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Abstract

The recent development of online recommender systems has
a focus on collaborative ranking from implicit feedback, such
as user clicks and purchases. Different from explicit ratings,
which reflect graded user preferences, the implicit feedback
only generates positive and unobserved labels. While con-
siderable efforts have been made in this direction, the well-
known pairwise and listwise approaches have still been lim-
ited by various challenges. Specifically, for the pairwise ap-
proaches, the assumption of independent pairwise preference
is not always held in practice. Also, the listwise approaches
cannot efficiently accommodate “ties” due to the precondi-
tion of the entire list permutation. To this end, in this paper,
we propose a novel setwise Bayesian approach for collabora-
tive ranking, namely SetRank, to inherently accommodate the
characteristics of implicit feedback in recommender system.
Specifically, SetRank aims at maximizing the posterior prob-
ability of novel setwise preference comparisons and can be
implemented with matrix factorization and neural networks.
Meanwhile, we also present the theoretical analysis of Se-
tRank to show that the bound of excess risk can be propor-
tional to

√
M/N , where M and N are the numbers of items

and users, respectively. Finally, extensive experiments on four
real-world datasets clearly validate the superiority of SetRank
compared with various state-of-the-art baselines.

Introduction

Recommender systems have been widely deployed in many
popular online services for enhancing user experience and
business revenue (Wang, Wang, and Yeung 2015; Liu et al.
2019a; 2019b; Zhu et al. 2018). As one representative task
of personalized recommendation, collaborative ranking aims
at providing a user-specific item ranking for users based on
their preferences learned from historical feedback. Indeed,
in real-world scenarios, most of the user feedback is im-
plicit (e.g., clicks and purchases) but not explicit (e.g., 5-star
ratings). Different from explicit ratings, the implicit feed-
back only contains positive and unobserved labels instead
of graded user preferences, which brings new research chal-
lenges for building recommender systems (Hsieh, Natarajan,
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and Dhillon 2015). Therefore, collaborative ranking from
implicit feedback has been attracting more and more atten-
tion in recent years (Rendle et al. 2009; Shi, Larson, and
Hanjalic 2010; Huang et al. 2015; Xia 2019).

While considerable efforts have been made in this di-
rection (Rendle et al. 2009; Chen et al. 2009; Weimer et
al. 2008), represented by the well-known pairwise and list-
wise approaches, some critical challenges still exist. As
for the family of pairwise approaches (Rendle et al. 2009;
Freund et al. 2003; Chapelle and Keerthi 2010; Wu, Hsieh,
and Sharpnack 2017; Krohn-Grimberghe et al. 2012), which
take the item pair as the basic element to model the prefer-
ence structure in implicit feedback, they are prone to the in-
consistency problem between assumption and practice. For
example, Bayesian Personalized Ranking (BPR) (Rendle et
al. 2009), one of the most widely used collaborative pairwise
approaches, tries to maximize the probability of binary com-
parison between positive and unobserved feedback. Such
treatment requires the strict assumption of independent pair-
wise preference over two items as the basis for constructing
pairwise loss. However, as shown in Figure 1, if there ex-
ist the item preference pairs “A>B” and “C>D” for user 1,
the pairs “A>D” and “C>B” must also exist for user 1 due
to the binary value of implicit feedback. In other words, we
have p(A>D,C>B|A>B,C>D) = 1 in the practical pair
construction process, which breaks the independence among
pairs and thus influences the optimization result of the pair-
wise loss. Some follow-up studies chose to relax the inde-
pendence assumption by considering group information. For
example, GBPR (Pan and Chen 2013b) introduced richer
users’ interactions and Cofiset (Pan and Chen 2013a) de-
fined a user’s preference on the item group to consider the
composition effect. However, the inconsistency problem re-
mains to some extent.

As for the listwise approaches, the key challenge is how
to efficiently accommodate “ties” (items with the same rat-
ing value) due to the precondition of entire list permutation,
since there is no clear sequential relationship but binary rat-
ing in implicit feedback. Besides, they measure the uncer-
tainty between the top-P items on the observed and pre-
dicted list by calculating the cross-entropy (Cao et al. 2007;
Shi, Larson, and Hanjalic 2010; Huang et al. 2015; Wang
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A > BA > B
A > DA > D

C > DC > D
C > BC > B
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B > AB > A
B > CB > C

D > CD > C
D > AD > A

Pairwise

user1
A > { B, D }A > { B, D }
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Setwise

C > { B, D }
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user1

A > C > B > DA > C > B > D

Listwise

C > A > B > D

C > A > D > B
A > C > D > B

...

user2

B > D > A > C B > D > A > C 
D > B > A > C 

D > B > C > A
B > D > C > A

...

Figure 1: The diagrammatic sketch of preference structures in different collaborative ranking approaches, where the notation
”>” represents the preference order.

et al. 2016), which would result in the exponential compu-
tational complexity to P (that is why often P is set as 1).
Though Wu, Hsieh, and Sharpnack(2018) tried to propose
a permutation probability based listwise model to solve the
above challenges, only the upper bound rather than the orig-
inal negative log-likelihood is optimized.

To avoid the limitations of the existing collaborative rank-
ing approaches, in this paper, we propose a novel setwise
Bayesian approach, namely SetRank, for collaborative rank-
ing. SetRank has the ability in accommodating the character-
istics of implicit feedback in recommender systems. Particu-
larly, we first make a weaker independence assumption com-
pared to pairwise approaches, that is, each user prefers ev-
ery positive item over the set of unobserved items indepen-
dently. Hence, we can transform the original rating records
into the comparisons between each single positive item and
the set of unobserved items, which could avoid the inconsis-
tency problem in pairwise approaches, as the example shown
in Figure 1. Moreover, since there is no ordering information
between unobserved items, it is unnecessary to rank the set
of unobserved items, which relaxes the permutation form in
listwise approaches. Specifically, our approach is named as
“setwise” because the preference order of a user is only de-
fined between each positive item and the set of unobserved
items. Consequently, SetRank is able to model the properties
of implicit feedback in a more effective manner, with avoid-
ing the disadvantages of both pairwise and listwise ranking
approaches. The contributions of this work can be summa-
rized as follows:

• We propose a novel setwise Bayesian collaborative rank-
ing approach, namely SetRank, to provide a new re-
search perspective for implicit feedback based recommen-
dations. SetRank can inherently accommodate the charac-
teristics of implicit feedback.

• We design two implementations for SetRank, namely MF-
SetRank and Deep-SetRank based on matrix factorization
and neural networks, respectively.

• We validate our approach by both theoretical analysis and
experiments. Specifically, we prove that the bound of ex-
cess risk can be bounded by a

√
M/N term, where M and

N are the numbers of items and users, respectively. Mean-
while, extensive experiments on four real-world datasets
clearly demonstrate the advantages of our approach com-
pared with various state-of-the-art baselines.

Setwise Bayesian Collaborative Ranking

Problem Formulation

Suppose there are N users and M items in the dataset. Let Pi

and Oi denote the set of positive and unobserved items for
each user i, respectively. User i has Ji = |Pi| positive items
and Ki = |Oi| unobserved items. Then the rating matrix
R = {Ril}N×M is a binary matrix, i.e., Rij = 1 for j ∈ Pi

and Rik = 0 for k ∈ Oi. The goal of collaborative ranking
is to recommend each user an ordered item list by predicting
the preference score matrix X = {Xil}N×M .

SetRank Optimization Criterion

The target of SetRank is to maximize the posterior probabil-
ity of preference structure to build the Bayesian formulation
of collaborative ranking:

p(Θ| >total) ∝ p(>total |Θ)p(Θ), (1)

where >total = {>i}Ni=1 and >i is a random variable repre-
senting the preference structure of user i, which takes values
from all possible preference structures. Θ is the model pa-
rameters to be learned.

Before modeling the setwise preference structure proba-
bility, we first give a new independence assumption:

Assumption 1 Every user i prefers the positive item j ∈ Pi

to unobserved item set Oi independently.

In this setwise assumption, we ignore the direct compar-
isons among positive or unobserved items to better reflect
the nature of implicit feedback, since there is no explicit
item-level preference information. Supposing there is only
one user, we have no reason to decide which positive item is
better than another positive one, or which unobserved item
is better than another unobserved one. Only when there are
many users, we can then exploit collaborative information to
derive entire ranking results.
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By comparison, pairwise approaches like BPR (Rendle et
al. 2009) establish the individual binary comparison over
each positive item and each unobserved item, which need
the strict assumption that item comparisons are independent
for optimization. However, in the pair construction process,
the pairs are bound to be dependent due to the characteris-
tic of implicit feedback. When calculating the pairwise loss,
pairwise approaches still assume pairs are independent and
optimize the improper loss. By contrast, setwise approach
has no such inconsistency problem owing to the weaker in-
dependence assumption.

Moreover, setwise permutation form is weaker than list-
wise approaches. In the comparisons, we do not care about
the ranking of items in Oi, since the ordering information
of unobserved items is naturally missing in implicit data.
As a result, all the unobserved items are treated equally in
the preference comparison, and thus the setwise ranking ap-
proach is inherently suitable for handling implicit data.

According to our assumption, we can transform Equa-
tion 1 into the following form:

p(>total |Θ) =

N∏
i=1

p(>i |Θ) =

N∏
i=1

∏
j∈Pi

p(j >i Oi|Θ), (2)

where j >i Oi denotes the user i prefers item j to item
set Oi. Therefore, we turn to collect the preference compar-
ison between a single positive item and an unobserved item
set. For example, in Figure 1, there are two comparisons for
user 1, A > {B,D} and C > {B,D}.

In the setwise preference structure, the positive item j
and the unobserved set Oi compose a new item list Lij .
Hence, it is convenient to draw the concept of permuta-
tion probability (Cao et al. 2007) from listwise approaches
for further specifying the preference structure probability
p(j >i Oi). Review that in listwise approach, a permuta-
tion π = {π1, π2, ..., πm} is a list in descending order of
the m items (Cao et al. 2007). Denote the scores assigned
to items as a vector s = (s1, s2, ..., sm) and φ(x) is an in-
creasing and strictly positive function. Then the permutation
probability is defined as:

ps(π) :=

m∏
d=1

φ(sπd
)∑m

l=d φ(sπl
)
. (3)

It is easy to verify that ps(π) is a valid probability distri-
bution. In the literature, permutation probability has been
widely used in many listwise approaches to calculate the
cross entropy due to many beneficial properties (Xia et al.
2008). These properties guarantee that items with higher
scores are more likely to be ranked higher. However, a se-
rious problem of the definition is that we have to calculate
P ! permutation probabilities to obtain the top-P probability
of the list. Fortunately, in our case, we only need to place
the positive item j at the top of List Lij , which means we
just concentrate on the top-1 probability. Actually, Cao et
al.(2007) had proved that the top-1 probability ps,1(d) of
item d can be efficiently calculated under the definition of
Equation 3 as follows:

ps,1(d) =
φ(sd)∑m
l=1 φ(sl)

. (4)

With the help of Equation 4 and the preference score ma-
trix X , now we can give the detailed formulation of the set-
wise preference probability over all users:

p(>total |Θ) =
N∏
i=1

∏
j∈Pi

φ(Xij)

φ(Xij) +
∑

k∈Oi
φ(Xik)

. (5)

As one can see, Equation 5 indicates that if positive items
have higher scores and unobserved items have lower scores,
this preference structure will be more likely to be true.

At last, to complete the Bayesian inference, we introduce
a general prior probability p(Θ). Following BPR (Rendle
et al. 2009), p(Θ) is set as a normal distribution with zero
mean and variance-covariance matrix λΘI . Hence, maxi-
mizing the posterior probability is equivalent to minimizing
the following function:

L =
N∑
i=1

∑
j∈Pi

− log p(j >i Oi|Θ) + λΘ‖Θ‖2. (6)

Note that though some listwise approaches also exploit
Equation 4 (Cao et al. 2007; Shi, Larson, and Hanjalic
2010), it is actually quite different from SetRank. First, list-
wise approaches are essentially based on the top-P prob-
ability since they consider the order in a list composed of
multiple positive and unobserved items. In fact, using a
larger P tends to improve the performance of listwise ap-
proaches (Cao et al. 2007). They use the top-1 probability
mainly due to the compromise of exponential computational
complexity for calculating the top-P probability. However,
our setwise assumption, which is more appropriate for im-
plicit feedback, is naturally based on the top-1 probability.
Second, they could only employ cross-entropy loss for cal-
culation while the cross-entropy loss may rank worse scor-
ing permutations higher (Wu, Hsieh, and Sharpnack 2018).
On the contrary, our loss is strictly obtained by Bayesian in-
ference without the adoption of cross-entropy.

Implementation

It is quite flexible to apply many well-known models to
learn the score matrix X. In the literature, matrix factor-
ization (Mnih and Salakhutdinov 2008) and neural network
(NN) (Xue et al. 2017) have demonstrated their effectiveness
and practicability for recommender systems. Therefore, in
this paper, we introduce two implementations for SetRank,
namely MF-SetRank and Deep-SetRank, based on the above
two models, respectively.
MF-SetRank. MF-SetRank is based on the popular
collaborative model, Probabilistic Matrix Factorization
(PMF) (Mnih and Salakhutdinov 2008). PMF factorizes the
score matrix into two factor matrices representing user and
item latent features. Along this line, we have X = UTV ,
where U ∈ R

r×N and V ∈ R
r×M are latent user and

item matrices, respectively. Then the prior probabilities over
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Algorithm 1 Gradient update for V when fixing U

Require: V,U, γ, decay, λ, {Pi, Õi|1 ≤ i ≤ N}
Ensure: V

1: grad = λ · V
2: for i = 1 to N do
3: Precompute gl = uT

i vl, for ∀l ∈ Pi ∪ Õi

4: Initialize tmp = 0, totalsum = 0, sum = 0, s[l] =

0 for ∀l ∈ Pi, c[l] = 0 for ∀l ∈ Pi ∪ Õi

5: for l ∈ Õi do
6: sum += exp(gl)
7: end for
8: for l ∈ Pi do
9: c[l] −= gl · (1− gl)

10: s[l] = sum+ exp(gl)
11: totalsum += 1/s[l]
12: end for
13: for l ∈ Õi do
14: c[l] += exp(gl) · gl · (1− gl) · totalsum
15: end for
16: for l ∈ Pi do
17: c[l] += exp(gl) · gl · (1− gl)/s[l]
18: end for
19: for l ∈ Pi ∪ Õi do
20: grad[:, l] += c[l] · ui

21: end for
22: end for
23: V −= γ · grad
24: γ ∗= decay
25: Return V

columns of U, V are assumed to be the normal distribution,
i.e., p(ui) ∼ N (0, λ−1I) and p(vl) ∼ N (0, λ−1I), where λ
is the regularization parameter. In this way, we can transform
Equation 6 to the following form:

L =

N∑
i=1

∑
j∈Pi

− log
φ(uT

i vj)

φ(uT
i vj) +

∑
k∈Oi

φ(uT
i vk)

+
λ

2
(

N∑
i=1

‖ui‖2 +
M∑
l=1

‖vl‖2). (7)

For the ease of calculation, we let log φ(x) be the sigmoid
function, i.e., log φ(x) = σ(x) = 1/(1 + e−x). It is easy to
verify that such φ(x) is an increasing and strictly positive
function. Besides, this choice is also beneficial for bounding
the excess risk which we will discuss in the next subsection.

Another notable thing is that we do not have to go through
all the unobserved items for every user in each epoch, con-
sidering that the positive feedback is much more influential
than the unobserved feedback. Following Wu, Hsieh, and
Sharpnack(2018), we can randomly sample K̃i = τ · Ji un-
observed items in each epoch to compose the set Õi for re-
placing Oi in Equation 7.

In each epoch, we update the latent factors U and V by
the gradients ∇UL and ∇V L, respectively. The speed ef-
ficiency of recommender system is quite important (Wu,
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Figure 2: The modeling process of Deep-SetRank.

Hsieh, and Sharpnack 2017). Though a direct way to calcu-
late the gradients costs O(NJK̃r) = O(NJ2r) time, where
J = max{Ji, 1 ≤ i ≤ N} and K̃ = τ · J , there is actually
numerous repeated calculations here. We provide a cleverer
approach in Algorithm 1 to rearrange the computation so
that it only requires O(N(J + K̃)r) = O(NJr) time. Let
us take the process of updating V as an example. Specifi-
cally, given a fixed latent user matrix U , the regularization
parameter λ, the positive item set Pi, the unobserved item
set Õi and the decaying rate decay of the step size γ, Al-
gorithm 1 shows how to update the gradients for latent item
matrix V . Thus, MF-SetRank could run with a linear com-
putational complexity, which is same as the efficient rating
prediction methods based on matrix factorization (Mnih and
Salakhutdinov 2008; Hu, Koren, and Volinsky 2008).
Deep-SetRank. In recent years, neural networks have
shown good capacity on non-linear projection and em-
bedding in recommender systems (Qin et al. 2019; He
et al. 2017). Inspired by Deep Matrix Factorization
(DeepMF) (Xue et al. 2017), we design a NN based setwise
model called Deep-SetRank.

As shown in Figure 2, Deep-SetRank transforms the row
Ri∗ and column R∗l of rating matrix R to obtain latent user
and item matrices by user and item embedding networks,
respectively. Then we still employ Equation 7 as the setwise
loss function. Following DeepMF, we choose the multi-layer
perception network (MLP) as the embedding network. Take
user network as an example, we have

h1 = f1(W1Ri∗ + b1),

ht = ft(Wtht−1 + bt), t ∈ [2, n− 1],

ui = fn(Wnhn−1 + bn), (8)

where ht is the t-th hidden layer with weight matrix Wt and
bias term bt. For the activation function ft(·), we employ
the sigmoid function for the first n − 1 layers and the tanh
function for the last layer. Hence, we can predict the scores
by the product of these two matrices. For each user, we si-
multaneously calculate the scores of items in both Pi and Õi

in a batch for optimizing setwise loss. Different from MF-
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SetRank, Deep-SetRank needs to train two neural networks
rather than latent matrices.

Theoretical Analysis

In this subsection, we aim at giving the theoretical bound for
the excess risk, i.e., the expected difference between the es-
timate and the truth, of SetRank. Without loss of generality,
we assume that all the users have the same number of posi-
tive items and unobserved items for the sake of convenience.
Hence, we have J = Ji,K = Ki for ∀i. Note that the result
can be readily generalized to the individual setting.

Considering the following constrained optimization of a
general setwise method:

X̂ := argmin
X

− log p(>total |X) such that X ∈ X , (9)

where X is the feasible set. Usually, X is constrained by
the norm regularization to satisfy the low-rank condition.
For example, in the personalized collaborative setting, X =
{X|X = UTV, ‖U‖F ≤ cu, ‖V ‖F ≤ cv}. Here ‖ · ‖F
is the Frobenius norm. Supposing there is a X∗ ∈ X
such that >total is generated from p(>total |X∗). Then
the excess risk is given in the form of KL divergence be-
tween the real and estimated probability: D(X∗, X̂) :=
1
N

∑N
i=1 E log

p(>i|X∗
i )

p(>i|X̂i)
.

So far, the state-of-the-art listwise method could bound
the excess risk by OP

(√
rM/N lnM

)
in the person-

alized collaborative setting (Wu, Hsieh, and Sharpnack
2018). Here we will show that the bound of SetRank is
OP

(√
rM/N(1 + J/K)

)
owing to the weaker precondi-

tion. In practice, the positive feedback always accounts for
merely a tiny fraction of the total items. So, we have J/K �
1, which makes the result sound.

First, we give another statistical interpretation of Equa-
tion 5 from the generative perspective:

Theorem 1 Suppose there is a matrix Y = {Yil}N×M .
Each entry Yil is independently drawn from an exponen-
tial distribution with rate φ(Xil). For each row Yi, let the J
smallest entries form the set Pi and others form the set Oi.
Then the ranking structure probability p(>total |X), i.e., the
probability that entries in Pi are less than those in Oi , is ex-
actly equal to the RHS of Equation 5.

The proof for Theorem 1 can be found in the Appendix.
From Theorem 1, we know that the setwise preference prob-
ability can also be seen as the probability of a ranking struc-
ture over the matrix Y composed of N × M independent
exponential random variables. Thus, we could give the fol-
lowing theorem according to McDiarmid’s inequality (Mc-
Diarmid 1989) and Dudley’s chaining (Talagrand 2006):

Theorem 2 Let Z := {log φ(X)|X ∈ X} be the image
of element-wise function log φ(X) and ‖ · ‖∞,2 be the ∞, 2

norm defined as ‖Z‖∞,2 :=
√∑N

i=1 ‖Zi‖2∞, Z ∈ R
N×M .

Denote N (ε,Z, ‖ · ‖∞,2) as the ε-covering number of Z in
∞, 2 norm, which represents the fewest number of spherical

balls of radius ε needed to completely cover Z in the condi-
tion of ∞, 2 norm. Hence, if ‖Zi‖∞ ≤ α for ∀ i, we have

D(X∗, X̂) = OP

(
g(Z)

√
M/N (1 + J/K)

)
, (10)

where g(Z) =
∫∞
0

√
lnN (u,Z, ‖ · ‖∞,2)du.

By Theorem 2, we are able to obtain a bound in the gen-
eral setting of X . Particularly, in the personalized collabora-
tive setting, we can obtain the further result as follows:

Theorem 3 Suppose that ‖Zi‖∞ ≤ α for ∀ i and log φ(x)
is 1-Lipschitz, then in the personalized collaborative setting,
we have

D(X∗, X̂) = OP

(√
rM/N (1 + J/K)

)
. (11)

The detailed proofs for Theorem 2 and 3 are in the Ap-
pendix. Theorem 3 shows that when fixing the rank of latent
factors, we will have a better estimate with a larger num-
ber of users and a smaller number of items, which is accord
with the intuition. Besides, a smaller J with a larger K is
beneficial for bounding the excess risk.

Experiments

Experimental Settings

Datasets. We evaluated the performance of our SetRank
method on four real-world datasets, i.e., MovieLens 1, Kin-
dle 2, Yahoo 3 and CiteULike 4. MovieLens is a com-
monly used movie recommendation dataset. Kindle contains
Amazon product ratings collected from Kindle Store. Ya-
hoo (Marlin and Zemel 2009) contains ratings for songs
from Yahoo! Music. CiteULike is composed of users’ col-
lections of articles on CiteULike website. Following Wu,
Hsieh, and Sharpnack(2018), we took two steps for data pre-
processing. First, the original data of MovieLens, Kindle and
Yahoo are in the form of 5-star ratings. We transformed them
into implicit data, where each entry was marked as 1/0,
depending on whether the ratings are greater than 3. Sec-
ond, in order to make sure we have adequate positive feed-
back for better evaluating the recommendation algorithms,
we filtered out users with less than 60, 20, 10, 10 posi-
tive items in MovieLens, Kindle, Yahoo and CiteULike, re-
spectively. After data filtering, there are totally 3,937 users
and 3,533 items with 923,473 positive entries in MovieLens,
4,379 users and 3,774 items with 102,545 positive entries
in Kindle, 4,664 users and 921 items with 82,384 positive
entries in Yahoo, 4,123 users and 7,849 items with 135,365
positive entries in CiteULike.
Evaluation protocols. We randomly sampled 50% of posi-
tive items for each user to construct the training set in each
dataset, while the maximum number of item samples for
each user was set as 10. Then, we sampled 1 positive item of
each user as the validation set. Meanwhile, the rest data were

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/
3https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
4http://www.citeulike.org
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Table 1: The recommendation performance of different approaches. (Methods with notation ∗ are our proposed methods. We
conducted the paired t-tests to verify that all improvements by SetRank are statistically significant for p < 0.05.)

Datasets Methods P@5 P@10 R@5 R@10 MAP@5 MAP@10

MovieLens

WMF 0.5161±0.0050 0.4787±0.0039 0.0173±0.0002 0.0317±0.0003 0.4125±0.0066 0.3449±0.0051

BPR 0.6330±0.0075 0.6058±0.0075 0.0213±0.0004 0.0401±0.0007 0.5403±0.0105 0.4835±0.0078

Cofiset 0.6500±0.0050 0.6152±0.0033 0.0217±0.0003 0.0405±0.0002 0.5657±0.0060 0.5020±0.0042

SQL-Rank 0.6609±0.0020 0.6227±0.0028 0.0227±0.0003 0.0421±0.0003 0.5749±0.0018 0.5081±0.0025

MF-SetRank∗ 0.6762±0.0024 0.6398±0.0017 0.0231±0.0002 0.0427±0.0001 0.5940±0.0028 0.5296±0.0033

DeepMF 0.6191±0.0136 0.5831±0.0120 0.0208±0.0006 0.0383±0.0009 0.5270±0.0159 0.4627±0.0143

Deep-BPR 0.6624±0.0061 0.6242±0.0067 0.0225±0.0003 0.0416±0.0008 0.5798±0.0098 0.5141±0.0077

Deep-SQL 0.6794±0.0074 0.6432±0.0024 0.0233±0.0004 0.0431±0.0003 0.5990±0.0076 0.5343±0.0036

Multi-VAE 0.6806±0.0012 0.6429±0.0030 0.0235±0.0002 0.0434±0.0002 0.5996±0.0017 0.5338±0.0020

Deep-SetRank∗ 0.6956±0.0030 0.6557±0.0013 0.0242±0.0003 0.0447±0.0003 0.6150±0.0039 0.5473±0.0019

Kindle

WMF 0.1281±0.0018 0.1105±0.0015 0.0577±0.0014 0.0957±0.0015 0.0830±0.0008 0.0580±0.0007

BPR 0.1372±0.0030 0.1174±0.0024 0.0660±0.0023 0.1078±0.0030 0.0896±0.0019 0.0623±0.0012

Cofiset 0.1438±0.0025 0.1223±0.0017 0.0690±0.0017 0.1127±0.0020 0.0940±0.0017 0.0653±0.0011

SQL-Rank 0.1478±0.0024 0.1238±0.0008 0.0705±0.0010 0.1135±0.0009 0.0986±0.0017 0.0678±0.0009

MF-SetRank∗ 0.1773±0.0027 0.1466±0.0019 0.0869±0.0010 0.1375±0.0016 0.1210±0.0025 0.0834±0.0015

DeepMF 0.1484±0.0022 0.1236±0.0011 0.0679±0.0013 0.1085±0.0016 0.0992±0.0017 0.0684±0.0010

Deep-BPR 0.1654±0.0025 0.1372±0.0013 0.0824±0.0010 0.1300±0.0017 0.1106±0.0024 0.0765±0.0014

Deep-SQL 0.1754±0.0045 0.1435±0.0023 0.0842±0.0030 0.1320±0.0036 0.1201±0.0032 0.0823±0.0017

Multi-VAE 0.1651±0.0019 0.1360±0.0010 0.0800±0.0013 0.1265±0.0011 0.1120±0.0015 0.0771±0.0009

Deep-SetRank∗ 0.1837±0.0020 0.1502±0.007 0.0894±0.0009 0.1402±0.0013 0.1266±0.0015 0.0867±0.0009

Yahoo

WMF 0.1813±0.0021 0.1465±0.0011 0.1297±0.0015 0.2048±0.0017 0.1182±0.0015 0.0772±0.0010

BPR 0.2096±0.0032 0.1729±0.0020 0.1475±0.0031 0.2389±0.0039 0.1378±0.0029 0.0928±0.0010

Cofiset 0.2196±0.0041 0.1791±0.0018 0.1554±0.0034 0.2478±0.0032 0.1457±0.0034 0.0979±0.0016

SQL-Rank 0.2137±0.0031 0.1723±0.0011 0.1502±0.0025 0.2380±0.0017 0.1432±0.0026 0.0951±0.0012

MF-SetRank∗ 0.2267±0.0012 0.1817±0.0007 0.1616±0.0008 0.2540±0.0018 0.1528±0.0016 0.1009±0.0006

DeepMF 0.2167±0.0019 0.1764±0.0009 0.1529±0.0021 0.2437±0.0032 0.1445±0.0024 0.0964±0.0012

Deep-BPR 0.2260±0.0019 0.1831±0.0010 0.1615±0.0008 0.2549±0.0020 0.1513±0.0018 0.1013±0.0009

Deep-SQL 0.2278±0.0023 0.1817±0.0013 0.1613±0.0025 0.2517±0.0029 0.1542±0.0018 0.1021±0.0009

Multi-VAE 0.2300±0.0018 0.1855±0.0016 0.1631±0.0011 0.2572±0.0014 0.1550±0.0025 0.1036±0.0020

Deep-SetRank∗ 0.2372±0.0011 0.1894±0.0015 0.1694±0.0007 0.2637±0.0022 0.1608±0.0016 0.1067±0.0013

CiteULike

WMF 0.1714±0.0018 0.1447±0.0010 0.0539±0.0009 0.0866±0.0009 0.1195±0.0023 0.0859±0.0012

BPR 0.1876±0.0027 0.1612±0.0016 0.0644±0.0009 0.1056±0.0012 0.1320±0.0027 0.0964±0.0019

Cofiset 0.1881±0.0022 0.1590±0.0009 0.0664±0.0013 0.1058±0.0016 0.1317±0.0018 0.0953±0.0008

SQL-Rank 0.1801±0.0024 0.1522±0.0015 0.0576±0.0008 0.0932±0.0010 0.1283±0.0019 0.0927±0.0013

MF-SetRank∗ 0.2124±0.0016 0.1813±0.0014 0.0764±0.0007 0.1238±0.0015 0.1523±0.0018 0.1117±0.0010

DeepMF 0.1853±0.0018 0.1555±0.0015 0.0600±0.0010 0.0962±0.0015 0.1296±0.0019 0.0935±0.0014

Deep-BPR 0.2086±0.0009 0.1754±0.0015 0.0767±0.0012 0.1224±0.0014 0.1483±0.0015 0.1075±0.0004

Deep-SQL 0.2077±0.0027 0.1733±0.0016 0.0730±0.0021 0.1152±0.0015 0.1478±0.0029 0.1064±0.0017

Multi-VAE 0.2081±0.0027 0.1720±0.0016 0.0775±0.0014 0.1205±0.0022 0.1502±0.0031 0.1068±0.0015

Deep-SetRank∗ 0.2233±0.0026 0.1856±0.0017 0.0830±0.0019 0.1300±0.0016 0.1606±0.0022 0.1159±0.0014

used for test. In this way, we randomly split each dataset five
times and reported all the results by mean values. To evaluate
the performance, we adopted three widely used evaluation
metrics, i.e., P@P , R@P and MAP@P (Wu, Hsieh, and
Sharpnack 2018; Wang, Wang, and Yeung 2015). For each
user, P (Precision) @P measures the ratio of correct pre-
diction results among top-P items to P and R (Recall) @P
measures the ratio of correct prediction results among top-P
items to all positive items. Furthermore, MAP (Mean Av-
erage Precision) @P considers the ranking of correct pre-
diction results among top-P items. The final results of three
metrics are given in the average of all users.
Baselines. The recommendation methods for comparison
are listed as follows:

• WMF: Weighted Matrix Factorization (Hu, Koren, and
Volinsky 2008) is a popular rating prediction method for
implicit data, which introduces the confidence levels into
standard matrix factorization model.

• BPR: Bayesian Personalized Ranking (Rendle et al.

2009) is a widely used pairwise collaborative ranking ap-
proach, which transforms the original rating matrix into
the form of independent pairs.

• Cofiset: Cofiset (Pan and Chen 2013a) defines the group
preference as the mean value of each item in the group.
Then the BPR loss function is used for optimization.

• SQL-Rank: Stochastic Queuing Listwise Ranking (Wu,
Hsieh, and Sharpnack 2018) is a state-of-the-art listwise
approach, which breaks ties randomly and generates mul-
tiple possible permutations.

• DeepMF: Deep Matrix Factorization (Xue et al. 2017) is
a NN based matrix factorization model.

• Multi-VAE: Variational Autoencoders for Collaborative
Filtering (Liang et al. 2018) is a state-of-the-art NN based
method, which extends variational autoencoders to rec-
ommendations for implicit feedback.

• Deep-BPR, Deep-SQL: These two methods have the
same network architecture with Deep-SetRank, but we re-
place the loss function in SetRank by those in BPR and
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Figure 3: The performance of P@5 with different values of sampling ratio τ on the four datasets.
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Figure 4: The performance of P@5 with different values of dimension r on the four datasets.

SQL-Rank, respectively. Hence, we obtain these two NN
based pairwise and listwise approaches.

• MF-SetRank, Deep-SetRank: These two methods are
our proposed setwise Bayesian approaches for collabora-
tive ranking from implicit feedback. We release our code
at https://github.com/chadwang2012/SetRank.
Please note that WMF, BPR, SQL-Rank, MF-SetRank are

all implemented with a basic matrix factorization model and
the four “Deep” methods are all implemented with the same
neural network architecture, so it is a fair setting to compare
the performances of different item ranking approaches.
Parameter settings. For the above baselines, we have
carefully explored the corresponding parameters, i.e., the
number of dimensions and regularization parameters. Be-
sides, for SQL-Rank, we chose the ratio of subsampled
unobserved items to positive items as 3 : 1 follow-
ing the authors’ guidance. For MF-SetRank, we tuned the
learning rate in [0.1, 0.2, ..., 1.0] and the decay rate in
[0.9, 0.93, 0.95, 0.97, 0.99]. We also fixed the sampling ratio
τ to 3. Then we tuned the number of dimensions r in [50,
100, 150, 200, 250, 300] and the regularization parameter λ
in [0.2, 0.3, ..., 1.9, 2.0].

For Multi-VAE, we set the encoder as 2-layer MLP with
dimensions 600 × 200 and decoder with dimensions 200 ×
600. For the other four “Deep” methods, we fixed the user
network as 2-layer MLP with dimensions 512×100 and item
network with dimensions 1024 × 100. Then we performed
Adam (Kingma and Ba 2014) algorithm for optimization
and tune the learning rate from 0.0001 to 0.01.

Overall Performance Comparison

We present the overall recommendation performance re-
sults of the nine methods in Table 1 under two types of

settings, i.e., P = 5 and P = 10, since the top recom-
mended items are much more important in practical scenes.
As shown in the results, Deep-SetRank achieves the best per-
formance against all the baseline methods on every dataset.
Specifically, Deep-SetRank outperforms the best baselines
by an average relative boost of 4.28% for the metric P@5
on the four datasets. Besides, MF-SetRank achieves the
best performance against all the other MF based baselines.
Specifically, MF-SetRank outperforms the state-of-the-art
MF based method, SQL-Rank, by an average relative boost
of 11.57% for the metric P@5. We can also observe that
NN based models have stronger embedding ability and can
perform better than MF based models. Nevertheless, it is
notable that MF-SetRank has achieved comparable perfor-
mances with NN based methods, such as Multi-VAE and
Deep-SQL. The outstanding performances clearly demon-
strate the effectiveness of our setwise approaches. We can
also observe that SetRank achieves the largest relative boost
to the other baselines on the sparsest dataset, CiteULike,
which shows its superior capacity for handling sparsity prob-
lem. Another notable thing is that listwise approaches seem
to perform better in top-5 metrics than top-10 metrics. This
is probably because they pay more attention to the top ranks
in an item list. On the opposite, SetRank treats every posi-
tive item or every unobserved item fairly thus can perform
well in both top-5 and top-10 metrics.

Hyper-parameter Investigations

Effectiveness of negative sampling. As mentioned in Sec-
tion Implementation, it is unnecessary to utilize all the un-
observed items for gradient calculations in SetRank. We can
just randomly sample τ · Ji negative items for each user
i in each epoch. Since the number of positive items Ji is
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usually far smaller than the number of total items, there are
few unobserved item overlaps for each user among different
epochs. In this subsection, we fix all the other parameters to
be the same and evaluate the influence of sampling ratio τ on
final recommendation results. The P@5 results are shown in
Figure 3. We find that when τ = 3, the performance is good
enough. Even if we further enlarge the value of τ , the result
would not increase significantly.
Sensitivities of latent factors. In this paper, we factorize the
score matrix into the product of user and item latent factors
in a low-rank space. Therefore, the rank r of latent space is
quite influential to the result. If the rank r is too small, the
model could not fit the real-world data well while if r is too
larger, it may cause the overfitting problem. We varied r to
train our method and then presented the results in Figure 4.
We can observe that the performance result of SetRank is not
good when r = 50. With a larger value of r, the performance
of MF-SetRank tends to be much better. Thus, we suggest
adopting a large value for r to get the best performance in
MF-SetRank. By comparison, r = 100 seems to be good
enough for Deep-SetRank.

Conclusion

In this paper, we proposed a setwise Bayesian approach,
namely SetRank, for collaborative ranking. SetRank has
the ability in accommodating the characteristic of implicit
feedback in recommender systems. Specifically, we first de-
signed a novel setwise preference structure. Then, we max-
imized the posterior probability of the setwise preference
structure to complete the Bayesian inference. In particular,
we designed two implementations, MF-SetRank and Deep-
SetRank. Moreover, we provided the theoretical analysis of
SetRank to show that the bound of excess risk can be pro-
portional to

√
M/N . Finally, extensive experiments on four

real-world datasets clearly validated the advantages of Se-
tRank over various state-of-the-art baselines.
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Appendix

Proof of Theorem 1

Proof . Owing to the independence assumption, the follow-
ing equation holds:

p(>total |X) =

N∏
i=1

p(>i |Xi)

=
N∏
i=1

∏
j∈Pi

p(Yij ≤ min
k∈Oi

{Yik}|Xi), (12)

where min
k∈Oi

{Yik} obeys an exponential distribution with rate∑
k∈Oi

φ(Xik). Then we have

p(Yij ≤ min
k∈Oi

{Yik}|Xi)

=

∫ ∞

0

φ(Xij)e
−uφ(Xij)e

∑
k∈Oi

−uφ(Xik)du

=
φ(Xij)

φ(Xij) +
∑

k∈Oi
φ(Xik)

. (13)

With Equation 12 and 13, we obtain the conclusion. �

Proof of Theorem 2 and Theorem 3

To prove Theorem 2, we first follow (Wu, Hsieh, and Sharp-
nack 2018) to propose an important lemma to bound the ex-
cess risk by an empirical process term.

Lemma 1 Supposing X̂ := argmin
X

− log p(>total

|X) such that X ∈ X and there is a X∗ ∈ X such that
>total is generated from p(>total |X∗). Then we have the
following inequality, where E is for the draw of >i:

D(X∗, X̂) ≤ − 1

N

N∑
i=1

(
log

p(>i |X∗
i )

p(>i |X̂i)
− E log

p(>i |X∗
i )

p(>i |X̂i)

)
.

(14)

Proof . Due to the optimality condition, we have

N∑
i=1

− log p(>i |X̂i) ≤
N∑
i=1

− log p(>i |X∗
i ). (15)

Actually, Equation 15 is equivalent to

1

N

N∑
i=1

log
p(>i |X∗

i )

p(>i |X̂i)
≤ 0.

Thus, it is easy to obtain the conclusion. �
As we can see from Lemma 1, if we fix X̂ , the empirical

process term (the RHS of Equation 14) is a random func-
tion of the preference structure >total with mean zero. How-
ever, X̂ is also random so that we have to uniformly bound
the empirical process term over X̂ ∈ X . To apply Dudley’s
chaining (Talagrand 2006), we first bound the variations be-
tween two preference scores Xi and X ′

i with Lemma 2:

Lemma 2 Define the difference function Δ(>i |Xi, X
′
i) :=

log p(>i|Xi)
p(>i|X′

i)
. If a single entry Yil changes, it would cause

the transformation of setwise preference structure, i.e., >i

would be converted into >′
i. We can bound the variations of

the difference function in the form of:

|Δ(>i |Xi, X
′
i)−Δ(>′

i |Xi, X
′
i)|

≤ C‖ log φ(Xi)− log φ(X ′
i)‖∞, (16)

where C = 2 + 2e2αJ/K.
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Proof . If the change of Yil does not lead to the change of
Pi and Oi, there is no influence for preference structure, i.e.,
>i=>′

i and |Δ(>i |Xi, X
′
i)−Δ(>′

i |Xi, X
′
i)| = 0.

Otherwise, we assume that item j′ ∈ Pi and k′ ∈ Oi

exchange their status with each other so that in the new pref-
erence structure >′

i, we have j′ ∈ O′
i and k′ ∈ P ′

i . In the
following part of the proof, for ease of the statement, we de-
note λl = φ(Xil) and Λj = λj +

∑
k∈Oi\{k′} λk. λ′

l and Λ′
j

are defined analogously with X ′.
So, we have

Δ(>i |Xi, X
′
i) =

∑
j∈Pi

(
log

λj

λ′
j

− log
Λj + λk′

Λ′
j + λ′

k′

)
,

Δ(>′
i |Xi, X

′
i) =

∑
j∈Pi\{j′}

(
log

λj

λ′
j

− log
Λj + λj′

Λ′
j + λ′

j′

)

+ log
λk′

λ′
k′

− log
Λj′ + λk′

Λ′
j′ + λ′

k′
,

and thus,

|Δ(>i |Xi, X
′
i)−Δ(>′

i |Xi, X
′
i)|

=

∣∣∣∣∣log λj′

λ′
j′

− log
λk′

λ′
k′

+
∑

j∈Pi\{j′}

(
log

Λj + λj′

Λ′
j + λ′

j′
− log

Λj + λk′

Λ′
j + λ′

k′

)∣∣∣∣∣∣
≤
∣∣∣∣∣log λj′

λ′
j′

− log
λk′

λ′
k′

∣∣∣∣∣
+

∑
j∈Pi\{j′}

∣∣∣∣∣log Λj + λj′

Λ′
j + λ′

j′
− log

Λj + λk′

Λ′
j + λ′

k′

∣∣∣∣∣ .
Notice that

∣∣∣∣∣log Λj + λj′

Λ′
j + λ′

j′
− log

Λj + λk′

Λ′
j + λ′

k′

∣∣∣∣∣
≤
∣∣∣∣∣log Λj + λj′

Λ′
j + λ′

j′
− log

Λj

Λ′
j

∣∣∣∣∣+
∣∣∣∣∣log Λj

Λ′
j

− log
Λj + λk′

Λ′
j + λ′

k′

∣∣∣∣∣
=

∣∣∣∣∣log Λj + λj′

Λj
− log

Λ′
j + λ′

j′

Λ′
j

∣∣∣∣∣
+

∣∣∣∣∣log Λj + λk′

Λj
− log

Λ′
j + λ′

k′

Λ′
j

∣∣∣∣∣ .
Hence, we let δ = ‖ log φ(Xi)− log φ(X ′

i)‖∞, and have∣∣∣∣∣log Λj

Λ′
j

∣∣∣∣∣ ≤ max
l

∣∣∣∣log λl

λ′
l

∣∣∣∣ ≤ δ.

Further, we assume βj = max{λj′
Λj

,
λ′
j′

Λ′
j
}, and then

∣∣∣∣∣log
(
1 +

λj′

Λj

)
− log

(
1 +

λ′
j′

Λ′
j

)∣∣∣∣∣
≤ ∣∣log(1 + βj)− log(1 + e−2δβj)

∣∣ ≤ |1− e−2δ| |βj | .
Considering that we have Λj ≥ Ke−α, we can de-

rive βj ≤ e2α/K. Similar conclusion can be obtained for∣∣∣log (1 + λk′
Λj

)
− log

(
1 +

λ′
k′
Λ′

j

)∣∣∣.
Synthesize the analysis above, we thus have

|Δ(>i |Xi, X
′
i)−Δ(>′

i |Xi, X
′
i)|

≤ 2δ + 2
∑

j∈Pi\{j′}
|1− e−2δ|e2α/K

≤ δ(2 + 2e2αJ/K).

Consequently, let C = 2+2e2αJ/K and we can come to
the conclusion. �
Proof of Theorem 2. The empirical process function is de-
fined as

ρN (x) := − 1

N

N∑
i=1

(
log

p(>i |X∗
i )

p(>i |X̂i)
− E log

p(>i |X∗
i )

p(>i |X̂i)

)
.

From Theorem 1, we know that ρN (x) is a function of
N × M independent exponential random variables. And
from Lemma 2, we know that the change of preference struc-
ture caused by the change of a single entry Yil is bounded.
Specifically, the accumulative squares of bounds are

N∑
i=1

M∑
l=1

C2‖ log φ(Xi)− log φ(X′
i)‖2∞ = MC2‖Z − Z′‖2∞,2.

Then according to McDiarmid’s inequality (McDiarmid
1989), we have

p
{
N
(
ρN (x)− ρN (x′)

)
> ε
} ≤ exp

(
−2ε2

MC2‖Z − Z′‖2∞,2

)
.

As a result, the stochastic process {NρN (X)|X ∈ X}
is a subGaussian field with canonical distance d(X,X ′) =√
MC‖Z − Z ′‖∞,2. Following Dudley’s chaining (Tala-

grand 2006), we can get the conclusion. �
Proof of Theorem 3. Wu, Hsieh, and Sharpnack(2018) have
proved that g(Z) ≤ c′

√
rN in the personalized collabora-

tive setting, where c′ is an absolute constant. Thus we can
conclude the proof immediately. �
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