
timated using the pinball loss (Koenker and Hallock 2001):

Lτ (y, ŷ) =

{
τ(y − ŷ), if y − ŷ ≥ 0,

(1− τ)(ŷ − y), otherwise.
(8)

Recently, (Tagasovska and Lopez-Paz 2018) showed that the
inter-quantile range (IQR) between upper and lower quan-
tiles can produce calibrated estimates of the aleatoric uncer-
tainties. Hence, we propose an uncertainty estimator similar
to (Tagasovska and Lopez-Paz 2018), where the α prediction
interval can be obtained around the median as:

IQR(x; τu, τ l) = F(x|τ = τu,Θ)−F(x|τ = τ l,Θ), (9)

τu = (1 + α)/2, τ l = (1− α)/2.

Given the interval estimates from the PI network, the loss
function LF can be constructed as:

LF =
1

N

N∑
i=1

‖yi −F(xi; Θ)‖22 + λuLτu(yi,F(xi; Θ))

+ λlLτ l(yi,F(xi; Θ)) + λm‖IQR(xi)− wi‖1. (10)

Algorithm

The overall algorithm, which repeats the regularized mean
estimation and the interval prediction in an alternating fash-
ion, is provided in Algorithm 1. The mean estimator takes
the intervals into account for its update. Similarly, we in-
clude the residual structure from the mean estimator for in-
terval estimation. For a fixed interval, the improved mean
estimate can increase the calibration error (CE) by achiev-
ing a higher likelihood even for smaller α. However, when

reupdating the interval estimator, we expect the widths to
become sharper to reduce CE. This collaborative process
thus leads to superior quality mean estimates and highly cal-
ibrated intervals. While each of the steps are run for nm

and nc epochs respectively, the outer loop is executed until
convergence. In all our experiments, both hyper-parameters
nm and nc are set at 10 and the algorithm returns opti-
mized parameter estimates for F and I. It is important
to note that, we do not require any additional recalibra-
tion step for the validation/testing stages, in contrast to
approaches such as (Kuleshov, Fenner, and Ermon 2018;
Platt and others 1999). Figure 2 illustrates the convergence
behavior of the proposed approach for a regression task on
two datasets. We observe that, as the algorithm progresses,
the proposed approach produces well-calibrated intervals
that are also sharp (measured using the average of inter-
val widths wi). More importantly, the uncertainty matching
based regularization produces much improved quality pre-
dictors, as evidenced by the improvements to the prediction
quality (measured using RMSE).

Empirical Studies

In this section, we present empirical studies to compare the
proposed approach against popularly adopted methods for
producing prediction intervals. More specifically, we consid-
ered three different use cases where the goal was to predict
continuous valued target variables – regression, forecasting
with time-series data and object localization in images (i.e.
predicting bounding boxes).

Experiment Setup

Hyper-parameter Choices: We used Algorithm 1 to solve
the optimization problem in Eq. (1), based on the two pro-
posed strategies, namely Sigma Fit and IQR Fit. We used the
following hyper-parameter choices for all experiments: The
penalties for the loss LI in Eq. (5) were fixed at βn = 0.1
and βs = 0.3 respectively. For the Sigma Fit method, the
penalty for the uncertainty matching term was set at λm =
0.5. Similarly, the hyper-parameters for constructing the loss
LF for IQR Fit, we used λm = 0.4, λu = λl = 0.3. While
the outer loop in Algorithm 1 was run until convergence,
both the mean estimator and the PI estimator networks were
trained for nm = nc = 10 epochs in each iteration.
Evaluation Metrics: For both regression and time-series
forecasting applications, we used the standard root mean
square error (RMSE) metric to evaluate the quality of mean
predictions. In the case of object localization, we used the
intersection-over-union (IoU) metric, that measures the ratio
between the area under intersection of the true and predicted
bounding boxes, and the area under union of both bounding
boxes. Since our primary objective is to produce calibrated
estimators, we evaluate the quality of prediction intervals on
the held-out validation set using the calibration error metric,
CEα, which is the same as the Lemce term in Eq. (2). In
order to ensure that the PI estimator network does not pro-
duce a degenerate solution (arbitrarily large intervals that are
always calibrated), we included the Lsharp term in Eq. (5).
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Table 1: Test RMSE from the regression experiments on 6 UCI benchmark datasets. For all cases, the results showed are for the
case of α = 0.9, i.e. 90% calibration. The results reported were obtained by averaging over 5 random trials.

Method Crime Red Wine White Wine Parkinsons Boston Auto MPG

MC Dropout 0.139 0.686 0.748 2.78 5.51 4.61
Concrete Dropout 0.144 0.745 0.764 3.1 5.88 5.19
Quantile Estimator 0.152 0.737 0.782 2.91 4.802 4.32

BNN 0.159 0.823 0.871 2.493 4.025 3.07

HNN 0.138 0.714 0.757 2.842 4.762 3.98
Sigma Fit 0.138 0.599 0.702 2.017 4.088 3.23

IQR Fit 0.138 0.581 0.691 2.206 4.011 3.18

(a) Boston Housing (b) White Wine

(c) Parkinsons (d) Auto MPG

Figure 3: Evaluating the quality of estimated intervals - For each dataset, we plot the expected calibration vs observed calibration
on test data to demonstrate the generality of the proposed PI estimator, when compared to baselines. Further, we plot expected
calibration vs average PI width to show how the estimated intervals compare to existing uncertainty estimators.

Hence, we also evaluate how well that constraint is met us-
ing the average width metric: AWα = 1

N

∑N
i=1(δ

l
i + δui ).

Baselines: We compare against the following baseline tech-
niques that are commonly adopted to produce prediction in-
tervals, in lieu of simple point-estimates. Though there exists
an entire class of recalibration methods (Kuleshov, Fenner,
and Ermon 2018), which utilizes an additional recalibration
dataset to refine the learned estimator with a calibration ob-
jective, our focus is on single-shot calibration methods.
MC Dropout (Gal and Ghahramani 2016): In this approach,
dropout in deep neural networks is cast as an approxi-
mate Bayesian inference in deep Gaussian processes. Using
dropout during both train and test phases simulates Monte-
Carlo sampling from the network with non-deterministic
weights, thus capturing epistemic uncertainties. For all ex-
periments, the dropout probability was set at 0.5.
Concrete Dropout (Gal, Hron, and Kendall 2017): This was
designed to automatically tune the dropout probability based
on data characteristics, and hence it is expected to produce
better calibrated intervals in comparison to MC Dropout.

Bayesian Neural Networks (BNN) (Blundell et al. 2015):
In this approach, the underlying distribution on network
weights are approximated with a Gaussian (variational ap-
proximation), and the posterior inference based on observed
data is then carried out by sampling from this approximate
distribution, thus capturing epistemic uncertainties.
Quantile Estimator (Tagasovska and Lopez-Paz 2018):
Inter-quantile range from conditional quantiles of predictors
can be used to estimate the aleatoric uncertainties and hence
prediction intervals for a given α confidence can be obtained
by choosing appropriate upper and lower quantiles.
Heteroscedastic Neural Networks (HNN) (Kendall and Gal
2017): Using the Gaussian likelihood formulation, the data
dependent observation noise, i.e. aleatoric uncertainties, can
be captured through the heteroscedastic loss.

Regression using Fully Connected Networks

In this experiment, we considered the problem of regressing
to a continuous target variable from high-dimensional fea-
tures. For each dataset, we used a random 80/20 split for
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Table 2: Results from the time-series forecasting experiments - We report the test RMSE, calibration error and average width
metrics for each of the cases, when α was set to 0.95.

Method Metric NSW2013 Bike Sharing TAS2016 Traffic Beijing Air Quality

MC Dropout
RMSE 125.48 62.68 22.12 2.03E+08 22.42 0.66
CE0.95 0.04 0.30 0.196 0.037 0.177 0.02
AW0.95 587.54 90.94 50.37 8.39E+08 38.53 2.52

Concrete Dropout
RMSE 153.16 64.81 23.11 2.25E+08 22.46 0.65
CE0.95 0.046 0.277 0.145 0.073 0.12 0.105
AW0.95 696.19 96.67 53.58 8.93E+08 48.42 2.73

Quantile Estimator
RMSE 131.18 65.19 23.44 2.07E+08 22.45 0.77
CE0.95 0.07 0.22 0.19 0.07 0.11 0.241
AW0.95 533.31 99.34 49.17 8.6E+08 49.17 2.71

BNN
RMSE 153.16 64.81 23.11 2.25E+08 22.46 0.65
CE0.95 0.046 0.277 0.145 0.073 0.12 0.105
AW0.95 696.19 96.67 53.58 8.93E+08 48.42 2.73

HNN
RMSE 124.59 64.38 22.81 1.36E+08 22.83 0.72
CE0.95 0.008 0.004 0.013 0.014 0.028 0.041
AW0.95 452.05 199.64 91.24 5.62E+08 98.95 6.16

Sigma Fit
RMSE 90.31 58.97 17.95 1.27E+08 18.65 0.53

CE0.95 0.002 0.005 0.009 0.006 0.011 0.007
AW0.95 424.59 169.81 77.71 5.49E+08 88.19 2.99

IQR Fit
RMSE 94.85 53.65 17.64 1.21E+08 19.43 0.62
CE0.95 0.003 0.002 0.005 0.003 0.01 0.004

AW0.95 421.63 182.34 80.44 5.43E+08 87.48 3.11

train/test, and we report the averaged results obtained from
5 random trials. As a preprocessing step, we rescaled the
target data into the range [0, 1] before training the models.
Datasets: We considered 6 datasets from the UCI reposi-
tory (Dua and Graff 2017), which ranged between 7 and 124
in their dimensionality, and between 391 and 4898 in terms
of sample size: crime, red wine quality, white wine quality,
parkinsons, boston housing and auto mpg.
Model Architecture: For all approaches, we used a fully
connected network with 5 linear layers, each followed by a
ReLU activation function, and the MSE loss for training.
Results: A meaningful interval is one that reflects the in-
formative uncertainties in data or modeling process and is
well calibrated. Hence, we measure the quality of calibra-
tion achieved using the proposed approach at different cal-
ibration levels α - (i) expected calibration vs observed cal-
ibration; and (ii) expected calibration vs average PI width.
While the former evidences the generality of the PI estimator
to unseen test data, the latter shows how the estimated inter-
vals compare to conventional uncertainty estimators. Similar
to the findings of existing studies, we also find that exist-
ing approaches such as MC Dropout, Concrete Dropout and
BNN are not well calibrated. In comparison, we found the
heteroscedastic neural networks to be better calibrated. Fig-
ure 3 shows the results for 4 different datasets (rest in supple-
mentary) and we find that the proposed approach achieves
significantly improved calibration, when compared to the
baseline methods. Interestingly, from the average PI width

plots, we find that the estimated intervals are typically larger
than the aleatoric uncertainties from the quantile estima-
tor, while being much lower than the estimates from BNNs.
Finally, from Table 1, it is apparent the uncertainty match-
ing process leads to improved regularization, thus producing
higher-quality mean estimates.

Time-series Forecasting using LSTMs

In this study, we consider the problem of forecasting in time-
varying data by leveraging information from the past sam-
ples. More specifically, we attempt to look-ahead by one
sample x[t+ 1] using the observations x[t− k : t+ 1].
Datasets: We considered 6 time-series datasets: NSW2013
and TAS2016 annual electricity demand recordings from
the Australian Energy Market Operator; bike sharing, air
quality, Beijing PM2.5 and network traffic datasets from
UCI (Dua and Graff 2017). In each case, we used k = 24
steps in the past to look ahead, and overall we used the first
30% of the time-steps for training and the rest for testing.
Model Architecture: Our architecture comprised of a RNN
with LSTM units (2 layers with 128 hidden dimensions) and
a linear layer for making the final prediction.
Results: For this study, we ran all experiments with the de-
sired level of calibration fixed at α = 0.95, and report the
RMSE, CE0.95 and AW0.95 metrics obtained using the dif-
ferent approaches in Table 2. As it can be seen, the proposed
alternating optimization achieves the lowest calibration er-
ror in all cases, and more importantly, consistently produces
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(a) NSW2016 (b) Air Quality (c) TAS2016 (d) Bike Sharing

Figure 4: Forecasting: Prediction intervals obtained using the proposed IQR Fit method for the calibration level α = 0.95 on
the test data. It can be seen that in all cases, our method produces sharp intervals that are well calibrated.

Table 3: Results from the object localization experiments -
We report the performance of the best performing baseline
and the proposed IQR Fit at α = 0.95

HNN IQR Fit
CE0.95 AW0.95 CE0.95 AW0.95

x 0.11 31.72 0.01 18.67
y 0.14 26.33 0.02 16.42
w 0.12 28.87 0.04 20.51
h 0.15 29.14 0.04 21.13

IoU 0.468 0.557

higher-fidelity mean estimators. Figure 4 illustrates the pre-
diction intervals obtained using IQR Fit for a few cases,
where the quality of calibration is clearly evident.

Object Localization using CNNs

The third study involved the application of the proposed
approaches to object localization in images using convolu-
tional neural networks. We posed the problem of localizing
as predicting a bounding box around the object. Each bound-
ing box is characterized by 4 regression targets – (x, y) co-
ordinates of the left-bottom corner, height h and width w.
Datasets: For this experiment, we used the Caltech Birds
(CUB) dataset (Welinder et al. 2010), which is comprised of
11, 788 images belonging 200 different categories of birds.
Model Architecture: We performed transfer learning from a
ResNet-18 model, pre-trained on imagenet classification, to
carry out this prediction. We allowed fine-tuning of the last
residual block and the final prediction layer during training.
Results: For brevity, we report results only from the best
performing baseline method, HNN, and the proposed IQR
Fit technique. Similar to the forecasting experiment, we used
α = 0.95. As seen in Table 3, the proposed approach signif-
icantly outperforms the baseline in terms of calibration er-
ror, while also meeting the sharpness constraint enforced in
our optimization. Finally, the IoU score improvement clearly
demonstrates the fidelity of the mean estimator. Figure 5 il-
lustrates the prediction intervals (mean prediction showed in
green) obtained using IQR Fit for a few example cases.

Figure 5: Illustration of prediction intervals estimated using
the proposed IQR Fit approach. In each case, the mean pre-
diction is marked in green.

Conclusions

In this work, we proposed a framework to build calibrated
models for continuous-valued regression problems. By for-
mulating the problems of estimating means and prediction
intervals as a bi-level optimization, we showed that the
model can effectively capture the informative uncertainties
to produce well-calibrated intervals. Further, we found that,
this alternating optimization also leads to better regulariza-
tion of the mean estimator, thus improving its generalization
significantly. From our empirical studies, we find that the
proposed approach is effective across different data modal-
ities, model architectures and applications. Though our ap-
proach was demonstrated using HNN-based and quantile-
based aleatoric uncertainty estimators, any existing UQ tech-
nique can be integrated into our approach. This work also
emphasizes the need to rigorously study the process of pro-
ducing calibrated intervals based on prediction uncertainties.
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