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Abstract

Conservative Policy Iteration (CPI) is a founding algorithm
of Approximate Dynamic Programming (ADP). Its core prin-
ciple is to stabilize greediness through stochastic mixtures of
consecutive policies. It comes with strong theoretical guaran-
tees, and inspired approaches in deep Reinforcement Learning
(RL). However, CPI itself has rarely been implemented, never
with neural networks, and only experimented on toy problems.
In this paper, we show how CPI can be practically combined
with deep RL with discrete actions, in an off-policy manner.
We also introduce adaptive mixture rates inspired by the the-
ory. We experiment thoroughly the resulting algorithm on the
simple Cartpole problem, and validate the proposed method
on a representative subset of Atari games. Overall, this work
suggests that revisiting classic ADP may lead to improved and
more stable deep RL algorithms.

1 Introduction

We consider the Reinforcement Learning (RL) problem with
discrete actions, formalized with Markov Decision Processes
(MDP) (Puterman 1994). Approximate Dynamic Program-
ming (ADP) is a standard approach to practically solve MDPs
when the state space is large. In this case, a popular – and
rather successful – approach is to approximate the value
function and/or the policy with function approximation, us-
ing techniques ranging from linear parametrization to deep
neural networks. Recently, several algorithms inspired by
ADP have shown unprecedented results on hard control tasks
by using deep neural networks, that provide a great power
of approximation. A lot of these algorithms can be seen as
instances or variations of ADP algorithms, notably Value
Iteration (VI) and Policy Iteration (PI). For example, Deep
Q-Network (DQN) (Mnih et al. 2015) can be related to VI,
while Soft Actor-Critic (SAC) (Haarnoja et al. 2018) or Trust
Region Policy Optimization (TRPO) (Schulman et al. 2015)
can be related to PI.

Conservative Policy Iteration (CPI) is a classic extension
of PI introduced by Kakade and Langford (2002). Its main
principle is to relax the improvement step in PI by being
conservative with respect to the previous policies: instead of
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computing a sequence of deterministic greedy policies (as in
PI), CPI computes a sequence of stochastic policies that are
mixtures between consecutive greedy policies. While CPI has
inspired some recent algorithms, such as TRPO (Schulman et
al. 2015), it has never been implemented as such in practice,
nor experimented on large challenging environments. In this
paper, we propose a way to derive a practical algorithm from
CPI, using neural networks as approximation scheme and
relaxing the on-policy nature of CPI into off-policy learning
through a VI-like scheme. We call the resulting algorithm
Deep Conservative Policy Iteration, or DCPI (even if it is VI-
based, to highlight the connection to CPI). It is specifically a
conservative variation of DQN, but the proposed approach
could be in principle applied to any pure-critic algorithm,
notably the many variations of DQN.

After a short background, we develop the approximation
steps that allow us to go from CPI to DCPI (Sec. 3), and
give a detailed description of DCPI (Sec. 4). We then discuss
some adaptive mixture rates in Sec. 5, inspired by the theory,
and present experimental results on Cartpole and Atari envi-
ronments in Sec. 6. The Appendix can be found in the long
version of this paper (Vieillard, Pietquin, and Geist 2019).

2 Background and notations

We classically frame RL with an infinite horizon discounted
MDP, a tuple {S,A, P, r, γ} where S is the state space1, A
the finite action space, P ∈ ΔS×A

S the Markovian transition
kernel, r ∈ [−R,R]S×A a bounded reward function, and
γ ∈ (0, 1) a discount factor. A stochastic policy π associates
to each state s a distribution over actions π(·|s). We write
Pπ(s

′|s) = Ea∼π(·|s)[P (s′|s, a)] for the stochastic kernel
associated to π, and rπ(s) = Ea∼π(·|s)[r(s, a)] the expected
discounting reward for starting in s and following π. The
value vπ ∈ RS of a policy is, for all s ∈ S ,

vπ(s) = Eπ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
,

where Eπ designates the expected value over all trajectories
produced by π. The value function of a policy is the unique

1We assume it finite, for the ease of notations, but what we
present extends to the continuous case.
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fixed point of the Bellman evaluation operator associated to
this policy, defined for each v ∈ RS as Tπv = rπ + γPπv.
From this operator, one can define the Bellman optimality
operator for each v ∈ RS , T�v = maxπ Tπv. T� admits as
its unique fixed point the optimal value v�. A policy is said
to be greedy w.r.t. to a value function v if Tπv = T�v, the set
of all such policies is written Gv. A policy π� is optimal with
value vπ�

= v� when π� ∈ Gv�. To any policy π, we also
associate the quality function qπ , for each (s, a) ∈ S ×A

qπ(s, a) = r(s, a) + Es′∼P (·|s,a)[vπ(s′)],

which behaves similarly to the value function in the sense
that Tπqπ = qπ and T�qπ�

= qπ�
= q� (with a slight abuse

of notation). We can also define the set of policies that are
greedy w.r.t. any function q ∈ RS×A that we write Gq =
argmaxa q(·, a). It is useful in practice because a policy can
be greedy to a q-function even if the model (the transition
kernel) is unknown.

Finally, the advantage of a policy π, Aπ, is defined as
Aπ(s, a) = qπ(s, a) − vπ(s), and we write dπ,μ = (1 −
γ)μ(I − γPπ)

−1 the discounted cumulative occupancy mea-
sure induced by π when starting from a distribution μ of
states (distributions being written as row vectors).

3 Relaxing CPI

In this section, we describe the process that leads from CPI,
a mainly theoretical dynamic programming algorithm, to
a variant that can be combined with deep networks in an
off-policy manner.

3.1 Ideal CPI

We first turn to the description of the CPI algorithm. We
start by introducing the classic Approximate Policy Iteration
(API) (Bertsekas and Tsitsiklis 1996), an iterative scheme
that takes as input a distribution μ of states, and that computes
at each iteration k a new policy

πk+1 = Gqk,
where qk is an approximation of qπk

computed with states
sampled from μ. An error on the greedy step G can be consid-
ered, but this error only appears when considering a infinite
action space or when the greedy policy is approximated (for
example with a cost-sensitive classifier). Here, we consider a
finite action space, the greediness with respect to a q-function
is exact.

CPI was first proposed by Kakade and Langford (2002). At
each iteration k, CPI uses a mixture coefficient αk to compute
a stochastic mixture of all the previous greedy policies,

πk+1 = (1− αk+1)πk + αk+1Gqk, (1)

where qk is still an approximation of qπk
. This algorithm

comes with strong theoretical guarantees, in particular the
mixture rate can be chosen so that Eq. (1) guarantees an
improvement of the expected value of the policy value, as
shown by Kakade and Langford (2002) and Pirotta et al.
(2013). In these works, the error on the value function esti-
mation is supposed bounded, and the mixture rate depends
on this bound. These theoretical guarantees rely on the fact

that at each iteration k, the approximations are computed on
the distribution dπk,μ, where μ is the starting distribution of
states, something far from being practical and making CPI
inherently on-policy. CPI and its extension Safe Policy Itera-
tion (SPI) (Pirotta et al. 2013) have only been experimented
on tabular toy problems, with at most linear function approx-
imation, in a very controlled manner (Pirotta et al. 2013;
Scherrer 2014).

We will next introduce approximations that allow for an
actual implementation using deep learning in an off-policy
setting, but keeping the essence of CPI, that is regularizing
the greediness. The question of the choice of the mixture rate
will be studied later.

3.2 Approximating towards practicality

Approximating the value First, as said before, the value
function has to be approximated. As the distributions dπk,μ

are impractical, one classically computes an estimate qk of
the quality function qπk

, with states sampled from a fixed
state distribution or gathered during learning. The quality
function can be estimated either by rollouts – but this is quite
sample inefficient – or for example by using an algorithm
such as LSTD (Bradtke and Barto 1996) – but that would
require a linear parametrization. In any case, we can consider
an error εk on this approximation, resulting in the scheme{

qk = qπk
+ εk

πk+1 = (1− αk+1)πk + αk+1Gqk. (2)

Temporal differences A classic approach is Temporal
Difference (TD) learning, that estimates qk(s, a) by per-
forming a regression on targets of the form r(s, a) +
γ
∑

a′∈A πk(a
′|s′)qk−1(s

′, a′). This can be written formally
as computing qk+1 = Tπk

qk−1 + εk. Practically, one can
consider doing m-steps returns (Sutton 1988), which from an
abstract perspective is qk = Tm

πk
qk−1, as done in Modified

Policy Iteration (MPI) (Puterman and Shin 1978), or even
Approximate MPI (Scherrer et al. 2015). This results in the
scheme {

qk = Tm
πk
qk−1 + εk

πk+1 = (1− αk+1)πk + αk+1Gqk.
Note that with m = ∞, it falls back to Eq. (2), and with
m = 1, it becomes similar to VI, where the greediness has
been regularized. Specifically, with m = 1 and αk = 1, this
reduces to AVI (Approximate VI). In addition to allow using
TD-learning, this also allows to learn in an off-policy manner
(without off-policy correction if m = 1, as we work with
state-action value functions).

Approximating the mixture Computing πk would require
remembering every qi computed for i ∈ [0, k], and this is
not feasible in practice. Instead, we approximate the mix-
ture, which adds a new source of errors. This can be done,
for example, by minimizing an expected Kullback-Leibler
(KL) divergence between a parametrization of πk+1 and the
mixture. It can be written formally as{

qk = Tm
πk
qk−1 + εk

πk+1 = (1− αk+1)πk + αk+1Gqk + ε′k+1.
(3)
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This approximate dynamic programming scheme can then be
instantiated into an off-policy Deep RL algorithm; we detail
this process in Section 4.

3.3 Theoretical insights

The scheme depicted on Eq. (3) no longer enjoys the the-
oretical guarantees of CPI, as we relax some of its com-
ponents (for example, partial policy evaluation or more
freedom on how samples are gathered for learning). We
give a partial analysis of this relaxed scheme in the Ap-
pendix, and here, we discuss its main results. Without errors
(εk = ε′k = 0), we show in the Appendix that vπk

will con-
verges linearly to v∗. With αk = 1 (this corresponds to MPI),
the scheme benefits from a γ-contraction and it leads to a
bound ‖v∗ − vπk

‖∞ = O(γk). With αk < 1, we obtain an
ηk-contraction with ηk = 1−αk(1−γ). If αk does not go too
fast towards zero, this would also lead to linear convergence.
Indeed, using the fact that ln(1− x) ≤ −x for x ∈ (0, 1),

k∏
i=1

ηk = exp

k∑
i=1

ln(1− αi(1− γ))

≤ exp(−(1− γ)

k∑
i=1

αi).

Therefore, this would lead to a bound ‖v∗ − vπk
‖∞ =

O(∏k
i=1 ηi) = O(exp(−(1− γ)

∑k
i=1 αi)). If we still have

a linear convergence, it is slower as long as αk < 1, which
was to be expected without approximation error. However, at
least this scheme does not break convergence.

With errors, we conjecture that we would obtain a bound
close to the one of AMPI (Scherrer et al. 2015, Thm. 7),
maybe with a larger propagation of errors (much like the
convergence is slower, in the exact case), and so worse
than the original bound of CPI (Kakade and Langford 2002;
Scherrer 2014) (notably, with bigger concentrability coeffi-
cient). This is to be expected, the bound of CPI relies heavily
on using m =∞, on how the approximation error is plugged
in the approximate dynamic scheme, and on using the dπ,μ
distribution to sample transitions for learning approximations,
three things that we relax. Yet, we still think that relaxing
greediness is worth experimentally speaking, and that much
remains to be done regarding its theoretical understanding.

4 Deep CPI

We now turn to the actual practical algorithm, DCPI. The
basic idea is to define an instance of the update in Eq. (3)
where the value function and the policy are parametrized via
neural networks. We will focus on the case m = 1 (a regu-
larized VI scheme), so we can apply the evaluation operator
to the estimated q-function in an off-policy fashion without
correction. It could be extended to the case m > 1 by simply
using an off-policy correction method such as importance
sampling. Note that focusing on m = 1 makes our algorithm
a regularized VI-scheme and not a PI-scheme, but we keep
the name DCPI to highlight the connection to CPI.

We parametrize the q-function and the policy by two on-
line networks qθ and πω, where θ and ω denote the weights

of the respective networks. In a similar way to DQN, we
define two target networks, q− and π−, whose weights are
respectively θ− and ω−. DCPI introduces stochastic approxi-
mation by acting in an online way, meaning that transitions
(s, a, r, s′) ∈ S ×A× R× S from the environment are col-
lected during training. Transitions are stored in a FIFO replay
buffer B.

We write the two updates from Eq. (3) as optimization
problems. The evaluation step consists of a regression prob-
lem, trying to minimize a quadratic error between qθ and an
approximation of Tm

πω
q−. Recall that we now use m = 1.

From this, denoting Ê the empirical mean over a finite set,
we can define a regression loss function Lq(θ) for the value
weights as

Ê

⎡
⎣
(
r + γ

∑
a′∈A

π−(a′|s′)q−(s′, a′)− qθ(s, a)

)2
⎤
⎦ , (4)

where the empirical average is computed over all transitions
(s, a, r, s′) ∈ B (recall that there is no need for these transi-
tions to be sampled according to π−, as we learn off-policy).
The improvement step requires approximating a distribution
over actions for each state. One way to do that is to minimize
the expected value over the states of the expected KL diver-
gence between the online policy network and the stochastic
mixture. This leads to a loss function Lπ(ω) on the policy
weights,

Ê
[
KL
(
(1− α)π−(·|s) + αG(qθ)(·|s)‖πω(·|s)

)]
, (5)

where the empirical average is computed over all states
(s, . . . ) ∈ B. We minimize both Lq and Lπ with a fixed
number of steps of batch-SGD (or a variant), and update
the target networks with the weights of the online networks.
Each gradient step is performed after a fixed number (the
interaction period F ) of transitions are collected from the
environment. Note that the use of a replay buffer makes our
algorithm off-policy: the samples used to evaluate πw origi-
nate independently from older policies. During training we
sample transitions with πω,ε, the policy which chooses a ran-
dom action uniformly on A with probability ε and follows
πω with probability 1− ε (recall that πω is itself stochastic).
A detailed pseudo-code is given in Algorithm 1.

Connection to DQN Despite its actor-critic look, DCPI
can simply be seen as a variation of DQN. Indeed, note that
with α = 1, if πω is exactly computed (i.e. if πw = Gqθ),
DCPI reduces to DQN.

5 Choosing the mixture rate

Algorithm 1 does not give a way to choose the mixture rate,
and this section studies different manners to do it. The natural
idea is to choose a constant rate which experimentally (see
Section 6.1) seems to improve stability, but comes at a great
cost in terms of sample efficiency. Another possibility is
to choose a decaying rate, for example with a hyperbolic
schedule, or – and that is what we focus on – choosing an
adaptive rate inspired from the literature on CPI.
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Algorithm 1 DCPI
Require: K ∈ N� the number of steps, C ∈ N� the update

period, F ∈ N� the interaction period
1: Initialize θ, ω at random
2: B = {}
3: θ− = θ, ω− = ω
4: for k = 1 to K do
5: Collect a transition t = (s, a, r, s′) from πω,ε

6: B ← B ∪ {t}
7: if k mod F == 0 then
8: On a random batch of transitions Bq,k ⊂ B, update

θ with one step of SGD of Lq , see (4)
9: On a random batch of transitions Bπ,k ⊂ B, update

ω with one step of SGD of Lπ , see (5)
10: end if
11: if k mod C == 0 then
12: ω− ← ω, θ− ← θ
13: end if
14: end for
15: return πω

CPI adaptive rate Kakade and Langford (2002) provide
a rate for CPI that guarantees an improvement of the poli-

cies, by choosing α =
(1−γ)Aπ̄

π,μ

4R . Here, we write π̄ = Gqπ
the greedy policy with respect to qπ, and Aπ̄

π,μ the ad-
vantage of the greedy policy (π̄) over the previous one
(π), that is Aπ̄

π,μ =
∑

s∈S dπ,μ(s)A
π̄
π(s) with Aπ̄

π(s) =∑
a∈A π̄(a|s)Aπ(s, a). Recall that R is the maximum pos-

sible reward. We can estimate close quantities over a batch
B ⊂ B at step k in the sense of Algorithm 1. We compute
Âk(s) = maxa∈A qθ(s, a) −

∑
a∈A πω(a|s)qθ(s, a) as an

estimate of Aπ̄
π(s), and Âk = Ê(s,...)∈B [Âk(s)] as an esti-

mate of Aπ̄
π,μ. The term R/(1− γ) can be approximated by

an estimate Q̂k of ‖qπ‖∞, which is consistent with corollary
3.6 of Pirotta et al. (2013). We compute it over a batch with
Q̂k = max(s,a,...)∈B |qθ(s, a)|. For simplicity and to add a
degree of freedom, we replace the constant factor 1/4 by
an hyperparameter α0 that allows us to directly control the
amplitude of our mixture rate. To compensate the fact that we
compute our approximation over (potentially small) batches,
we use a moving average mk and a moving maximum Q+

k .
This leads to{

mk = β1mk−1 + (1− β1)Âk

Q+
k = max (β2Q

+
k−1, Q̂k)

, αcpi
k = α0

mk

Q+
k

, (6)

with β1, β2 ∈ (0, 1) typically close to 1.

SPI adaptive rate Pirotta et al. (2013) propose an im-
provement of CPI, Safe Policy Iteration. They provide
a better bound on the policy improvement based on

the mixture rate α =
(1−γ)2Aπ̄

π,μ

γ‖π̄−π‖∞ΔAπ̄
π

, with ΔAπ̄
π =

maxs∈S Aπ̄
π(s) − mins∈S Aπ̄

π(s), and with ‖π̄ − π‖∞ =
maxs∈S

∑
a |π(a|s) − π−(a|s)| the maximum total varia-

tion between policies. We can approximate these quanti-
ties with the same methods used to obtain Eq. (6). Using

the value Âk described previously, we compute an esti-
mate of ΔAπ̄

π by subtracting Âk,min = min(s,...)∈B Âk(s)

to Âk,max = max(s,...)∈B Âk(s). Note that in addition to
the previous approximations, we also include the total policy
variation in the α0 hyperparameter, as ‖π̄− π‖∞ ≤ 2. Using
moving approximations, we obtain{

M+
k = max (β2M

+
k−1, Âk,max)

M−
k = min (M−

k−1/β2, Âk,min)
,

αspi
k = α0

mk

M+
k −M−

k

.

(7)

Bounding SPI The SPI mixture rate from Eq. (7) gives a
rate that is not bounded. To keep our rate below 1, we propose
a simple variation

αadx
k = α0

mk

M+
k

. (8)

From the fact that Âk(s) are positive numbers, it is imme-
diate that αadx is a “little more conservative” version of
αspi, with αadx ≤ αspi and αadx ≤ 1. In fact, the advan-
tage function can be linked to the functional gradient of the
expected value function, respectively to the policy (see Scher-
rer and Geist (2014) who interpret CPI as a policy gradient
boosting approach) and this rate is similar to the one the
Adamax (Kingma and Ba 2015) algorithm would give (up to
the fact that our rate is global, not component-wise) – hence
the name.

About the batch The adaptive rate is computed using a
batch of transitions from the replay buffer, and an impor-
tant question is which batch to choose. In Algorithm 1, two
different batches of transitions are defined: Bq,k a batch of
transitions used to estimate qθ, and Bπ,k used to estimate
πω. Our approach is, as the rate needs to adapt with respect
to the current policy, to use Bπ,k to compute the rate. That
means that, at iteration k in Algorithm 1, αk and ∇̂ωLπ (the
approximation of the gradient of Lπ computed at line 9 of
Algorithm 1) are computed with the same batch of transitions.

6 Experiments

In this section, we experimentally study DCPI on several
environments. The method we propose is general, and could
be used to regularize any pure-critic algorithm, by adding an
actor to it. For this experimentation, we consider DCPI as a
variation of DQN, and take DQN as our baseline. In princi-
ple, our method could extend to other frameworks, such as
Rainbow (Hessel et al. 2018) or Implicit Quantile Networks
(IQN) (Dabney et al. 2018), which are extensions to DQN.
We start this experiment by an intensive test on Cartpole, a
light environment that allows us to exhibit various behaviours
of DCPI, such as stability over random seeds, convergence
speed, or efficiency of the proposed mixture rate. We then
conduct an experiment on Atari, to observe the effects of
scaling up.
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6.1 Cartpole

Cartpole is a classic control problem introduced by Barto,
Sutton, and Anderson (1983). In this setup, the agent needs
to balance a vertical pole by controlling its base (the cart)
along one dimension, by applying a force on the cart of−1 or
+1. We use the version of Cartpole implemented in OpenAI
Gym (Brockman et al. 2016), with a maximum steps limit
raised to 500 steps instead of a more classic 200, to make the
task harder and get more accurate observations. The agent
gets a reward of +1 while the pole is in the air, and 0 when it
touches the ground.

Although CartPole is considered an “easy” problem in
RL, it is cheap to run in computation time, so we use it as a
test-bed to perform studies on the influence of our hyperpa-
rameters. Such studies would be prohibitive in cost on larger
environments such as Atari. Our approach is to modify the
DQN algorithm without changing its parameters so as to ana-
lyze how our framework modifies its learning behaviour. Our
baseline is the DQN provided in the Dopamine library (Cas-
tro et al. 2018), and we use the hyperparameters provided
here for Cartpole. Notably, we used the same network archi-
tecture for the q-network and the policy network and two
identical Adam optimizers; we compute a gradient step every
F = 4 interactions with the environment, and update the
target networks every C = 100 interactions. Full parameters
are reported in the Appendix. Our first observation is that this
version of DQN is not very efficient on this problem, as it
greatly lacks stability, be it over random seeds or over time
(see Figure 1). This instability could probably be tempered by
a better tuning of hyper parameters, but our goal is to verify
the stabilizing effects of CPI, so we keep them as is.

Our method introduces three new hyperparameters: α0, β1,
and β2, described precisely in Section 5. To choose β1 and
β2, we consider that our estimate of the advantage should be
stable between two updates of the target networks. As this
update occurs every 100 steps, and the size of the window
for our moving average is 1/(1− β1), this leads us to choose
β1 = 0.99. To increase stability, we choose a slower moving
average in the denominator with β2 = 0.9999. The ratio
(1−β1)/(1−β2) = 100 is classic, it is for example consistent
with the defaults parameters of Adam (Kingma and Ba 2015).
We did a parameter search over α0, with values ranging from
1e − 3 to 1, and tested the αcpi and αadx heuristics for an
adaptive rate described in Section 5, Eqs. (6) and (8), in
addition to a constant rate. The results for αspi are similar to
αadx, and provided in the Appendix.

Results presented in Figure 1 and 2 are computed as fol-
lows: every 1000 training steps, an iteration in this context,
we report the averaged undiscounted score per episode over
these 1000 steps. The results are averaged over 50 different
random seeds: the thick line indicates the empirical mean,
while the semi-transparent areas denote the standard devia-
tion of the score over the seeds.

Results with a constant rate (see Figure 1) show a strong
increase of stability with small mixture rates (α0 = 0.001),
with a cost in speed. With a higher learning rate, we obtain
a faster convergence, but we loose stability. This introduces
a speed/stability dilemma, and using adaptive rates (see Fig-
ure 2) allows us to get the best of both worlds. In a good case

Figure 1: Top: comparison of the averaged training scores
of DCPI with CPI rate and α0 = 0.1 (orange) against DQN
(blue). Bottom: DCPI on Cartpole with constant rates for 4
values of α0.

– CPI adaptive rate with α0 = 0.1, see Figure 1 (top) – we can
keep the stability of the small constant mixture rates, while
benefiting from a relatively fast convergence, and here DCPI
shows a clear improvement on DQN on stability and average
performance: DCPI is able to stabilize at an average score of
480 (on a maximum of 500) with a low standard deviation
around 20, while DQN stabilizes around 300, with a standard
deviation of approximately 200. Remarkably, even for α = 1
(see Figure 1), i.e. when the stochastic mixture is not conser-
vative and the regularization only comes from approximating
the greediness, DCPI yields a slight improvement on stability
over DQN. This can be seen as the distillation of the greedy
policy, and is here less effective than a mixture scheme.

6.2 Atari

Atari is a challenging discrete-actions control environment,
introduced by Bellemare et al. (2013) consisting of 57 games.
We used sticky actions to introduce stochasticity as recom-
mended by Machado et al. (2018). In a similar way to our
Cartpole experiments, we used the DQN implementation
from the Dopamine library as our baseline, keeping the pa-
rameters given in this library – much more optimized than
the one for Cartpole. We compare against DQN’s baseline
score given in Dopamine. The parameters are detailed in the
Appendix. In particular, the states stored in the replay buffer
consist of stacks of 4 consecutive observed frames. With the
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Figure 2: Top: DCPI on Cartpole with Adamax rates for 4
values of α0. Bottom: DCPI on Cartpole with CPI rates for
4 values of α0.

same arguments as in Section 6.1 we chose β1 = 0.9999
and β2 = 0.999999. After a small hyperparameter search on
a few games (Pong, Asterix and Space Invaders), we chose
α0 = 1 and the Adamax mixture rate (see Eq. (8)). Provided
results are computed in a similar manner to the ones from
Cartpole, except that here, an iteration represents 250000
environment steps. The results are averaged over 5 different
random seeds.

For Atari, we also found empirically that interacting with
the policy πq,ε that is ε-greedy with respect to qθ improved
performance over playing with πω . This is taken into account
in the provided results. This can be seen as an optimistic
controller regarding the stochastic policy πω , as both policies
πω and πq,ε converge to the same behavior in the exact case. It
can also be seen as a regularization of the Bellman optimality
operator used in DQN, without changes to the way samples
are gathered.

We tested DCPI on a representative subset of 20 Atari
games, chosen from the categories described in (Ostrovski
et al. 2017, Appendix A), excluding the hardest exploration
games with sparse rewards – our algorithm has no ambition
to help with exploration. All results are provided in the Ap-
pendix. DCPI yields a clear improvement on performance
on a large majority of those games, outperforming DQN on
15 games over 20. Note that choosing a lower rate α0 could
increase stability and final performance, but also lower con-
vergence speed. We chose to use rather aggressive adaptive

rates on Atari due to constraints on computing time.

As a matter of illustration, Figure 3 provides three games
where DCPI attains a higher score than DQN: Seaquest, Frost-
bite, and Breakout. All other games are reported in the Ap-
pendix. We also report on Figure 4 a comparison summary
of DQN vs DCPI on all considered games. We used the Area
Under the Curve (AUC) metric. For each game, we com-
pute the sum of all averaged returns obtained during training,
respectively Sdcpi and Sdqn, and we report the values for
(Sdcpi − Sdqn)/|Sdqn|.

7 Related work and discussion

The proposed approach is related to actor-critics in gen-
eral, being itself an actor-critic. It is notably related to
TRPO (Schulman et al. 2015), that introduced a KL penalty
on the greedy step as an alternative to the stochastic mixture
of CPI. This is indeed very useful for continuous actions, but
probably unnecessary for discrete actions, the case consid-
ered here. Moreover, TRPO is an on-policy algorithm, while
the proposed DCPI approach is off-policy. This explains that
we do not consider it as a baseline in Section 6, but it would
have been probably less sample efficient. As far as we know,
there is no DQN-like TRPO algorithm, thus comparing our
mixture-based DQN to one that KL-regularizes greediness
would have required introducing a new algorithm.

The principle of regularizing greediness in actor-critics
is quite widespread, be it with a KL divergence constraint
(TRPO), a clipping of policies ratio (PPO, Schulman et al.
(2017)), entropy regularization (SAC), or even following
policy gradient, for example. The common point of these
approaches is that they focus on continuous action spaces. In
the discrete case, considering a stochastic mixture is quite
natural, acknowledging that its extension to the continuous
case is not easy.

Performance-wise, the experiments on Cartpole show a
clear improvement for DCPI over DQN: DCPI is able to
reach a higher score in average, with a lower variance and a
lower sensitivity to the random seed. These experiments vali-
date the stabilizing power of CPI and its expected behaviour
with respect to the mixture rate, and the consistency of the
considered adaptive rates. On Atari, even if results are game-
dependent, we observe an improvement on the majority of
the games. Note that the improvement in score is quite clear
(the score is more than doubled on some games, like Seaquest
or Asterix), but the learning is not stabilized as it is in Cart-
Pole. As mentioned in Section 6.2, using a smaller (constant)
mixture rate could stabilize learning and in the end increase
performance, at a cost in terms of sample efficiency. This
would be a problem for a single-threaded agent, like DQN,
but it could improve the results of a multi-threaded agent, like
R2D2 (Kapturowski et al. 2018). We also recall that default
used hyperparameters where better tuned for Atari than for
Cartpole, and that this might also influence our empirical
results. DCPI could be more efficient by better tuning its own
parameters.
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Figure 3: Averaged training scores of DCPI (orange) and
DQN (blue) on three of the considered games (Seaquest,
Frostbite and Breakout).

Figure 4: Normalized AUC improvement of DCPI over DQN
on a subset of Atari games.

8 Conclusion

We introduced a new deep RL algorithm derived from CPI,
DCPI, and this way gave a general method to regularize
any pure-critic algorithm by adding a conservative actor to
it, based on an approximate stochastic mixture. We gave in
Section 3 a detailed depiction of the different approxima-
tion steps we used, resulting in the end in a practical algo-
rithm, that we evaluated on several benchmarks. We also
proposed different ways to compute adaptive mixture rates
for DCPI by approximating optimal rates from the literature.
Our experimental results shown, on Cartpole and on most
considered Atari games, that DCPI can indeed improve the
performance and the stability of learning, often at the cost
of slower learning, introducing a speed/stability dilemma.
We plan to investigate more adaptive rates, in order to get
an even better trade-off and to be less sensitive to the new
hyperparameter, and to combine the proposed approach with
other variations of DQN, notably based on distributional
RL, such as C51 (Bellemare, Dabney, and Munos 2017) or
IQN (Dabney et al. 2018).
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