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Abstract

Autoregressive networks can achieve promising performance
in many sequence modeling tasks with short-range depen-
dence. However, when handling high-dimensional inputs and
outputs, the massive amount of parameters in the network
leads to expensive computational cost and low learning effi-
ciency. The problem can be alleviated slightly by introducing
one more narrow hidden layer to the network, but the sample
size required to achieve a certain training error is still sub-
stantial. To address this challenge, we rearrange the weight
matrices of a linear autoregressive network into a tensor form,
and then make use of Tucker decomposition to represent low-
rank structures. This leads to a novel compact autoregressive
network, called Tucker AutoRegressive (TAR) net. Interest-
ingly, the TAR net can be applied to sequences with long-
range dependence since the dimension along the sequential
order is reduced. Theoretical studies show that the TAR net
improves the learning efficiency, and requires much fewer
samples for model training. Experiments on synthetic and
real-world datasets demonstrate the promising performance
of the proposed compact network.

Introduction

Sequence modeling has been used to address a broad range
of applications, including macroeconomic time series fore-
casting, financial asset management, speech recognition and
machine translation. Recurrent neural networks (RNN) and
their variants, such as Long-Short Term Memory (Hochre-
iter and Schmidhuber 1997) and Gated Recurrent Unit (Cho
et al. 2014), are commonly used as the default architecture
or even the synonym of sequence modeling by deep learn-
ing practitioners (Goodfellow, Bengio, and Courville 2016).
In the meanwhile, especially for high-dimensional time se-
ries, we may also consider the autoregressive modeling or
multi-task learning,

ŷt = f(yt−1,yt−2, . . . ,yt−P ), (1)

where the output ŷt and each input yt−i are N -dimensional,
and the lag P can be very large for accomodating sequen-
tial dependence. Some non-recurrent feed-forward networks
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with convolutional or other specific architectures have been
proposed recently for sequence modeling, and are shown to
have state-of-the-art accuracy. For example, some autore-
gressive networks, such as PixelCNN (Van den Oord et al.
2016b) and WaveNet (Van den Oord et al. 2016a) for image
and audio sequence modeling, are compelling alternatives to
the recurrent networks.

This paper aims at the autoregressive model (1) with a
large number of sequences. This problem can be imple-
mented by a fully connected network with NP inputs and N
outputs. The number of weights will be very large when the
number of sequences N is large, and it will be much larger
if the data have long-range sequential dependence. This will
lead to excessive computational burden and low learning ef-
ficiency. Recently, Du et al. (2018) showed that the sam-
ple complexity in training a convolutional neural network
(CNN) is directly related to network complexity, which in-
dicates that compact models are highly desirable when avail-
able samples have limited sizes.

To reduce the redundancy of parameters in neural net-
works, many low-rank based approaches have been investi-
gated. One is to reparametrize the model, and then to modify
the network architecture accordingly. Modification of archi-
tectures for model compression can be found from the early
history of neural networks (Fontaine, Ris, and Boite 1997;
Grézl et al. 2007). For example, a bottleneck layer with a
smaller number of units can be imposed to constrain the
amount of information traversing the network, and to force a
compact representation of the original inputs in a multilayer
perceptron (MLP) or an autoencoder (Hinton and Salakhut-
dinov 2006). The bottleneck architecture is equivalent to a
fully connected network with a low-rank constraint on the
weight matrix in a linear network.

Another approach is to constrain the rank of parameter
matrices directly. For instance, Denil et al. (2013) demon-
strated significant redundancy in large CNNs, and proposed
a low-rank structure of weight matrices to reduce it. If we
treat weights in a layer as a multi-dimensional tensor, ten-
sor decomposition methods can then be employed to rep-
resent the low-rank structure, and hence compress the net-
work. Among these works, Lebedev et al. (2014) applied
the CP decomposition for the 4D kernel of a single convo-
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lution layer to speed up CNN, and Jaderberg, Vedaldi, and
Zisserman (2014) proposed to construct a low-rank basis of
filters to exploit cross-channel or filter redundancy. Kim et
al. (2016) utilized the Tucker decomposition to compress
the whole network by decomposing convolution and fully
connected layers. The tensor train format was employed in
Novikov et al. (2015) to reduce the parameters in fully con-
nected layers. Several tensor decomposition methods were
also applied to compress RNNs (Tjandra, Sakti, and Naka-
mura 2018; Ye et al. 2018; Pan et al. 2019). In spite of the
empirical success of low-rank matrix and tensor approaches,
theoretical studies for learning efficiency are still limited.

A fully connected autoregressive network for (1) will
have N2P weights, and it will reduce to Nr + NPr for
an MLP with one hidden layer and r hidden units. The
bottleneck architecture still has too many parameters and,
more importantly, it does not attempt to explore the possi-
ble compact structure along the sequential order. We first
simplify the autoregressive network into a touchable frame-
work, by rearranging all weights into a tensor. We further
apply Tucker decomposition to introduce a low-dimensional
structure and translate it into a compact autoregressive net-
work, called Tucker AutoRegressive (TAR) net. It is a spe-
cial compact CNN with interpretable architecture. Differ-
ent from the original autoregressive network, the TAR net
is more suitable for sequences with long-range dependence
since the dimension along the sequential order is reduced.

There are three main contributions in this paper:
1. We innovatively tensorize weight matrices to create

an extra dimension to account for the sequential order and
apply tensor decomposition to exploit the low-dimensional
structure along all directions. Therefore, the resulting net-
work can handle sequences with long-range dependence.

2. We provide theoretical guidance on the sample com-
plexity of the proposed network. Our problem is more chal-
lenging than other supervised learning problems owing to
the strong dependency on sequential samples and the multi-
task learning nature. Moreover, our sample complexity anal-
ysis can be extended to other feed-forward networks.

3. The proposed compact autoregressive network can flex-
ibly accommodate nonlinear mappings, and offer physical
interpretations by extracting explainable latent features.

Linear Autoregressive Network

This section demonstrates the methodology by considering
a linear version of (1), and theoretically studies the sample
complexity of the corresponding network.

Preliminaries and Background

Notation We follow the notations in Kolda and Bader
(2009) to denote vectors by lowercase boldface letters,
e.g. a; matrices by capital boldface letters, e.g. A; tensors
of order 3 or higher by Euler script boldface letters, e.g.
A. For a generic dth-order tensor A ∈ R

p1×···×pd , de-
note its elements by A(i1, i2, . . . , id) and unfolding of A
along the n-mode by A(n), where the columns of A(n)

are the n-mode vectors of A, for n = 1, 2, . . . , d. The
vectorization operation is denoted by vec(·). The inner

product of two tensors A,B ∈ R
p1×···×pd is defined as

〈A,B〉 =
∑

i1
· · ·∑id

A(i1, . . . , id)B(i1, . . . , id). The
Frobenius norm of a tensor A is defined as ‖A‖F =√〈A,A〉. The mode-n multiplication ×n of a tensor A ∈
R

p1×···×pd and a matrix B ∈ R
qn×pn is defined as

(A×n B)(i1, . . . , jn, . . . , id)

=

pn∑
in=1

A(i1, . . . , in, . . . , id)B(jn, in),

for n = 1, . . . , d, respectively. For a generic symmetric
matrix A, λmax(A) and λmin(A) represent its largest and
smallest eigenvalues, respectively.

Tucker decomposition The Tucker ranks of A are defined
as the matrix ranks of the unfoldings of A along all modes,
namely ranki(A) = rank(A(i)), i = 1, . . . , d. If the Tucker
ranks of A are r1, . . . , rd, where 1 ≤ ri ≤ pi, there exist a
tensor G ∈ R

r1×···×rd and matrices U i ∈ R
pi×ri , such that

A = G×1 U1 ×2 U2 · · · ×d Ud, (2)

which is known as Tucker decomposition (Tucker 1966),
and denoted by A = [[G;U1,U2, . . . ,Ud]]. With the Tucker
decomposition (2), the n-mode matricization of A can be
written as

A(n) = UnG(n)(Ud⊗· · ·⊗Un+1⊗Un−1⊗· · ·⊗U1)
�,

where ⊗ denotes the Kronecker product for matrices.

Linear Autoregressive Network

Consider a linear autoregressive network,

ht = A1yt−1 +A2yt−2 + · · ·+At−Pyt−P + b,

where ht = ŷt is the output, Ais are N ×N weight matri-
ces, and b is the bias vector. Let xt = (y�

t−1, . . . ,y
�
t−P )

�
be the NP -dimensional inputs. We can rewrite it into a fully
connected network,

ht = Wxt + b, (3)

for t = 1, . . . , T , where W = (A1, ...,AP ) ∈ R
N×NP is

the weight matrix. Note that T denotes the effective sample
size, which is the number of samples for training. In other
words, the total length of the sequential data is T + P .

To reduce the dimension of W , a common strategy is to
constrain the rank of W to be r, which is much smaller
than N . The low-rank weight matrix W can be factorized as
W = AB, where A is a N × r matrix and B is a r ×NP
matrix, and the network can be transformed into

ht = ABxt + b. (4)

The matrix factorization reduces the number of parameters
in W from N2P to Nr +NPr. However, if both N and P
are large, the weight matrix B is still of large size.

We alternatively rearrange the weight matrices Ais into a
3rd-order tensor W ∈ R

N×N×P such that W(1) = W ; see
Figure 1 for the illustration. The Tucker decomposition can
then be applied to reduce the dimension from three modes

6146



A1 A2 A3 AP· · ·
A1

AP. .
.

. .
.

tensorization

matricization

Figure 1: Rearranging P weight matrices of a linear autore-
gressive network into a tensor.

simultaneously. If the low-Tucker-rank structure is applied
on W with ranks r1, r2, r3, the network becomes

ht = U1G(1)(U3 ⊗U2)
�xt + b, (5)

by Tucker decomposition W = [[G;U1,U2,U3]]. The
Tucker decomposition further reduces the dimension from
the other two modes of low-rank structure in (4), while
the low-rankness of W only considers the low-dimensional
structure on the 1-mode of W but ignores the possible com-
pact structure on the other two modes.

We train the network based on the squared loss. For sim-
plicity, each sequence is subtracted by its mean, so the bias
vector b can be disregarded. The weight matrix or tensor in
(3), (4) and (5) can be trained, respectively, by minimizing
the following ordinary least squares (OLS), low-rank (LR)
and low-Tucker-rank (LTR) objective functions,

Ŵ OLS = argmin
W

1

T

T∑
t=1

‖yt −Wxt‖22,

Ŵ LR = ÂB̂ = argmin
A,B

1

T

T∑
t=1

‖yt −ABxt‖22,

ŴLTR = [[Ĝ; Û1, Û2, Û3]]

= argmin
G,U1,U2,U3

1

T

T∑
t=1

‖yt −U1G(1)(U3 ⊗U2)
�xt‖22.

These three minimizers are called OLS, LR and LTR esti-
mators of weights, respectively.

The matrix factorization or tensor Tucker decomposition
is not unique. Conventionally, orthogonal constraints can be
applied to these components to address the uniqueness issue.
However, we do not impose any constraints on the compo-
nents to simplify the optimization and mainly focus on the
whole weight matrix or tensor instead of its decomposition.

Sample Complexity Analysis

The sample complexity of a neural network is defined as the
training sample size requirement to obtain a certain training
error with a high probability, and is a reasonable measure of
learning efficiency. We conduct a sample complexity analy-
sis for the three estimators, Ŵ OLS, Ŵ LR and ŴLTR, under
the high-dimensional setting by allowing both N and P to
grow with the sample size T at arbitrary rates.

We further assume that the sequence {yt} is generated
from a linear autoregressive process with additive noises,

yt = A1yt−1 +A2yt−2 + · · ·+At−Pyt−P + et. (6)

Denote by W 0 = (A1,A2, . . . ,AP ) the true parameters
in (6) and by W0 the corresponding folded tensor. We as-
sume that W0 has Tucker ranks r1, r2 and r3, and require
the following conditions to hold.

Condition 1. All roots of matrix polynomial |IN −A1z −
· · · −AP z

P | = 0 are outside unit circle.

Condition 2. The errors {et} is a sequence of independent
Gaussian random vectors with mean zero and positive def-
inite covariance matrix Σe, and et is independent of the
historical observations yt−1,yt−2, · · · .

Condition 1 is sufficient and necessary for the strict sta-
tionarity of the linear autoregressive process. The Gaus-
sian assumption in Condition 2 is very common in high-
dimensional time series literature for technical convenience.

Multiple sequence data may exhibit strong temporal and
inter-sequence dependence. To analyze how dependence in
the data affects the learning efficiency, we follow Basu and
Michailidis (2015) to use the spectral measure of depen-
dence below.

Definition 1. Define the matrix polynomial A(z) = IN −
A1z − · · · − AP z

P , where z is any point on the complex
plane, and define its extreme eigenvalues as

μmin(A) := min
|z|=1

λmin(A∗(z)A(z)),

μmax(A) := max
|z|=1

λmax(A∗(z)A(z)),

where A∗(z) is the Hermitian transpose of A(z).

By Condition 1, the extreme eigenvalues are bounded
away from zero and infinity, 0 < μmin(A) ≤ μmax(A) <
∞. Based on the spectral measure of dependence, we can de-
rive the non-asymptotic statistical convergence rates for the
LR and LTR estimators. Note that C denotes a generic pos-
itive constant, which is independent of dimension and sam-
ple size, and may represent different values. For any positive
number a and b, a � b and a � b denote that there exists C
such that a < Cb and a > Cb, respectively.

Theorem 1. Suppose that Conditions 1-2 are satisfied, and
the sample size T � r1r2r3 + Nr1 + Nr2 + Pr3. With
probability at least 1 − exp[−C(r1r2r3 + Nr1 + Nr2 +

Pr3)]− exp(−C
√
T ),

‖ŴLTR −W0‖F � M
√

r1r2r3 +Nr1 +Nr2 + Pr3
T

,

where M := [λmax(Σe)μmax(A)]/[λmin(Σe)μ
1/2
min(A)] is

the dependence measure constant.

Theorem 2. Suppose that Conditions 1-2 are satisfied, r ≥
r1 and the sample size T � r(N + NP ). With probability
at least 1− exp[−Cr(N +NP ))]− exp(−C

√
T ),

‖Ŵ LR −W 0‖F � M
√

r(N +NP )

T
.

The proofs of Theorems 1 and 2 are provided in the full
version, see Wang et al. (2019). The above two theorems
present the non-asymptotic convergence upper bounds for
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LTR and LR estimators, respectively. Both upper bounds
take a general form of M√

d/T , where M captures the ef-
fect from dependence across xt, and d denotes the number
of parameters in Tucker decomposition or matrix factoriza-
tion.

Next, we present a minimax lower bound for low-Tucker-
rank tensors. The minimax rate is the convergence rate that
cannot be improved and has been widely applied in sample
complexity analysis. Denote by T(r1, r2, r3) the set of ten-
sors with ranks at most (r1, r2, r3).

Theorem 3. Suppose that Condition 2 is satisfied, r1 ≤
N/3, r2 ≤ N/3, r3 ≤ P/3, and 4rk ≤ (r1r2r3)/rk for
k = 1, 2, 3. Then

inf
S

sup
W0∈T(r1,r2,r3)

‖S−W0‖F � M
√

Nr1 +Nr2 + Pr3
T

with probability at least 0.5, where the infimum is taken over
all possible estimator S.

By Theorems 1-3, the upper bound of LTR estimator
matches the minimax lower bound up to some constant, and
the LTR estimator is optimal and more efficient than the LR
estimator. For a training error ε > 0, the sample complex-
ity is T = C(r1r2r3 +Nr1 +Nr2 + Pr3)/ε

2 for the LTR
estimator to have ‖ŴLTR − W0‖F ≤ ε; while the sample
complexity is T � r(N + NP )/ε2 for the LR estimator.
Similarly, the OLS estimator can be shown to have the con-
vergence rate of O(

√
N2P/T ), and its sample complexity

is CN2P/ε2 to achieve a training error ε.
The sample complexity for the linear autoregressive net-

works with different structures is proportional to the cor-
responding model complexity, i.e., sample complexity is
O(Md/ε2). Compared with the OLS estimator, the LR and
LTR estimators benefit from the compact low-dimensional
structure and have smaller sample complexity. Among the
three linear autoregressive networks, the LTR network has
the most compact structure, and hence the smallest sample
complexity.

The sample complexity analysis of the autoregressive net-
works can be extended to the general feed-forward networks
for independent xt by replacing M with the inverse of
signal-to-noise ratio, and explains why the low-rank struc-
ture can enhance the learning efficiency and reduce the sam-
ple complexity.

Tucker Autoregressive Net

This section introduces a compact autoregressive network
by formulating the linear autoregressive network with the
low-Tucker-rank structure (5), and it has a compact multi-
layer CNN architecture. We call it the Tucker AutoRegres-
sive (TAR) net for simplicity.

Network Architecture

Rather than directly constraining the matrix rank or Tucker
ranks of weights in the zero-hidden-layer network, we can
modify the network architecture by adding convolutional

Figure 2: CNN structure of TAR net.

layers and fully connected layers to exploit low-rank struc-
ture. By some algebra, the framework (5) can be rewritten
into

ht = U1G(1)vec(U�
2 XtU3) + b,

where Xt = (yt−1, . . . ,yt−P ). A direct translation of the
low-Tucker-rank structure leads to a multi-layer convolu-
tional network architecture with two convolutional layers
and two fully connected layers; see Figure 2 and Table 1.

To be specific, each column in U2 is a N × 1 kernel and
the first layer outputs r2 1 × P feature maps. Similarly, U3

represents the convolution with kernel size 1 × P and r3
channels. These two convolutional layers work as an en-
coder to extract the r2r3-dimensional representation of the
N × P input Xt for predicting yt. Next, a full connec-
tion from r2r3 predictor features to r1 output features with
weights G(1) is followed. Finally, a fully connected layer
serves as a decoder to N ouputs with weights U1.

The neural network architectures corresponding to the
low-rank estimator Ŵ LR and ordinary least squares estima-
tor without low-dimensional structure Ŵ OLS are the one-
hidden-layer MLP with a bottleneck layer of size r and the
zero-hidden-layer fully connected network, respectively.

The CNN representation in Figure 2 has a compact archi-
tecture with r1r2r3 +Nr1 +Nr2 +Pr3 parameters, which
is the same as that of the Tucker decomposition. Compared
with the benchmark models, i.e., the one-hidden-layer MLP
(MLP-1) and zero-hidden-layer MLP (MLP-0), the intro-
duced low-Tucker-rank structure increases the depth of the
network while reduces the total number of weights. When
Tucker ranks are small, the total number of parameters in
our network is much smaller than those of the benchmark
networks, which are r(N +NP ) and N2P , respectively.

To capture the complicated and non-linear functional
mapping between the prior inputs and future responses,
non-linear activation functions, such as rectified linear unit
(ReLU) or sigmoid function, can be added to each layer in
the compact autoregressive network. Hence, the additional
depth from transforming a low-Tucker-rank single layer to
a multi-layer convolutional structure enables the network to
approximate the target function better. The linear network
without activation in the previous section can be called the
linear TAR net (LTAR).

Separable Convolutional Kernels

Separable convolutions have been extensively studied to re-
place or approximate large convolutional kernels by a series
of smaller kernels. For example, this idea was explored in
multiple iterations of the Inception blocks (Szegedy et al.
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Symbol Feedforward Layer Content and explanation Dimensions No. of parameters

INPUT Xt - design matrix N × P -
C1 Z1 := U�

2 Xt N × 1 convolutions r2 feature maps 1× P Nr2
C2 Z2 := U�

3 Z
�
1 1× P convolutions r2r3 feature maps 1× 1 Pr3

F1 Z3 := G(1)vec(Z�
2 ) full connection response factor loadings r1 × 1 r1r2r3

OUTPUT Z4 := ht = U1Z3 full connection output prediction N × 1 Nr1

Table 1: Specification of CNN structure in TAR net.

2015; 2016; 2017) to decompose a convolutional layer with
a 7× 7 kernel into that with 1× 7 and 7× 1 kernels.

Tensor decomposition is an effective method to obtain
separable kernels. In our TAR net, these two convolutional
layers extract the information from inputs along the column-
wise direction and row-wise direction separately. Compared
with the low-rank matrix structure, the additional decom-
position in the Tucker decomposition along the second and
third modes segregates the full-sized convolutional kernel
into r2r3 pairs of separable kernels.

Two-Lane Network

If no activation function is added, the first two row-wise and
column-wise convolutional layers are exchangeable. How-
ever, exchanging these two layers with nonlinear activation
functions can result in different nonlinear approximation and
physical interpretation.

For the general case where we have no clear preference
on the order of these two layers, we consider a two-lane
network variant, called TAR-2 network, by introducing both
structures into our model in parallel followed by an average
pooling to enhance the flexibility; see Figure 3 in Wang et
al. (2019) for a graphical illustration.

Implementation

Details We implement our framework on PyTorch, and the
Mean Squared Error (MSE) is the target loss function. The
gradient descent method is employed for the optimization
with learning rate and momentum being 0.01 and 0.9, re-
spectively. If the loss function drops by less than 10−8, the
procedure is then deemed to have reached convergence.

Hyperparameter tuning In the TAR net, the sequential
dependence range P and the Tucker ranks ri, are prespec-
ified hyperparameters. Since cross-validation cannot be ap-
plied to sequence modeling, we suggest tuning hyperparam-
eters by grid search and rolling forecasting performance.

Experiments

This section first performs analysis on two synthetic datasets
to verify the sample complexity established in Theorems 1-3
and to demonstrate the capability of TAR nets in nonlinear
functional approximation. Three real datasets are then ana-
lyzed by the TAR-2 and TAR nets, together with their linear
counterparts. For the sake of comparison, some benchmark
networks, including MLP-0, MLP-1, Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM), are
also applied to the dataset.

Numerical Analysis for Sample Complexity

Settings In TAR net or the low-Tucker-rank framework
(5), the hyperparameters, r1, r2 and r3, are of significantly
smaller magnitude than N or P , and are equally set to 2
or 3. As sample complexity is of prime interest rather than
the range of sequential dependence, we let P equal to 3, 5
or 8. For each combination of (r1, r2, r3, P ), we consider
N = 9, 25 and 36, and the sample size T is chosen such that√
N/T = (0.15, 0.25, 0.35, 0.45).

Data generation We first generate a core tensor G ∈
R

r1×r2×r3 with entries being independent standard normal
random variables, and then rescale it such that the largest
singular value of G(1) is 0.9. For each 1 ≤ i ≤ 3, the leading
ri singular vectors of random standard Gaussian matrices
are used to form U i. The weight tensor W0 can thereby be
reconstructed, and it is further rescaled to satisfy Condition
1. We generate 200 sequences with identical W0. The first
500 simulated data points at each sequence are discarded
to alleviate the influence of the initial values. We apply the
MLP-0, MLP-1 and LTAR to the synthetic dataset. The aver-
aged estimation errors for the corresponding OLS, LR, and
LTR estimators are presented in Figure 3.

Results The x-axis in Figure 3 represents the ratio of√
N/T , and the y-axis represents the averaged estimation

error in Frobenius norm. Along each line, as N is set to
be fixed, we obtain different points by readjusting the sam-
ple size T . Roughly speaking, regardless of the models and
parameter settings, estimation error increases with varying
rates as the sample size decreases. The rates for OLS rapidly
become explosive, followed by LR, whereas LTR remains
approximately linear, which is consistent with our findings
at Theorems 1 and 2.

Further observation reveals that the increase in P predom-
inantly accelerates the rates for OLS and LR, but appears to
have an insignificant influence on the estimation error from
LTR.

For the case with P = 8, instability of the estimation
error manifests itself in LR under insufficient sample size,
say when

√
N/T is as large as 0.35. This further provides

the rationale for dimension reduction along sequential order.
When

√
N/T = 0.45, the solution is not unique for both

OLS and LR, and consequently, these points are not shown
in the figure.
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Numerical Analysis for Nonlinear Approximation

Settings The target of this experiment is to compare the
expressiveness of LTAR, TAR and TAR-2 nets. The conjec-
ture is that, regardless of the data generating process, TAR-2
and TAR nets under the same hyperparameter settings as the
LTAR net would have an elevated ability to capture nonlin-
ear features. We set (r1, r2, r3, N, P ) = (2, 2, 2, 25, 3), and
have also tried several other combinations. Similar findings
can be observed, and the results are hence omitted here.

Data generation Two data generating processes are con-
sidered to create sequences with either strictly linear or
highly nonlinear features in the embedding feature space.
We refer to them as L-DGP and NL-DGP, respectively. L-
DGP is achieved by randomly assigning weights to LTAR
layers and producing a recursive sequence with a given ini-
tial input matrix. NL-DGP is attained through imposing a
nonlinear functional transformation to the low-rank hidden
layer of an MLP. In detail, we first transformed a N×P ma-
trix to a r1 × r2 low-rank encoder. Then, we applied a non-
linear mapping f(·) = cos(1/ ‖·‖F) to the encoder, before
going through a fully connected layer to retrieve an output
of size N × 1.

Implementation & Evaluation In this experiment, we
use L-DGP and NL-DGP to separately generate 200 data
sequences, which are fitted by TAR-2, TAR and LTAR nets.
The sequence lengths are chosen to be either 101 or 501. For
each sequence, the last data point is retained as a single test
point, whereas the rest are used in model training. We adopt
three evaluation metrics, namely, the averaged L2 norm be-
tween prediction and true value, the standard Root-Mean-
Square Error (RMSE), and Mean Absolute Error (MAE).
The results are given in Table 2.

Results When the data generating process is linear (L-
DGP), the LTAR net reasonably excels in comparison to the
other two, obtaining the smallest L2-norm, RMSE and MAP.
TAR-2 yields poorer results for a small sample size of 100
due to possible overparametrization. However, its elevated
expressiveness leads it to outperform TAR when T = 500.

For the nonlinear data generating process (NL-DGP), as
we expect, the TAR-2 and TAR nets with nonlinear struc-
ture outperform the LTAR net. In the meanwhile, as the ex-
changeability of latent features holds, the TAR-2 net seems
to suffer from model redundancy and thereby performs
worse than the TAR net.

Real Datasets

Dataset We use the three publicly available datasets.
1. USME dataset: It contains 40 US macroeconomic vari-

ables provided in Koop (2013), including consumption,
production indices, stock market indicators and the inter-
est rates. The data series are taken quarterly from 1959 to
2007 with a total of 194 observed time points.

2. GHG dataset: We retrieve a partial greenhouse gas
(GHG) concentration dataset (Lucas et al. 2015) from
UCI repository containing the time series of GHG tracers.
The observations are gathered from 45 sensors, averaged
to be spaced 12 hours apart with 327 time points.

Figure 3: Experiment on sample complexity. Results are
shown for OLS ( ), LR ( ) and LTR ( ) estimators.
Three different values of N are presented by different mark-
ers: N = 9 (•), N = 25 (�) and N = 36 (+). We set
(r1, r2, r3) = (2, 2, 2) for subplots in the left column and
(3, 3, 3) for subplots in the right column. And upper, middle
and lower panels refer to cases with P = 3, 5 and 9.

3. Traffic dataset: The data record the hourly road occu-
pancy rate (between 0 and 1) in the San Francisco Bay
freeway (Lai et al. 2018) obtained by 30 different sensors
in 2015.
In the preprocessing step, the series were transformed to

be stationary before further standardization; details see the
full version (Wang et al. 2019).

Models for comparison For the sake of comparison, be-
sides the proposed models, TAR-2, TAR and LTAR, we also
consider four other commonly used networks in the litera-
ture with well-tuned hyperparameters. The first two are the
previously mentioned MLP-0 and MLP-1. The remaining
two are RNN and LSTM, which are two traditional sequence
modeling frameworks. RNN implies an autoregressive mov-
ing average framework and can transmit extra useful infor-
mation through the hidden layers. It is hence expected to out-
perform an autoregressive network. LSTM is advantageous
in many sequence learning tasks, but may be more suscep-
tible to small sample size. As a result, RNN and LSTM
with the optimal tuning hyperparameters serve as our bench-
marks.
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DGP T Network L2-norm RMSE MAP

L

100
TAR-2 5.5060 1.1238 0.8865
TAR 5.4289 1.0998 0.8702

LTAR 5.1378 1.0388 0.8265

500
TAR-2 5.1836 1.0493 0.8369
TAR 5.2241 1.0585 0.8436

LTAR 4.9338 0.9972 0.7936

NL

100
TAR-2 5.2731 1.0703 0.8579
TAR 5.2710 1.0712 0.8510

LTAR 5.3161 1.0738 0.8573

500
TAR-2 5.0084 1.0111 0.8062
TAR 5.0036 1.0110 0.8060

LTAR 5.0144 1.0126 0.8087

Table 2: Performance of different networks on fitting L-DGP
and NL-DGP datasets.

Implementation We tune the parameters (P, r1, r2, r3)
for our proposed models. To ensure a fair comparison, the
size of the hidden layer in MLP-1 is set to be P , and we
consider only one hidden layer for RNN and LSTM. The
number of neurons in the hidden layer is treated as a tunable
hyperparameter. The bias terms are added back to the TAR-
2, TAR and LTAR nets for expansion of the model space.

For each network, one-step-ahead forecasting is carried
out recursively. In other words, the trained network predicts
one future step, and immediately includes the new observa-
tion in the training set for the prediction of the next step. The
averaged L2-norm, RMSE and MAP are used as the evalua-
tion criteria.

For the USME dataset, the parameters are chosen as
(P, r1, r2, r3) = (4, 4, 3, 2). The first 104 time points of
each series are used as the first training samples with an
effective sample size of 100, whereas the rolling fore-
cast procedure is applied to the rest 90 test samples. For
GHG dataset, the parameters are set as (P, r1, r2, r3) =
(20, 2, 4, 5) with an effective training sample size of 100 and
testing sample size of 207. For the Traffic dataset, the param-
eters are set as (P, r1, r2, r3) = (30, 2, 6, 8) and we choose
a larger training size of 200 with 70 testing samples.

T-test for significance We adopt a paired two-sample t-
test for the significant difference of L2-norm between TAR-
2 and RNN/LSTM, separately. The hypotheses are H0:
μL2

(TAR-2) = μL2
(RNN/LSTM) against μL2

(TAR-2) >
μL2

(RNN/LSTM). Note that each forecast error is a vector
of RN , and there are n steps of prediction. Consider the L2-
norm for each forecast error, and it then leads to a sequence
of n scalars, which can be assumed to be independent; see
Kuester, Mittnik, and Paolella (2006).

For the USME data, the p-value of the test between TAR-2
and LSTM is 0.031, and between TAR-2 and RNN is 0.203.
For the GHG data, the tests for comparing TAR-2 to both
RNN and LSTM are significant with p-values smaller than
0.01. For the Traffic data, the test between TAR-2 and LSTM
has a p-value close to 0. While for the comparison of TAR-2
and RNN, the p-value is 0.052.

Dataset Network L2-norm RMSE MAE

USME

MLP-0 11.126 1.8867 1.3804
MLP-1 7.8444 1.3462 1.0183
RNN 5.5751 0.9217 0.7064

LSTM 5.8274 0.9816 0.7370
LTAR 5.5257 0.9292 0.6857
TAR 5.4675 0.9104 0.6828

TAR-2 5.4287 0.8958 0.6758

GHG

MLP-0 0.8025 0.1314 0.0927
MLP-1 0.7674 0.1387 0.0850
RNN 0.7420 0.1255 0.0807

LSTM 0.7608 0.1277 0.0852
LTAR 0.8072 0.1546 0.0922
TAR 0.7118 0.1208 0.0758

TAR-2 0.7115 0.1206 0.0758

Traffic

MLP-0 0.8482 0.1224 0.0889
MLP-1 0.8451 0.1391 0.0869
RNN 0.8235 0.1249 0.0802

LSTM 0.8334 0.1227 0.0821
LTAR 1.0125 0.1738 0.1057
TAR 0.7974 0.1181 0.0753

TAR-2 0.7936 0.1182 0.0753

Table 3: Performance comparison on three real datasets.

Results From Table 3, the proposed TAR-2 and TAR nets
rank top two in terms of one-step-ahead rolling forecast per-
formance, exceeding the fine-tuned RNN model with the
size of the hidden layer equal to one. The two-lane network
TAR-2 outperforms the one-lane network TAR emphasizing
its ability to capture non-exchangeable latent features. Ac-
cording to our experiments, the performance of both RNN
and LSTM deteriorates as the dimension of the hidden layer
increases, which indicates that overfitting is a serious issue
for these two predominate sequence modeling techniques.

Conclusion and Discussion

This paper rearranges the weights of an autoregressive net-
work into a tensor, and then makes use of the Tucker decom-
position to introduce a low-dimensional structure. A com-
pact autoregressive network is hence proposed to handle the
sequences with long-range dependence. Its sample complex-
ity is also studied theoretically. The proposed network can
achieve better prediction performance on a macroeconomic
dataset than some state-of-the-art methods including RNN
and LSTM.

For future research, this work can be improved in three
directions. First, our sample complexity analysis is limited
to linear models, and it is desirable to extend the analysis to
networks with nonlinear activation functions. Secondly, the
dilated convolution in WaveNet (Van den Oord et al. 2016a),
can reduce the convolutional kernel size, and hence can effi-
ciently access the long-range historical inputs. This structure
can be incorporated into our framework to further compress
the network. Finally, a deeper autoregressive network can be
constructed to enhance the expressiveness of nonlinearity.
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