
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Repetitive Reprediction Deep Decipher for Semi-Supervised Learning

Guo-Hua Wang, Jianxin Wu∗
National Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China

wangguohua@lamda.nju.edu.cn, wujx2001@nju.edu.cn

Abstract

Most recent semi-supervised deep learning (deep SSL) meth-
ods used a similar paradigm: use network predictions to up-
date pseudo-labels and use pseudo-labels to update network
parameters iteratively. However, they lack theoretical support
and cannot explain why predictions are good candidates for
pseudo-labels. In this paper, we propose a principled end-to-
end framework named deep decipher (D2) for SSL. Within the
D2 framework, we prove that pseudo-labels are related to net-
work predictions by an exponential link function, which gives
a theoretical support for using predictions as pseudo-labels.
Furthermore, we demonstrate that updating pseudo-labels by
network predictions will make them uncertain. To mitigate
this problem, we propose a training strategy called repeti-
tive reprediction (R2). Finally, the proposed R2-D2 method
is tested on the large-scale ImageNet dataset and outperforms
state-of-the-art methods by 5 percentage points.

Introduction
Deep learning has achieved state-of-the-art results on many
visual recognition tasks. However, training these models
often needs large-scale datasets such as ImageNet (Rus-
sakovsky et al. 2015). Nowadays, it is easy to collect im-
ages by search engines, but image annotation is expensive
and time-consuming. Semi-supervised learning (SSL) is a
paradigm to learn a model with a few labeled data and mas-
sive amounts of unlabeled data. With the help of unlabeled
data, the model performance may be improved.

With a supervised loss, unlabeled data can be used in
training by assigning pseudo-labels to them. Many state-
of-the-art methods on semi-supervised deep learning used
pseudo-labels implicitly. Temporal Ensembling (Laine and
Aila 2017) used the moving average of network predictions as
pseudo-labels. Mean Teacher (Tarvainen and Valpola 2017)
and Deep Co-training (Qiao et al. 2018) employed another
network to generate pseudo-labels. However, they produced
or updated pseudo-labels in ad-hoc manners. Although these
methods worked well in practice, there are few theories to
support them. A mystery in deep SSL arises: why can predic-
tions work well as pseudo-labels?

∗J. Wu is the corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we propose an end-to-end framework called
deep decipher (D2). Inspired by (Yi and Wu 2019), we
treat pseudo-labels as variables and update them by back-
propagation, which is also learned from data. The D2 frame-
work specifies a well-defined optimization problem, which
can be properly interpreted as a maximum likelihood esti-
mation over two set of random variables (the network pa-
rameters and the pseudo-labels). With deep decipher, we
prove that there exists an exponential relationship between
pseudo-labels and network predictions, leading to a theoreti-
cal support for using network predictions as pseudo-labels.
Then, we further analyze the D2 framework and prove that
pseudo-labels will become flat (i.e., their entropy is high)
during training and there is an equality constraint bias in
it. To mitigate these problems, we propose a simple but ef-
fective strategy, repetitive reprediction (R2). The improved
D2 framework is named R2-D2 and obtaines state-of-the-art
results on several SSL problems.

Our contributions are as follows.
• We propose D2, a deep learning framework that deciphers

the relationship between predictions and pseudo-labels. D2
updates pseudo-labels by back-propagation. To the best of
our knowledge, D2 is the first deep SSL method that learns
pseudo-labels from data end-to-end.
• Within D2, we prove that pseudo-labels are exponentially

transformed from the predictions. Hence, it is reasonable
for previous works to use network predictions as pseudo-
labels. Meanwhile, many SSL methods can be considered
as special cases of D2 in certain aspects.
• To further boost D2’s performance, we find some short-

comings of D2. In particular, we prove that pseudo-labels
will become flat during the optimization. To mitigate this
problem, we propose a simple but effective remedy, R2.
We tested the R2-D2 method on ImageNet and it outper-
forms state-of-the-arts by a large margin. On small-scale
datasets like CIFAR-10 (Krizhevsky and Hinton 2009),
R2-D2 also produces state-of-the-art results.

Related Works

We first briefly review deep SSL methods and the related
works that inspired this paper.

6170

�����

�

���	�
���

���
�	

�������

�

�� �������

������
�

��

σ

�������
�

��

�����
�

�����

��������
�

��

���
��

�
��

ℒ
�

�����������
�

�
��

ℒ
�

�����

�
��

��

σ

Figure 1: The pipeline of D2. Solid lines and dashed lines represent the forward and back-propagation processes, respectively.

(Lee 2013) is an early work on training deep SSL models
by pseudo-labels, which picks the class with the maximum
predicted probability as pseudo-labels for unlabeled images
and tested only on a samll-scale dataset MNIST (LeCun et al.
1998). Label propagation (Zhu and Ghahramani 2002) can be
seen as a form of pseudo-labels. Based on some metric, label
propagation pushes the label information of each sample to
the near samples. (Weston et al. 2012) applies label propa-
gation to deep learning models. (Iscen et al. 2019) use the
manifold assumption to generate pseudo-labels for unlabeled
data. However, their method is complicated and relies on
other SSL methods to produce state-of-the-art results.

Several recent state-of-the-art deep SSL methods can be
considered as using pseudo-labels implicitly. Temporal en-
sembling (Laine and Aila 2017) proposes making the cur-
rent prediction and the pseudo-labels consistent, where the
pseudo-labels take into account the network predictions over
multiple previous training epochs. Extending this idea, Mean
Teacher (Tarvainen and Valpola 2017) employs a secondary
model, which uses the exponential moving average weights
to generate pseudo-labels. Virtual Adversarial Training (Miy-
ato et al. 2018) uses network predictions as pseudo-labels,
then they want the network predictions under adversarial
perturbation to be consistent with pseudo-labels. Deep Co-
Training (Qiao et al. 2018) employs many networks and uses
one network to generate pseudo-labels for training other net-
works.

We notice that they all use the network predictions as
pseudo-labels but a theory explaining its rationale is miss-
ing. With our D2 framework, we demonstrate that pseudo-
labels will indeed be related to network predictions. That
gives a theoretical support to using network predictions as
pseudo-labels. Moreover, pseudo-labels of previous works
were designed manually and ad-hoc, but our pseudo-labels
are updated by training the end-to-end framework. Many pre-
vious SSL methods can also be considered as special cases
of the D2 framework in certain aspects.

There are some previous works in other fields that inspired
this work. Deep label distribution learning (Gao et al. 2017)
inspires us to use label distributions to encode the pseudo-
labels. (Tanaka et al. 2018) studies the label noise problem.
They find it is possible to update the noisy label to make them

more precise during the training. PENCIL (Yi and Wu 2019)
proposes an end-to-end framework to train the network and
optimize the noisy labels together. Our method is inspired
by PENCIL (Yi and Wu 2019). In addition, inspired by (Liu
et al. 2018), we analyze our algorithm from the gradient
perspective.

The R2-D2 Method

We define the notations first. Column vectors and matrices
are denoted in bold (e.g., x,X). When x ∈ R

d, xi is the i-th
element of vector x, i ∈ [d], where [d] := {1, 2, . . . , d}. wi

denote the i-th column of matrix W ∈ R
d×l, i ∈ [l]. And,

we assume the dataset has N classes.

Deep decipher

Figure 1 shows the D2 pipeline, which is inspired by (Yi
and Wu 2019). Given an input image x, D2 can employ any
backbone network to generate feature f ∈ R

D. Then, the
linear activation ŷ ∈ R

N is computed as ŷ = WTf , where
W ∈ R

D×N are weights of the FC layer and we omit the
bias term for simplicity. The softmax function is denoted
as σ(y) : RN → R

N and σ(y)i =
exp(yi)∑N

j=1 exp(yj)
. Then, the

prediction p̂ is calculated as p̂ = σ(ŷ) , hence

p̂n = σ(ŷ)n = σ(WTf)n =
exp(wT

nf)∑N
i=1 exp(w

T
i f)

. (1)

We define ỹ as the pseudo logit which is an unconstrained
variable and can be updated by back-propagation. Then, the
pseudo label is calculated as p̃ = σ(ỹ) and it is a probability
distribution.

In the training, the D2 framework is initialized as follows.
Firstly, we train the backbone network using only labeled ex-
amples, and use this trained network as the backbone network
and FC in Figure 1. For labeled examples, ỹ is initialized by
Ky, in which K = 10 and y is the groundtruth label in the
one-hot encoding. Note that ỹ of labeled examples will not be
updated during D2 training. For unlabeled examples, we use
the trained network to predict ỹ. That means we use the FC
layer activation ŷ as the initial value of ỹ. The process of ini-
tializing pseudo-labels is called predicting pseudo-labels in

6171

this paper. In the testing, we use the backbone network with
FC layer to make predictions and the branch of pseudo-labels
is removed.

Our loss function consists of Lc and Le. Lc is the classifi-
cation loss and defined as KL(p̂||p̃) as in (Yi and Wu 2019),
which is different from the classic KL-loss KL(p̃||p̂). Lc

is used to make the network predictions match the pseudo-
labels. Le is the entropy loss, defined as −∑N

j=1 p̂j log(p̂j).
Minimizing the entropy of the network prediction can encour-
age the network to peak at only one category. So our loss
function is defined as

L = αLc + βLe

= α

N∑
j=1

p̂j [log(p̂j)− log(p̃j)]− β

N∑
j=1

p̂j log(p̂j) , (2)

where α and β are two hyperparameters. Although there are
two hyperparameters in D2, we always set α = 0.1 and
β = 0.03 in all our experiments.

Then, we show that we can decipher the relationship be-
tween pseudo-labels and network predictions in D2, as shown
by Theorem 1.
Theorem 1 Suppose D2 is trained by SGD with the loss
function L = αLc + βLe. Let p̂ denote the prediction by
the network for one example and p̂n is the largest value
in p̂. After the optimization algorithm converges, we have
p̃n → exp(−L

α) (p̂n)
1− β

α .
Proof. First, the loss function can be rewritten by

L = (α− β)
N∑
j=1

σ
(
WTf

)
j
log

(
σ
(
WTf

)
j

)

− α

N∑
j=1

σ
(
WTf

)
j
log(p̃j) . (3)

It is easy to see

∂σ
(
WTf

)
j

∂wn
= I(j = n)σ

(
WTf

)
j
f

− σ
(
WTf

)
j
σ
(
WTf

)
n
f . (4)

Now we can compute the gradient of L with respect to wn:

∂L
∂wn

= [(α− β) log (p̂n)− α log(p̃n)− L] p̂nf . (5)

During training, we expect the optimization algorithm can
converge and finally ∂L

∂wn
→ 0. Because f will not be 0, we

conclude that [(α− β) log (p̂n)− α log(p̃n)− L] p̂n → 0.
Because

∑N
i=1 p̂i = 1, consider the fact that p̂n is the largest

value in {p̂1, p̂1, . . . , p̂N}, then p̂n �→ 0 at the end of training.
So we have [(α− β) log (p̂n)− α log(p̃n)− L]→ 0, which

states that p̃n → exp(−L
α) (p̂n)

1− β
α . �

Theorem 1 tells us p̃n converges to exp(−L
α) (p̂n)

1− β
α

during the optimization. And at last, we expect that p̃n =

exp(−L
α) (p̂n)

1− β
α , in which n is the class predicted by the

network.

In other words, we have deciphered that there is an expo-
nential link between pseudo-labels and predictions. From
p̃n → exp(−L

α) (p̂n)
1− β

α , we notice that p̃n is approxi-

mately proportional to p̂
1− β

α
n . That gives a theoretical support

to use network predictions as pseudo-labels. And, it is re-
quired that 1 − β

α > 0 to make pseudo-labels and network
predictions consistent. We must set α > β. In our experi-
ments, if we set α < β, the training will indeed fail miserably.

Next, we analyze how ỹ is updated in D2. With the loss
function L, the gradients of L with respect to ỹn is

∂L
∂ỹn

= −ασ (ŷ)n + ασ (ỹ)n . (6)

By gradient descent, the pseudo logit ỹ is updated by

ỹ← ỹ − λ
∂L
∂ỹ

= ỹ − λασ (ỹ) + λασ (ŷ) , (7)

where λ is the learning rate for updating ỹ. The reason we use
one more hyperparameter λ rather than the overall learning
rate is that ∂L

∂ỹ = −ασ (ŷ) + ασ (ỹ) is smaller than ỹ (in
part due to the sigmoid transform) and the overall learning
rate is too small to update the pseudo logit. We set λ = 4000
in all our experiments.

The updating formulas in many previous works can be
considered as special cases of that of D2. In Temporal Ensem-
bling (Laine and Aila 2017), the pseudo-labels p̃ is a moving
average of the network predictions p̂ during training. The
updating formula is P← αP+ (1− α)p̂. To correct for the
startup bias, the p̃ is needed to be divided by factor (1− αt),
where t is the number of epochs. So the updating formula of p̃
is p̃← P/(1−αt). In Mean Teacher (Tarvainen and Valpola
2017), the p̃ is the prediction of a teacher model which uses
the exponential moving average weights of the student model.
(Tanaka et al. 2018) proposed using the running average of
the network predictions to estimate the groundtruth of the
noisy label. However, their updating formula were designed
manually and ad-hoc. In contrast, we treat pseudo-labels as
random variables like the network parameters. These vari-
ables are learned by minimizing a well-defined loss function
(cf. equation 2). From a probabilistic perspective, it is well
known that minimizing the KL loss is equivalent to maxi-
mum likelihood estimation, in which the backbone network’s
architecture defines the estimation’s functional space while
SGD optimizes over these random variables (both the net-
work parameters and the pseudo-labels). We do not need to
manually specify how the pseudo-labels are generated. This
process is natural and principled.

A toy example

Now, we use a toy example to explain how the D2 framework
works intuitively. Inspired by (Liu et al. 2018), we use the
LeNet (LeCun et al. 1998) as backbone structure and add two
FC layers, in which the first FC layer learns a 2-D feature
and the second FC layer projects the feature onto the class
space. The network was trained on MNIST. Note that MNIST
has 50000 images for training. We only used 1000 images
as labeled images to train the network. Figure 2a depicts the

6172

(a) (b) (c) (d)

Figure 2: Feature distribution on MNIST. First, LeNet was trained by labeled data. (a) shows the the feature distribution of
labeled images. Points with the same color belong to the same class. (b) shows the feature distribution of both labeled and
unlabeled images. Then, we used LeNet as the backbone network and trained the D2 framework. After training, (c) and (d) show
the feature distribution of labeled images and all images, respectively. This figure needs to be viewed in color.

2-D feature distribution of these 1000 images. We observe
that features belonging to the same class will cluster together.
Figure 2b shows the feature distribution of both these 1000
labeled and other 49000 unlabeled images. Although the
network did not train on the unlabeled images, features be-
longing to the same class are still roughly clustered.

Pseudo-labels in our D2 framework are probability distri-
butions and initialized by network predictions. As Figure 2b
shows, features near the cluster center will have confident
pseudo-labels and can be learned safely. However, features
at the boundaries between clusters will have a pseudo-label
whose corresponding distribution among different classes is
flat rather than sharp. By training D2, the network will learn
confident pseudo-labels first. Then it is expected that uncer-
tain pseudo-labels will become more and more precise and
confident by optimization. At last, each cluster will become
more compact and the boundaries between different classes’
features will become clear. Figure 2d depicts the feature dis-
tribution of all images after D2 training. Because the same
class features of unlabeled images get closer, the same class
features of labeled images will also get closer (cf. Figure 2c).
That is how unlabeled images help the training in our D2
framework.

Repetitive reprediction

Although D2 has worked well in practice (cf. Table 1 column
a), there are still some shortcomings in it. We will discuss
two major ones. To mitigate these problems and further boost
the performance, we propose a simple but effective strategy,
repetitive reprediction (R2), to improve the D2 framework.

First, we expect pseudo-labels can become more confident
along with D2’s learning process. Unfortunately, we observed
that more and more pseudo-labels become flat during training.
Below, we prove Theorem 2 to explain why this adverse effect
happens.

Theorem 2 Suppose D2 is trained by SGD with the loss
function L = αLc + βLe. If p̃n = exp(−L

α) (p̂n)
1− β

α , we
must have p̃n ≤ p̂n.

Proof. First, according to the loss function we defined, we

have

L = α

N∑
j=1

p̂j [log(p̂j)− log(p̃j)]− β

N∑
j=1

p̂j log(p̂j) (8)

≥ −β
N∑
j=1

p̂j log(p̂j) ≥ −β
N∑
j=1

p̂j log(p̂n) (9)

= −β log(p̂n) , (10)

where p̂n is the largest value in {p̂1, p̂2, . . . , p̂N}. Then, from

p̃n = exp
(−L

α

)
p̂
1− β

α
n and L ≥ −β log(p̂n), we have

p̃n = exp

(
−L
α

)
p̂
1− β

α
n ≤ exp

(
β log(p̂n)

α

)
p̂
1− β

α
n = p̂n .

(11)
�

From Theorem 1, we get p̃n → exp(−L
α) (p̂n)

1− β
α , where

p̂ gets the largest value at p̂n. And Theorem 2 tells us if
p̃n = exp(−L

α) (p̂n)
1− β

α then p̃n will be smaller than p̂n.
Because p̃ and p̂ are probability distributions, if p̃ and p̂ get
their largest value at n, p̃ is more flat than p̂ when p̃n ≤ p̂n.
That is, along with the training of D2, there is a tendency that
pseudo-labels will be more flat than the network predictions.

Second, we find an unsolicited bias in the D2 framework.
From the updating formula, we can get

N∑
i=1

ỹi ←
N∑
i=1

ỹi − λα

N∑
i=1

σ (ỹ)i + λα

N∑
i=1

σ (ŷ)i (12)

=

N∑
i=1

ỹi − λα+ λα =

N∑
i=1

ỹi . (13)

That is,
∑N

i=1 ỹi will not change after initialization. Although
we define ỹ as the variable which is not constrained, the
softmax function and SGD set an equality constraint for it.
On the other hand, in practice,

∑N
i=1 ŷi become more and

more concentrated. Later, we will use an ablation study to
demonstrate this bias is harmful.

We propose a repetitive reprediction (R2) strategy to over-
come these difficulties, which repeatedly perform repredic-

6173

tions (i.e., using the prediction ỹ to re-initialize the pseudo-
labels ỹ several times) during training D2. The benefits of
R2 are two-fold. First, we want to make pseudo-labels confi-
dent. According to our analysis, the network predictions are
sharper than pseudo-labels when the algorithm converges. So
repredicting pseudo-labels can make them sharper. Second,∑N

i=1 ỹi will not change during D2 training. Reprediction
can reduce the impact of this bias. Furthermore, the vali-
dation accuracy often increase during training. A repeated
reprediction can make pseudo-labels more accurate than that
of the last reprediction.

Apart from the repredictions, we also reduce the learning
rate to boost the performance. If the D2 framework is trained
by a fixed learning rate as in (Yi and Wu 2019), the loss L
did not descend in experiments. Reducing the learning rate
can make the loss descend. We can get some benefits from a
lower loss. On one hand, Lc is the KL divergence between
pseudo-labels and the network predictions. Minimizing this
term makes pseudo-labels as sharp as the network predictions.
On the other hand, minimizing Le can decrease the entropy
of network predictions. So when it comes to next reprediction,
pseudo-labels will be more confident according to sharper
predictions.

Finally, repredicting pseudo-labels frequently is harmful
for performance. By using the R2 strategy every epoch, the
network predictions and pseudo-labels are always the same
and D2 cannot optimize pseudo-labels anymore. In CIFAR-
10 experiments, we repredict pseudo-labels every 75 epochs
and reduce the learning rate after each reprediction. Using
the R2 strategy can make pseudo-labels more confident at the
end of training.

The overall R2-D2 algorithm

Now we propose the overall R2-D2 algorithm. The training
can be divided into three stages. In the first stage, we only
use labeled images to train the backbone network with cross
entropy loss as in common network training. In the second
stage, we use the backbone network trained in the first stage to
predict pseudo-labels for unlabeled images. Then we use D2
to train the network and optimize pseudo-labels together. It is
expected that this stage can boost the network performance
and make pseudo-labels more precise. But according to our
analysis, it is not enough to train D2 by only one stage. With
the R2 strategy, D2 will be repredicted and trained for several
times. In the third stage, the backbone network is finetuned
by all images whose labels come from the second stage. For
unlabeled images, we pick the class which has the maximum
value in pseudo-labels and use the cross entropy loss to train
the network. And pseudo-labels are not updated anymore.
For labeled images, we use their groundtruth labels.

In general, R2-D2 is a simple method. It requires only
one single network (versus two in Mean Teacher and the loss
function consists of two terms (versus three in Mean Teacher).
The training processes in different stages are identical (share
the same code), just need to change the value of two switch
variables.

Experiments

In this section, we use four datasets to evaluate our al-
gorithm: ImageNet (Russakovsky et al. 2015), CIFAR-
100 (Krizhevsky and Hinton 2009), CIFAR-10 (Krizhevsky
and Hinton 2009), SVHN (Netzer et al. 2011). We first use
an ablation study to investigate the impact of the R2 strategy.
We then report the results on these datasets to compare with
state-of-the-arts. All experiments were implemented using
the PyTorch framework and run on a computer with TITAN
Xp GPU.

Implementation details

Note that we trained the network using stochastic gradient
descent with Nesterov momentum 0.9 in all experiments. We
set α = 0.1, β = 0.03 and λ = 4000 on all datasets, which
shows the robustness of our method to these hyperparameters.
Other hyperparameters (e.g., batch size, learning rate, and
weight decay) were set according to different datasets.

ImageNet is a large-scale dataset with natural color im-
ages from 1000 categories. Each category typically has 1300
images for training and 50 for evaluation. Following the prior
work (Qiao et al. 2018; Sajjadi, Javanmardi, and Tasdizen
2016; Pu et al. 2016; Tarvainen and Valpola 2017), we uni-
formly choose 10% data from training images as labeled data.
That means there are 128 labeled data for each category. The
rest of training images are considered as unlabeled data. We
test our model on the validation set. The backbone network
is ResNet-18 (He et al. 2016).

CIFAR-100 contains 32 × 32 natural images from 100
categories. There are 50000 training images and 10000 test-
ing images in CIFAR-100. Following (Laine and Aila 2017;
Qiao et al. 2018; Iscen et al. 2019), we use 10000 images
(100 per class) as labeled data and the rest 40000 as unla-
beled data. We report the error rates on the testing images.
The backbone network is ConvLarge (Laine and Aila 2017).

CIFAR-10 contains 32× 32 natural images from 10 cate-
gories. Following (Laine and Aila 2017; Miyato et al. 2018;
Tarvainen and Valpola 2017; Qiao et al. 2018; Robert, Thome,
and Cord 2018), we use 4000 images (400 per class) from
50000 training images as labeled data and the rest images as
unlabeled data. We report the error rates on the full 10000 test-
ing images. The backbone network is Shake-Shake (Gastaldi
2017).

SVHN consists of 32×32 house number images belonging
to 10 classes. The category of each image is the centermost
digit. There are 73257 training images and 26032 testing
images in SVHN. Following (Laine and Aila 2017; Tarvainen
and Valpola 2017; Miyato et al. 2018; Qiao et al. 2018), we
use 1000 images (100 per class) as labeled data and the
rest 72257 training images as unlabeled data. The backbone
network is ConvLarge (Laine and Aila 2017).

Ablation studies

Now we validate our framework by an ablation study on
CIFAR-10 with the Shake-Shake backbone and 4000 labeled
images. All experiments used the same data splits and ran
once. And they all used the first stage to initialize D2 and
the third stage to finetune the network. Table 1 presents the

6174

Table 1: Ablation studies when using different strategies to
train our end-to-end framework.

a b c d e

The 2nd stage � � � � �
Repeat the 2nd stage � � � �

Reprediction � �
Reducing LR � �

Error rates (%) 6.71 6.37 6.23 5.94 5.78

Table 2: Ablation studies when using different α to train our
end-to-end framework. (β = 0.03)

α 0.1 0.2 0.3 0.4 0.5

Error rates (%) 5.78 5.44 5.81 5.90 6.11

results and the error rates are produced by the last epoch
of the third stage. Different columns denote using different
strategies to train D2 in the second stage. First, without R2
(column a), the error rate of a basic D2 learning is 6.71%,
which is already competitive with state-of-the-arts. Next, we
repeated the second stage without reprediction or reducing
learning rate (column b). That means the network is trained
by the first stage, the second stage, repeat the second stage,
and the third stage. This network achieved a 6.37% error rate,
which demonstrates training D2 for more epochs can boost
performance and the network will not overfit easily. Repeat-
ing the second stage with reprediction (column c) could make
the error rate even lower, to 6.23%. But, without reducing the
learning rate, L did not decrease. On the other hand, repeat-
ing the second stage and reducing the learning rate (column
d) can get better results (5.94%). However, only reducing
the learning rate cannot remove the impact of the equality
constraint bias. At last, applying both strategies (column e)
improved the results by a large margin to 5.78%.

Table 2 presents the results with different α. β is 0.03 in
all experiments. We find setting α = 0.2 will achieve a better
performance and a large α may degrade the performance.
Table 3 shows the results with different β when setting α =
0.1. Compared with α, our method is robust to β. The highest
error rate is 5.83% and the lowest error rate is 5.62%. There
is only a roughly 0.2% difference between them. Overall,
R2-D2 is robust to these hyperparameters. And when apply
R2-D2, we suggest that α = 0.1, β = 0.03 is a safe starting
point to tune these hyperparameters. All experiments in the
rest of our paper used α = 0.1, β = 0.03. Please note that
we did not carefully tune these hyperparameters. Error rates
of R2-D2 may be lower than those reported in this paper if
we tune them carefully.

Table 3: Ablation studies when using different β to train our
end-to-end framework. (α = 0.1)

β 0.01 0.02 0.03 0.04 0.05

Error rates (%) 5.62 5.75 5.78 5.83 5.76

Table 4: Ablation studies when using different Lc to train our
end-to-end framework. (α = 0.1, β = 0.03)

Lc KL(p̂||p̃) KL(p̃||p̂) ‖p̃− p̂‖22
Error rates (%) 5.78 8.06 6.35

Table 4 shows the results with different Lc. Note that our
loss function is defined as L = αLc+βLe. The loss function
determines how the network parameters and pseudo-labels up-
date. That means different Lc result in different updating for-
mulas of pseudo-labels. The default Lc is KL(p̂||p̃) and the
updating formula is Equation 7. When set Lc = KL(p̃||p̂),
the gradients of L with respect to ỹn is

∂L
∂ỹn

= αp̃n[log p̃n − log p̂n −
N∑

k=1

p̃k(log p̃k − log p̂k)] ,

(14)
where p̂ = σ(ŷ) and p̃ = σ(ỹ). With Lc = ‖p̃ − p̂‖22, the
gradients of L with respect to ỹn is

∂L
∂ỹn

= 2αp̃n[p̃n − p̂n −
N∑

k=1

p̃k(p̃k − p̂k)] . (15)

The experimental results demonstrates superior performance
of R2-D2 with Lc = KL(p̂||p̃). It obtains 2.28% lower
error rate than KL(p̃||p̂) and 0.57% lower error rate than
‖p̃− p̂‖22.

Results on ImageNet

Table 5 shows our results on ImageNet with 10% labeled
samples. The setup followed that in (Qiao et al. 2018). The
image size in training and testing is 224× 224. For the fair-
ness of comparisons, the error rate is from single model
without ensembling. We use the result of the last epoch. Our
experiment is repeated three times with different random sub-
sets of labeled training samples. The Top-1 error rates are
41.64, 41.35, and 41.65, respectively. The Top-5 error rates
are 19.53, 19.60, and 19.44, respectively. R2-D2 achieves sig-
nificantly lower error rates than Stochastic Transformations
(Sajjadi, Javanmardi, and Tasdizen 2016) and VAE (Pu et al.
2016), albeit they used the larger input size 256× 256. With
the same backbone and input size, R2-D2 obtains roughly
5% lower Top-1 error rate than that of DCT (Qiao et al.
2018) and 7.5% lower Top-1 error rate than that of Mean
Teacher (Tarvainen and Valpola 2017). R2-D2 outperforms
the previous state-of-the-arts by a large margin. The perfor-
mances of Mean Teacher (Tarvainen and Valpola 2017) with
ResNet-18 (He et al. 2016) is quoted from (Qiao et al. 2018).

Results on CIFAR-100

Table 6 presents experimental results on CIFAR-100 with
10000 labeled samples. All methods used ConvLarge for
fairness of comparisons and did not use ensembling. The
error rate of R2-D2 is the average error rate of the last epoch
over five random data splits. The results of 100% Super-
vised is quoted from (Laine and Aila 2017). Using 10000

6175

Table 5: Error rates (%) on the validation set of ImageNet benchmark with 10% images labeled. “-” means that the original
papers did not report the corresponding error rates.

Method Backbone #Param Top-1 Top-5

Supervised 100% Supervised ResNet-18 11.6M 30.43 10.76
10% Supervised ResNet-18 11.6M 52.23 27.54

Semi-supervised

Stochastic Transformations AlexNet 61.1M - 39.84
VAE with 10% Supervised Customized 30.6M 51.59 35.24
Mean Teacher ResNet-18 11.6M 49.07 23.59
Dual-View Deep Co-Training ResNet-18 11.6M 46.50 22.73
R2-D2 ResNet-18 11.6M 41.55 19.52

Table 6: Error rates (%) on CIFAR-100 benchmark with 10000 images labeled.

Method Backbone Error rates (%)

Supervised 100% Supervised ConvLarge 26.42± 0.17
Using 10000 labeled images only ConvLarge 38.36± 0.27

Semi-supervised

Temporal Ensembling ConvLarge 38.65± 0.51
LP ConvLarge 38.43± 1.88
Mean Teacher ConvLarge 36.08± 0.51
LP + Mean Teacher ConvLarge 35.92± 0.47
DCT ConvLarge 34.63± 0.14
R2-D2 ConvLarge 32.87± 0.51

Table 7: Error rates (%) on CIFAR-10 benchmark with 4000
images labeled.

Method Backbone Error rates (%)

100% Supervised Shake-Shake 2.86
Only 4000 labeled images Shake-Shake 14.90± 0.28

Mean Teacher ConvLarge 12.31± 0.28
Temporal Ensembling ConvLarge 12.16± 0.24
VAT+EntMin ConvLarge 10.55± 0.05
DCT with 8 Views ConvLarge 8.35± 0.06
Mean Teacher Shake-Shake 6.28± 0.15
HybridNet Shake-Shake 6.09
R2-D2 Shake-Shake 5.72± 0.06

labeled images achieved 38.36% error rates in our experi-
ments. With unlabeled images, R2-D2 produced a 32.87%
error rate, which is lower than others (e.g., Temporal En-
sembling, LP (Iscen et al. 2019), Mean Teacher, LP + Mean
Teacher (Iscen et al. 2019), and DCT). The performances of
Mean Teacher (Tarvainen and Valpola 2017) is quoted from
(Iscen et al. 2019).

Results on CIFAR-10

We evaluated the performance of R2-D2 on CIFAR-10 with
4000 labeled samples. Table 7 presents the results. Follow-
ing (Tarvainen and Valpola 2017; Robert, Thome, and Cord
2018), we used the Shake-Shake network (Gastaldi 2017) as
the backbone network. Overall, using Shake-Shake backbone
network can achieves lower error rates than using ConvLarge.
Our experiment was repeated five times with different ran-

Table 8: Error rates (%) on SVHN benchmark with 1000
images labeled.

Method Backbone Error rates (%)

100% Supervised ConvLarge 2.88± 0.03
Only 1000 labeled images ConvLarge 11.27± 0.85

Temporal Ensembling ConvLarge 4.42± 0.16
VAdD (KL) ConvLarge 4.16± 0.08
Mean Teacher ConvLarge 3.95± 0.19
VAT+EntMin ConvLarge 3.86± 0.11
VAdD (KL) + VAT ConvLarge 3.55± 0.05
DCT with 8 Views ConvLarge 3.29± 0.03
R2-D2 ConvLarge 3.64± 0.20

dom subsets of labeled training samples. We used the test
error rates of the last epoch. After the first stage, the backbone
network produced the error rates 14.90%, which is our base-
line using 4000 labeled samples. With the help of unlabeled
images, R2-D2 obtains an error rate of 5.72%.Compared
with Mean Teacher (Tarvainen and Valpola 2017) and Hy-
bridNet (Robert, Thome, and Cord 2018), R2-D2 achieves
lower error rate and produces state-of-the-art results.

Results on SVHN

We tested R2-D2 on SVHN with 1000 labeled samples.
The results are shown in Table 8. Following previous
works (Laine and Aila 2017; Tarvainen and Valpola 2017;
Miyato et al. 2018; Qiao et al. 2018), we used the ConvLarge
network as the backbone network. The result we report is av-
erage error rate of the last epoch over five random data splits.

6176

On this task, the gap between 100% supervised and many
SSL methods (e.g., VAT+EntMin (Miyato et al. 2018), VAdD
(KL)+VAT (Park et al. 2018), Deep Co-Training (Qiao et al.
2018), and R2-D2) is less than 1%. Only Deep Co-Training
with 8 Views (Qiao et al. 2018) and VAdD (KL)+VAT slightly
outperform R2-D2. Compared with other methods (e.g., Tem-
poral Ensembling, Mean Teacher, and VAT, R2-D2 produces
a lower error rate. Note that on the large-scale ImageNet,
R2-D2 significantly outperformed Deep Co-Training. VAdD
have not be evaluated on ImageNet in their paper.

Conclusion

In this paper, we proposed R2-D2, a method for semi-
supervised deep learning. D2 uses label probability distri-
butions as pseudo-labels for unlabeled images and optimizes
them during training. Unlike previous SSL methods, D2 is an
end-to-end framework, which is independent of the backbone
network and can be trained by back-propagation. Based on
D2, we give a theoretical support for using network predic-
tions as pseudo-labels. However, pseudo-labels will become
flat during training. We analyzed this problem both theoret-
ically and experimentally, and proposed the R2 remedy for
it. At last, we tested R2-D2 on different datasets. The experi-
ments demonstrated superior performance of our proposed
methods. On large-scale dataset ImageNet, R2-D2 achieved
about 5% lower error rates than that of previous state-of-
the-art. In the future, we will explore the combination of
unsupervised feature learning and semi-supervised learning.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (61772256, 61921006).

References

Gao, B.-B.; Xing, C.; Xie, C.-W.; Wu, J.; and Geng, X. 2017. Deep
label distribution learning with label ambiguity. IEEE Transactions
on Image Processing 26(6):2825–2838.
Gastaldi, X. 2017. Shake-shake regularization. arXiv preprint
arXiv:1705.07485.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 770–778.
Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label propa-
gation for deep semi-supervised learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 5070–5079.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple layers of
features from tiny images. Technical report, University of Toronto.
Laine, S., and Aila, T. 2017. Temporal ensembling for semi-
supervised learning. In The International Conference on Learning
Representations (ICLR), 1–13.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86(11):2278–2324.
Lee, D.-H. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In Workshop
on Challenges in Representation Learning, ICML, volume 3, 2.
Liu, Y.; Song, G.; Shao, J.; Jin, X.; and Wang, X. 2018. Transductive
centroid projection for semi-supervised large-scale recognition. In

The European Conference on Computer Vision (ECCV), volume
11209 of LNCS. Springer. 72–89.
Miyato, T.; Maeda, S.-i.; Ishii, S.; and Koyama, M. 2018. Virtual
adversarial training: a regularization method for supervised and
semi-supervised learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence 1979–1993.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng, A. Y.
2011. Reading digits in natural images with unsupervised feature
learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning.
Park, S.; Park, J.; Shin, S.-J.; and Moon, I.-C. 2018. Adversarial
dropout for supervised and semi-supervised learning. In Thirty-
Second AAAI Conference on Artificial Intelligence, 3917–3924.
Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; and Carin,
L. 2016. Variational autoencoder for deep learning of images,
labels and captions. In Advances in Neural Information Processing
Systems 29, 2352–2360.
Qiao, S.; Shen, W.; Zhang, Z.; Wang, B.; and Yuille, A. 2018. Deep
co-training for semi-supervised image recognition. In The European
Conference on Computer Vision (ECCV), volume 11219 of LNCS.
Springer. 142–159.
Robert, T.; Thome, N.; and Cord, M. 2018. HybridNet: Classifica-
tion and reconstruction cooperation for semi-supervised learning.
In The European Conference on Computer Vision (ECCV), volume
11211 of LNCS. Springer. 158–175.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; and
Fei-Fei, L. 2015. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision 115(3):211–252.
Sajjadi, M.; Javanmardi, M.; and Tasdizen, T. 2016. Regularization
with stochastic transformations and perturbations for deep semi-
supervised learning. In Advances in Neural Information Processing
Systems 29, 1163–1171.
Tanaka, D.; Ikami, D.; Yamasaki, T.; and Aizawa, K. 2018. Joint
optimization framework for learning with noisy labels. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
5552–5560.
Tarvainen, A., and Valpola, H. 2017. Mean teachers are better
role models: Weight-averaged consistency targets improve semi-
supervised deep learning results. In Advances in Neural Information
Processing Systems 30, 1195–1204.
Weston, J.; Ratle, F.; Mobahi, H.; and Collobert, R. 2012. Deep
learning via semi-supervised embedding. In Montavon, G.; Orr,
G. B.; and Müller, K.-R., eds., Neural Networks: Tricks of the Trade:
Second Edition. Springer. 639–655.
Yi, K., and Wu, J. 2019. Probabilistic end-to-end noise correction
for learning with noisy labels. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 7017–7025.
Zhu, X., and Ghahramani, Z. 2002. Learning from labeled and
unlabeled data with label propagation. Technical Report CMU-
CALD-02-107, Carnegie Mellon University.

6177

