
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

M-NAS: Meta Neural Architecture Search

Jiaxing Wang,1,2∗ Jiaxiang Wu,3 Haoli Bai,4 Jian Cheng1,2,5†
1NLPR, Institute of Automation, Chinese Academy of Sciences,

2University of Chinese Academy of Sciences,
3Tencent AI Lab, 4The Chinese University of Hong Kong,

5Center for Excellence in Brain Science and Intelligence Technology, CAS
{jiaxing.wang, jcheng}@nlpr.ia.ac.cn, jonathanwu@tencent.com, hlbai@cse.cuhk.edu.hk

Abstract

Neural Architecture Search (NAS) has recently outperformed
hand-crafted networks in various areas. However, most preva-
lent NAS methods only focus on a pre-defined task. For a pre-
viously unseen task, the architecture is either searched from
scratch, which is inefficient, or transferred from the one ob-
tained on some other task, which might be sub-optimal. In
this paper, we investigate a previously unexplored problem:
whether a universal NAS method exists, such that task-aware
architectures can be effectively generated? Towards this prob-
lem, we propose Meta Neural Architecture Search (M-NAS).
To obtain task-specific architectures, M-NAS adopts a task-
aware architecture controller for child model generation.
Since optimal weights for different tasks and architectures
span diversely, we resort to meta-learning, and learn meta-
weights that efficiently adapt to a new task on the correspond-
ing architecture with only several gradient descent steps.
Experimental results demonstrate the superiority of M-NAS
against a number of competitive baselines on both toy regres-
sion and few shot classification problems.

Introduction

Neural architecture search (NAS) has made it possible to au-
tomatically find optimal deep neural network architectures,
which conventionally requires hand-crafted heuristics, do-
main expertise, and repetitive trials. Existing studies show
that NAS can better explore the large design space and the
architectures found can outperform human-designed com-
petitors in image classification, language modeling (Zoph
and Le 2016; Pham et al. 2018; Liu, Simonyan, and Yang
2018), object detection (Zoph et al. 2018) and semantic seg-
mentation (Chen et al. 2018; Liu et al. 2019).

Despite the success, most prevalent NAS methods can
only enumerate the search space for a pre-defined task. How-
ever, in reality, heterogeneous tasks of various kinds need
diverse network architectures, and it is rarely investigated
whether a universal NAS method can be found to cope with
the various properties of these tasks, and generate task-aware

∗This work is done when Jiaxing Wang works as an intern in
Tencent AI Lab

†Corresponding Author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural architectures. Nevertheless, it is non-trivial to es-
tablish such a universal neural architecture search method,
which is challenged by the following two issues:

1) How can we find an architecture controller, such
that task-aware candidate models can be effectively gener-
ated? Prevalent NAS methods utilize Recurrent Neural Net-
works (RNNs) (Zoph and Le 2016; Pham et al. 2018), ran-
dom variables (Bender et al. 2018) or trainable architecture
parameters (Liu, Simonyan, and Yang 2018) as network con-
trollers to generate the child models. However, no external
information about tasks is considered (Elsken, Metzen, and
Hutter 2019), making it unable to generate task-aware child
models. The design of discriminative controller to different
tasks is still left unexplored.

2) How can we efficiently estimate optimal weights asso-
ciated with a candidate architecture, so that the child model
can be reliably evaluated? Training the model to exact con-
vergence (Zoph and Le 2016) incurs unaffordable computa-
tional costs. Previously NAS methods only focus on a single
fixed task, and adopt parameter sharing (Pham et al. 2018;
Liu, Simonyan, and Yang 2018; Bender et al. 2018) to re-
duce the computational cost of estimating optimal weights
associated with different architectures. However, when there
are different tasks, parameter sharing deteriorates the model
capacity, as the assumption that the same parameter value is
shared across different tasks could be too strong. Therefore,
it is desirable to develop a novel weight estimation scheme
that can efficiently estimate the optimal weights of the can-
didate architecture on a new task.

To address the above issues, we propose meta neural ar-
chitecture search (M-NAS). Specifically, a task-conditional
controller is developed, which embeds a task and uses the
task representation to generates task-aware candidate archi-
tectures. To efficiently estimate optimal weights of candi-
date architectures on different tasks, we resort to model-
agnostic meta-learning (MAML) (Finn, Abbeel, and Levine
2017), which learns meta-weights as shared initialization for
all the tasks from where the model can adapt to new tasks
with a few gradient descent steps. By maintaining meta-
parameters shared across different architectures, rather than
the model weights itself, the proposed optimal weights es-
timation scheme avoids model capacity deterioration and

6186



achieves efficient approximation because meta-parameters
contain the knowledge of previous searches on other tasks.

Finally, with the task-aware architecture controller, can-
didate architecture suitable for a specific task can be effec-
tively generated. The candidate architecture can then be ef-
ficiently evaluated with a few gradient descent steps start-
ing from the meta-parameters, avoiding repetitive computa-
tional intense training. Extensive experiments are conducted
on both toy examples and real-world datasets. The results
show that our proposed M-NAS efficiently discover proper
network architecture and good parameter solutions given a
specific task, outperforming a set of competitive baselines.

In summary, the contributions of the paper are three-folds:
• We propose M-NAS which adopts a task-conditional con-

troller for architecture generation and learns a set of meta
weights for fast estimations of optimal weigths associated
with the candidate architecture.

• We consider task-aware search on highly diversed tasks
and address the problem with transferable knowledge
modulation.

• Extensive experiments and ablation studies demonstrate
the advantages of task-aware neural architecture search,
as well as the superiority of our proposed method against
a set of competitive meta-learning methods.

Related Work

Neural Architecture Search (NAS) automatically finds op-
timal network architectures, relieving the architecture de-
sign of repetitive trial and errors. Existing NAS meth-
ods can be divided into three categories according to the
way they explore the architecture search space: reinforce-
ment learning, evolutionary algorithm and gradient-based
methods (Elsken, Metzen, and Hutter 2019). Reinforcement
learning (RL) based methods (Zoph and Le 2016; Pham et
al. 2018) train an RNN controller to generate network archi-
tectures. Evolutionary algorithm based methods (Real et al.
2019) evolve neural architectures and achieve comparable
results with RL based methods. The more recently proposed
gradient-based methods (Liu, Simonyan, and Yang 2018;
Cai, Zhu, and Han 2019) continuously relax the discrete
architectures, which makes it possible to jointly optimize
the architecture structure and network weights with gradient
descent. Candidate architectures are supposed to be prop-
erly evaluated to provide supervision for searching. Train-
ing each architecture to convergence, however, is time con-
suming. Parameter sharing (Pham et al. 2018) was proposed
for efficient searching, where parameters are shared among
child models so a one-shot training is enough for evaluation
of different candidate architectures. NAS has also been used
to automatic efficient model design (Tan et al. 2019; Guo
et al. 2019), which conventionally relies on hand-crafted
heuristics (Howard et al. 2017; Sandler et al. 2018) or model
compression (Han, Mao, and Dally 2016; Wu et al. 2016;
Hu, Wang, and Cheng 2018). However, in these methods,
only one task is considered and efficient search on previ-
ously unseen tasks is left unexplored. In this paper, we in-
corporate the idea of meta-learning for efficient task-aware
architecture search on different tasks.

Another branch of researches related is meta-learning,
where a model is trained to quickly adapt to new tasks given
only a few samples (Santoro et al. 2016). Various meta-
learning methods have been proposed and the most rele-
vant is the model agnostic meta-learning. MAML (Finn,
Xu, and Levine 2018) contains a meta-train stage and a
meta-test stage. During meta-train, the model extracts gen-
eral knowledge shared across different tasks so that it can
be utilized for fast adaptation in the meta-test stage. A set
of globally shared meta-parameter, however, is insufficient
for heterogeneous tasks. Following works (Yoon et al. 2018;
Vuorio et al. 2018) learns task-specific meta-parameters to
better master different tasks. (Yao et al. 2019) then applies a
hierarchical task clustering component to cluster tasks and
tailor the meta-parameters according to the cluster prop-
erties. These works aim at improving meta-learning meth-
ods. While in our work, we utilize meta-learning for effi-
cient task-aware model architecture search. Most recently,
fast NAS with meta-learning on different tasks is explored.
(Anonymous 2019) maintains a set of meta-parameters on
the architecture parameters so that a few gradient descent
steps on the meta architecture parameters gives optimal ar-
chitecture for a specific task while we utilize a task-aware ar-
chitecture controller to generate task-specific architectures.

Preliminaries

Differentiable Neural Architecture Search

Given a pre-defined task, the goal of neural architecture
search is to find an architecture α that maximize the model
performance. For differentiable architecture search tech-
niques like DARTS (Liu, Simonyan, and Yang 2018), this
can be done by solving a bi-level optimization problem over
the network architecture α and network parameters w:

minα Lval (w
∗(α), α)

s.t. w∗(α) = argminw Ltrain(w,α)
(1)

where the architecture α is updated on the validation set, and
weights w(α) associated to α are minimized on the training
set. For each evaluation step on a candidate model α in the
outer loop, a full training procedure needs to be conducted
to obtain the optimal w∗(α), which leads to unaffordable
computation burden. Parameter sharing (Pham et al. 2018)
is widely adopted to address the issue, where all candidate
architectures share the same parameters of a large one-shot
network during the searching phase, different architectures
correspond to different paths in the one shot model.

Despite parameter sharing works empirically well on a
single task, it is insufficient for task-specific architecture
search because the optimal parameters depend on both the
underlying architecture as well as the task property. In this
paper, we seek to provide a novel technique for task-aware
architecture search, which utilizes meta-learning to perform
efficient parameter estimation.

Gradient-Based Meta Learning

Meta-learning is helpful to understand the task-aware archi-
tecture search and fast optimal weights estimation in our
method. Suppose that amounts of tasks {T } are sampled

6187



from a task distribution p(T ). In each task Ti ∼ p(T ), we
have a few examples {xi,k,yi,k}Kk=1 ∈ DTi

for each class
to constitute the training set Dtr

Ti
and the rest as validation

set Dval
Ti

. For tasks that have altogether N classes, this typi-
cally forms a N way K shot problem. The training split sam-
ples Dtr

Ti
are used for fast task adaptation and validation split

samples Dval
Ti

are used for update of meta parameters. The
main idea of MAML (Finn, Abbeel, and Levine 2017) is to
learn meta weights w̃ for all tasks, from where a few gradi-
ent descent steps can lead to significant increase of perfor-
mance on previously unseen tasks. The fast task adaptation
is performed by:

wi = w̃ − ρinner∇w̃L(w̃,Dtr
Ti
), (2)

where ρinner is the adaptation learning rate of weights and L
is the loss function. The meta weights w̃ is updated by

min
w̃

∑
Ti∼p(T )

L
(
w̃ − ρinner∇w̃L(w̃,Dtr

Ti
),Dval

Ti

)
, (3)

where one gradient step in adaptation phase is adopted as
exemplary. The model learns the meta-weights w̃ as good
initialization for adaptation when Equation (3) converges.

Methods

To search for task-aware neural networks, we proposed
meta neural architecture search (M-NAS), whose frame-
work is presented in Figure 1. M-NAS can effectively gener-
ate proper candidate architectures for different tasks. Given
a candidate architecture, M-NAS then adapt the transfer-
able knowledge learned from previous searches via meta-
learning, so that optimal weights associated with the child
model can be efficiently estimated within a few gradient de-
scent steps. In real-world applications the tasks are always
heterogeneous and a shared set of meta-parameters can be
insufficient. In this case, a task-specific meta-weights mod-
ulator is introduced to modulated the shared transferable
knowledge, which is the meta-parameters w̃ here.

In the following, we detail M-NAS with three consec-
utive stages, i.e., 1) task-aware architecture generation, 2)
transferable knowledge modulation, and 3) efficient optimal
weights estimation. We also introduce a variant called M-
NAS-Shared, which searches a shared optimal architecture
for all the different tasks. This variant can also be seen as a
NAS enhanced model agnostic meta-learning method.

Task-Aware Architecture Generation

A first step to perform task conditional architecture gener-
ation is to represent the task {xi,j ,yi,j}n

tr

j=1 ∈ Dtr
Ti

with a
task embedding zi. Task embedding has been previously ex-
plored in (Vuorio et al. 2018; Yao et al. 2019). Good task
embeddings should satisfy the following properties: enough
distinctions between different tasks, sufficient similarities
between similar tasks, and permutational invariance to its
inputs.

We apply a recurrent autoencoder (LSTM or GRU) to
learn task context embeddings zi, which is shown to be ef-
fective in few shot problems (Yao et al. 2019). Observations

are sequentially fed into the recurrent auto-encoder, i.e.:

zi,j = RNNenc(F(xtr
i,j ,y

tr
i,j), zi,j−1)

di,j = RNNdec(zi,j ,di,j+1)
(4)

where we use F(·, ·) to preliminarily embed both features
and predictions of a data pair. zi,j and di,j represents the
learned representation and the reconstruction of the j-th sam-
ple, respectively. RNNenc and RNNdec stand for a recurrent
encoder and a recurrent decoder. And the reconstruction loss
for training the auto-encoder is as follows:

Lr

(
Dtr

Ti

)
=

ntr∑
j=1

∥∥di,j −F
(
xtr
i,j ,y

tr
i,j

)∥∥2
2

(5)

The task representation is aggregated over representations of
all samples, i.e.,

zi =
1

ntr

ntr∑
j

(zi,j) (6)

However, the sequential feeding of samples makes the fi-
nal task representation to be permutation sensitive, which
violates the input invariance prerequisite. The problem can
be addressed by pre-permuting all the samples and then fed
them into the recurrent autoencoder (Hamilton, Ying, and
Leskovec 2017). With the task representation extracted, task
conditional candidate architectures can be readily generated
by αi = A(zi), where A can be an LSTM controller (Zoph
and Le 2016; Pham et al. 2018) or trainable architecture pa-
rameters (Liu, Simonyan, and Yang 2018). In our case, we
use a multi-layer perceptron as the task-aware controller to
generate architecture parameters and path dropout is applied
on the architecture α to avoid local optima.

Transferable Knowledge Modulation

To perform fast optimal weights estimation on a new task,
we try to leverage previous search knowledge on other tasks.
Inspired by MAML (Finn, Xu, and Levine 2018), in M-NAS
we maintain a set of meta-parameters w̃ on the big one-shot
model, which is shared across all the child architectures. For
a task-aware candidate architecture αi, corresponding meta-
parameters w̃(αi) are triggered, from where a few gradient
descent steps give approximated optimal weights associated
with the architecture αi. Nevertheless, the technique implic-
itly relies on the assumption that solutions for tasks are close
to each other in the solution space. Properly optimized meta-
parameters w̃ live in the ”center” among the solutions so it
can fast adapt to the solution for each task.

However, as discussed in (Vuorio et al. 2018), when the
tasks are heterogeneous so that modes of task distribution
are disjoint and far apart, a common initialization point w̃
for all tasks can be insufficient given the same adaptation
routine. This problem can even be more serious in conjunc-
tion with NAS. When globally shared meta-parameters on
the one-shot model can not master all tasks, the child mod-
els will not be properly evaluated with the fast adaptation
scheme, which leads to unreliable supervising signals for ar-
chitecture controller training, eventually resulting in deteri-
orated architectures.

6188



(a) Task-aware Arch. generation (b) Knowledge modulation (c) Fast weights estimation

Figure 1: The framework of the proposed M-NAS involving three essential stages. (a) Task conditional architecture generating:
we extract representation for the task Ti using an recurrent auto-encoder, which is then used to generate a task-aware model
architecture αi. (b) Transferable knowledge modulation: we tailor the globally shared meta-parameters associated with αi,
denoted as w̃(αi), to a specific task w̃i. (c) Fast optimal weights estimation: Given an architecture αi and the modulated
meta-parameters w̃i, apply a few gradient descent steps to get an estimation of the optimal weights w∗

i (αi).

(a) Globally Shared (b) Modulation

Figure 2: Task specific modulation on the meta-parameters.
Circles represent optimal solutions for tasks, which forms a
distribution with three modalities. (a) Globally Shared meta-
parameters: model is having hard time to adapt to solutions
when tasks are heterogeneous. (b) Meta-parameters with
task-specific modulation. Meta-weights are first modulated
to be closer to the task clusters.

To address the problem, we apply a task specific modula-
tor M on the learned meta-weights w̃, similar to (Yao et al.
2019). The modulator generates modulation parameters:

τi = M(zi;WM) (7)

where M can be a fully-connected layer parameterized with
WM. The transferable knowledge, i.e., the meta-parameters
w̃ is then modulated to w̃i = τi � w̃. The modulation acts
on all the meta-parameters of the one-shot model, which
can be seen as a kind of attention that similar tasks acti-
vate similar meta-parameters while different tasks activate
disparate ones. Transferable knowledge modulation is visu-
alized in Figure 2. Figure 2(a) shows that different tasks re-
quire substantially different parameters, and a single set of
shared meta-parameters on the one-shot model (blue rectan-
gle) can be insufficient mastering the full task distribution. In
Figure 2(b), given the estimated task representation and the
model architecture, our model then performs task specific
modulation (dashed lines) on the meta-learned prior (blue
rectangle) to move the meta-parameters to different initial

positions, each of which covers different modes to better
adapt to heterogeneous tasks.

Efficient Optimal Weights Estimation

Given an architecture αi and the modulated meta-parameters
w̃i = τi� w̃, which contain both the transferable knowledge
across different tasks and the current task information. A few
gradient descent steps will give an estimation of the optimal
weights for a specific task:

w∗
i = w̃i − ρinner∇w̃i

L(w̃i,Dtr
Ti
). (8)

Architecture searching and shared meta-parameter train-
ing are carried out in the outer optimization:

min
Θ

∑
Ti∼p(T )

L
(
w∗

i (αi),Dval
Ti

)
+ βLr(Dtr

Ti
) (9)

where Θ = {WE ,WA,WM, w̃} is the collec-
tion of encoder parameters WE , architecture controller
parametersWA, modulator parameters WM, as well as the
shared meta-parameters w̃. The architecture αi is generated
with αi = A(zi) where zi is the task representation aggre-
gated with Dtr

Ti
and β is used to balance the empirical risk

and the reconstruction error of the recurrent auto-encoder.
Different from the objective for NAS in Equation (1),

a fast adaptation scheme Equation (8) is adopted to sub-
stitute the inner optimization over network parameters for
the candidate architecture of a specific task. Shared meta-
parameters learning, task representation learning as well
as transferable knowledge modulator learning are simulta-
neously conducted with architecture search. Therefore, M-
NAS can be trained in an end to end manner. Finally, after
M-NAS is well trained, given a few samples of a previously
unseen task, architecture search can be finished with just a
forward pass of the task encoder and controller. A complete
algorithm of M-NAS is as shown in Algorithm 1.

Remark Although M-NAS aims to learn task-specific ar-
chitectures, it can be easily reduced to searching a single

6189



Algorithm 1 M-NAS: Meta Neural Architecture Search

Require: Meta-train dataset Dmeta-train, learning rates ρinner,
ρouter, hyper-parameter β

Ensure:
Task representation extractor: E
Task-aware architecture controller: A
Shared meta-parameters on the big one-shot model w̃
Task-specific modulator M

1: Randomly initialize Θ = {WE ,WA,Wm, w̃}
2: while not done do
3: Sample batch of tasks {T } in Dmeta-train.
4: for Ti ∈ T do
5: Get the task representation zi and generate an can-

didate architecture αi.
6: Modulate the meta-parameters with w̃i = τi � w̃.
7: Approximate the optimal weights with Equa-

tion (8).
8: end for
9: Update Θ by optimizing Equation (9).

10: end while

network architecture as base learner for different tasks. This
can be done by optimizing the architecture parameters α as
independent trainable variables and the resulting model is
named M-NAS-Shared. M-NAS-Shared resembles (Kim et
al. 2018) that attempts to find a better base learner architec-
ture for meta-learning tasks. In experiments, we also inves-
tigate M-NAS-Shared to see if searching for a base learner
benefits meta-learning tasks.

Experiments

We evaluate the effectiveness of M-NAS as well as its vari-
ant M-NAS-Shared on a toy regression example and two
real-world image classification problems. To validate the ne-
cessity of the transferable knowledge modulator, the toy ex-
ample and one of the image classification datasets are con-
structed to contain obviously heterogeneous tasks. We im-
plement M-NAS in PyTorch (Paszke et al. 2017).

Baselines We compare our proposed methods against fol-
lowing baselines: (1) Gradient based meta-learning method
with globally shared initialization, i.e., MAML (Finn,
Abbeel, and Levine 2017); (2) Meta learning methods with
task specific initialization including MT-Net (Lee and Choi
2018), BMAML (Yoon et al. 2018), MUMOMAMAL (Vuo-
rio et al. 2018) and HSML (Yao et al. 2019); (3) Meta-
learning with learned architecture shared for all tasks, in-
cluding Auto-Meta (Kim et al. 2018) and our proposed M-
NAS-Shared. We also conduct blation studies to investigate
the contribution of transferable knowledge modulation. The
method without the modulation is named M-NAS-NM.

Toy Regression

Dataset and Experimental Settings We consider simi-
lar settings as in (Vuorio et al. 2018) where tasks are
sampled from different families of functions. We set up
the task distribution with four task modes: (1) sinusoidal,

Figure 3: Few-shot adaptation for four toy regression prob-
lems. Models trained with searched architectures extrapolate
better than models trained with hand-crafted architectures.

y(x) = as sin(wsx) + bs , as ∼ U [0.1, 5.0], ws ∼
U [0.8, 1.2] and bs ∼ U [0, 2π]; (2) linear, y(x) = alx +
bl, al ∼ U [−3.0, 3.0] and bl ∼ U [−3.0, 3.0]; (3) quadratic
y(x) = aqx

2 + bqx + cq, aq ∼ U [−0.2, 0.2], bq ∼
U [−2.0, 2.0] and cq ∼ U [−3.0, 3.0]; (4) harmonics f(x) =
ah1 sin (wh · x+ bh1) + ah2 sin (2 · wh · x+ bh2) where
(ah1, ah2) ∼ U [0.1, 5.0]2, (bh1, bh2) ∼ U(0, 2π)2 and
wh ∼ U [0.8, 1.2]. U [·, ·] indicates the uniform distribu-
tion. Each task is randomly sampled from one of the four
underlying function families, so that the constructed tasks
are heterogeneous and multi-modal. Training samples x are
sampled from normal distribution x ∼ N (u, 2) where u ∼
U [−4, 4]. Training samples are concentrated here compared
to previous works where x are uniformly sampled from −5.0
to 5.0. With concentrated training samples, we can delve
into the extrapolation ability of the proposed models in data
sparse areas. We train all models for 10-shot regression and
report the mean square error (MSE) as the evaluation metric.

For toy regression tasks, previous works use a simple
model with two fully-connected layers with Batch Normal-
ization, each contains 40 neurons. The model capacity is too
small to perform NAS. So for baseline methods, we consider
a slightly larger model: one with 4 hidden fully-connected
layers (altogether 5 layers), each with 50 neurons. For fully-
connected layers We use a very simple search space similar
to (Liu, Simonyan, and Yang 2018). Only three types of op-
erations: linear, skip connection and zero, which means no
connection, are considered. We use the Linear-Relu-BN for
each linear operation. The searched models are represented
with cells, a cell contains two input nodes, one output node,
and three intermediate nodes. Each node accepts results of
two previous nodes as inputs and outputs of all the interme-
diate nodes are mean aggregated to form the final cell out-
put. For the toy regression task, we only use one cell for ef-
ficiency. We use the vanilla SGD for fast weights estimation
in Equation (8) and Adam (Kingma and Ba 2014) for meta-
updates Equation (9). The learning rates are ρinner = 0.001
and ρouter = 0.001 respectively. Specifically, we use smaller

6190



c_{k-2} 0
linear

c_{k-1}

skip_connect

1
skip_connect

linear
2

skip_connect
c_{k}

linear

Figure 4: Architecture searched learning a shared single base
learner in 10-shot setting of toy regression. The searched ar-
chitecture contains altogether 5 fully-connected layers.

Table 1: Performance of MSE±95% confidence intervals on
toy regression problem. Each experiment is averaged over
1000 tasks for each task family. 10-shots results are reported.

Model Archs. Harmon. MSE Averaged MSE

MAML 5 FCs 2.210 ± 0.364 1.941 ± 0.376
MT-Net 5 FCs 2.213 ± 0.358 2.031 ± 0.359
BMAML 5 FCs 2.073 ± 0.361 1.925 ± 0.324
MUMOMAML 5 FCs 1.786 ± 0.184 0.524 ± 0.031
HSML 5 FCs 1.687 ± 0.171 0.502 ± 0.041

M-NAS-NM Cell 1.973 ± 0.186 1.772 ± 0.356
M-NAS-Shared Cell 1.264 ± 0.117 0.360 ± 0.037
M-NAS Cell 1.232 ± 0.121 0.352 ± 0.032

learning rate ρA = 1e-4 for architecture parameters WA.
The balancing weight is set as β = 0.01 and fast adapta-
tion for optimal weights estimation is carried out for 5 steps.

Architecture Evaluation We report the averaged MSE of
four regression problems as well the MSE of harmonic re-
gression, which is the most challenging problem. The other
three families are relatively easier and less discriminative
so we omit their MSE due to limited space. The results are
shown in Table 1. It can be found that without task specific
transferable knowledge modulation, MAML and M-NAS-
NM can not handle the heterogeneous tasks thus perform
poorly. Our proposed M-NAS outperforms all baselines with
lower MSE. We also visualize each family of tasks in Fig-
ure 3, where models trained with searched architectures ex-
trapolate better than the models trained with hand-crafted ar-
chitectures, especially on the harmonic regression task with
higher frequencies signals. With complex structures such as
skip connections introduced, the searched architecture can
better handle the harmonic regression, validating the effec-
tiveness of our proposed model. As an example, one archi-
tecture searched by M-NAS-shared is shown in Figure 4.

Few Shot Classification

Datasets and Experimental Settings To verify whether
M-NAS can search proper architectures for different
tasks, we applied our method to MiniImagenet (Ravi and
Larochelle 2017) datasets and a recently constructed bench-
mark Multi-datasets (Yao et al. 2019). MiniImagenet has
been used extensively in meta-learning literature. How-
ever, recent analysis (Finn, Xu, and Levine 2018) shows
that the sampled tasks in MiniImagenet benchmark do not
have obvious heterogeneity and uncertainty. Multi-datasets

c_{k-2}

0

dil_conv_5x5
1avg_pool_3x3

c_{k-1} sep_conv_5x5

2
skip_connect

3
sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

c_{k}

max_pool_3x3

(a) Normal cell

c_{k-2} 0
skip_connect

c_{k-1}

skip_connect

1
sep_conv_5x5

avg_pool_3x3
2

avg_pool_3x3
3

max_pool_3x3

c_{k}
avg_pool_3x3

skip_connect

(b) Reduction cell

Figure 5: Architecture searched when learning a shared sin-
gle base learner in 5-way 1-shot setting of Multi-datasets.
The searched architecture contains 27.0K parameters

(a) M-NAS-Shared (b) M-NAS

Figure 6: t-SNE visualization of tasks on Multi-datasets.
Each group has 250 tasks. (a) M-NAS-Shared (b) M-NAS.

is constructed using four datasets: Caltech-UCSD Birds-
200-2011 (Bird), Describable Textures Dataset (Texture),
Fine-Grained Visual Classification of Aircraft (Aircraft),
and FGVCx-Fungi (Fungi). Following the N-way K-shot
protocol, each task is constructed as a fine-grained classi-
fication task where the observations are sampled from one
of the four datasets so the tasks are more heterogeneous 1.

For architecture search, we employ the same operations as
in (Liu, Simonyan, and Yang 2018): 3 × 3 and 5 × 5 separa-
ble convolutions, 3 × 3 and 5 × 5 dilated separable convolu-
tions, 3 × 3 max pooling, 3 × 3 average pooling, identity and
zero. For all datasets, we only use one {normal + reduction}
cell for efficiency. Fast weights estimation in Equation (8) is
carried out for 5 steps with vanilla SGD while meta-updates
and searching Equation (9) are performed with Adam. The
learning rates are ρinner = 0.01 and ρouter = 0.001 respectively.
Specifically, we use smaller learning rate ρA = 1e-4 for ar-
chitecture parameters WA. The balancing weight is set as
β = 0.01. Finally, since the training task is varying through-
out the search process, we always use batch statistics for
batch normalization instead of the global moving average.

Architectures Evaluation In architecture evaluation, for
M-NAS-Shared we re-initialize the searched models and

1Visualization of different tasks is given in the appendix

6191



Table 2: Comparison between M-NAS and other gradient-based meta-learning methods on the 5-way, 1-shot/5-shot image
classification problem, averaged over 250 tasks for each dataset. Accuracy ± 95% confidence intervals are reported.

Model Params. Bird Texture Aircraft Fungi Average

5 way 1 shot

MAML 32.9 K 53.94 ± 1.45% 31.66 ± 1.31% 51.37 ± 1.38% 42.12 ± 1.36% 44.77%
MT-Net 32.9 K 58.72 ± 1.43% 32.80 ± 1.35% 47.72 ± 1.46% 43.11 ± 1.42% 45.59%
BMAML 32.9 K 54.89 ± 1.48% 32.53 ± 1.33% 53.63 ± 1.37% 42.50 ± 1.33% 45.89%
MUMOMAML 32.9 K 56.82 ± 1.49% 33.81 ± 1.36% 53.14 ± 1.39% 42.22 ± 1.40% 46.50%
HSML 32.9 K 58.22 ± 1.48% 33.30 ± 1.36% 55.35 ± 1.38% 42.68 ± 1.40% 47.39%

M-NAS-NM 31.6 K∗ 52.37 ± 1.50% 32.49 ± 1.48% 48.53 ± 1.42 % 40.68 ± 1.45% 43.52%
M-NAS-Shared 27.0 K 57.13 ± 1.43% 34.75 ± 1.33% 56.32 ± 1.38% 43.33 ± 1.39% 47.88%
M-NAS 29.5 K∗ 58.76 ± 1.47% 34.68 ± 1.36% 57.13 ± 1.41% 43.71 ± 1.41% 48.57%

5 way 5 shot

MAML 32.9 K 68.52 ± 0.79% 44.56 ± 0.68% 66.18 ± 0.71% 51.85 ± 0.85% 57.78%
MT-Net 32.9 K 69.22 ± 0.75% 46.57 ± 0.70% 63.03 ± 0.69% 53.49 ± 0.83% 58.08%
BMAML 32.9 K 69.01 ± 0.74% 46.06 ± 0.69% 65.74 ± 0.67% 52.43 ± 0.84% 58.31%
MUMOMAML 32.9 K 70.49 ± 0.76% 45.89 ± 0.69% 67.31 ± 0.68% 53.96 ± 0.82% 59.41%
HSML 32.9 K 71.31 ± 0.75% 47.11 ± 0.71% 71.51 ± 0.69 % 54.30 ± 0.79% 61.06 %

M-NAS-NM 31.6 K∗ 67.78 ± 0.81% 45.81 ± 0.72% 66.35 ± 0.73% 50.73 ± 0.86% 57.67 %
M-NAS-Shared 27.0 K 72.24 ± 0.75% 47.15 ± 0.71% 70.87 ± 0.67% 55.23 ± 0.80% 61.37 %
M-NAS 29.5 K∗ 72.22 ± 0.78% 48.17 ± 0.74% 71.31 ± 0.70% 55.85 ± 0.82± 61.89 %

Table 3: Comparison between our approach and previous
few-shot learning methods on the 5-way, 1-shot MiniIma-
genet benchmark. ∗ means average number of parameters of
Archs. searched.

Methods Archs. Params. 1 shot

MAML 4 Convs 32.9K 48.70 ± 1.84%

MT-Net 4 Convs 32.9K 49.75 ± 1.83%
BMAML 4 Convs 32.9k 50.01 ± 1.86%
HSML 4 Convs 32.9K 50.38 ± 1.85%

Auto-Meta Cell 28.0K 49.58 ± 0.20%

M-NAS-NM Cell 27.1K∗ 50.43 ± 1.73%
M-NAS-Shared-M Cell 26.3K 50.78 ± 1.66%
M-NAS Cell 27.9K∗ 51.37 ± 1.41%

train them with 120000 tasks. The training process is
also gradient based meta-learning sharing similar proto-
col as in searching: extract task representations, apply
meta-parameters modulation and fast adapt from the meta-
parameters, but this time with the fixed searched architec-
ture and the task specific modulation acts on the searched
model meta-parameters rather than on the large one-shot
model meta-parameters. For M-NAS, searched task specific
models are decoded from the shared large one-shot model
by setting weights of operations that are not selected to
0 when the search process is near convergence. The task-
aware controller is then tuned with straight through esti-
mation (STE) (Bengio, Léonard, and Courville 2013). The
model usually generates a few architecture for test tasks (4
to 10 for Multi-datasets), the decoded architectures can also
be re-trained with moderate number of training tasks.

The classification result on MiniImagenet is shown in Ta-
ble 3. All the baselines’ performances are taken from (Yao et
al. 2019). We see that the proposed methods outperform all

the baselines with fewer model parameters, indicating that
they successfully searched model architecture(s) better than
the hand-crafted one. For MiniImagenet, There is no obvi-
ous heterogeneity so task-specific modulation is not a must.

For Multi-datasets, we report the averaged accuracy over
1000 tasks of 5-way1-shot/5-shot classification in Table 2.
Baselines are taken from (Yao et al. 2019) except for
HSML. HSML enjoys a hierarchical task clustering compo-
nent which is absent in our case. We remove the hierarchical
clustering component 2 of HSML and report results obtained
by the published code 3. For datasets with obvious hetero-
geneity, M-NAS-NM fails to find optimal architecture be-
cause, without modulation, the meta-parameters are unable
to master all the task modalities. The fast adaptation then
fails to properly evaluate the child architectures, resulting in
deteriorated controller and improper model architecture.

From Table 2, we see that M-NAS consistently outper-
forms the other baselines on each dataset with smaller model
parameters, which demonstrates the power of searching op-
timal architectures of M-NAS. Surprisingly, by searching an
optimal architecture for all tasks, M-NAS-Shared also per-
forms comparably well, which might be due to insufficient
training of each child architecture in M-NAS. An example
of shared architecture found by M-NAS-Shared is shown in
Figure 5. Finally, to make sure the task-aware controller ef-
fectively utilizes the task information for architecture gen-
eration, we visualize task embeddings of 1000 test tasks by
t-SNE (van der Maaten and Hinton 2008) in Figure 6. It can
be observed that our proposed methods are able to identify
the tasks in different clusters.

2Comparison with unmodified HSML is given in the appendix
3https://github.com/huaxiuyao/HSML

6192



Conclusion and Discussion

In this paper, we introduce M-NAS to search optimal model
architectures for different tasks. M-NAS incorporates meta-
learning for fast evaluation of a candidate architecture. Com-
pared with several baselines, experiments demonstrated the
necessity of using different architectures for different tasks
as well as the effectiveness of our algorithm in both toy re-
gression and few-shot classification problems.

Although our method is widely applicable, there are limi-
tations and interesting future directions. For example, Train-
ing of M-NAS is still time consuming as the searching
requires second-order derivatives and naively apply first-
order approximation as in (Finn, Abbeel, and Levine 2017)
doesn’t yield promising result. For future work, we will try
to develop fast first-order algorithms to solve the problem.

Acknowledgment
We thank Yin Zheng and Dongze Lian for helpful discus-
sions. This work was supported in part by National Natu-
ral Science Foundation of China (No.61972396, 61876182,
61906193), the Strategic Priority Research Program of Chi-
nese Academy of Science(No.XDB32050200), the Advance
Research Program (31511130301).

References
Anonymous, A. 2019. Towards fast adapta-
tion of neural architectures with meta learning. In
https://openreview.net/forum?id=r1eowANFvr.
Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and Le, Q.
2018. Understanding and simplifying one-shot architecture search.
In ICML, 550–559.
Bengio, Y.; Léonard, N.; and Courville, A. C. 2013. Estimating or
propagating gradients through stochastic neurons for conditional
computation. arXiv preprint arXiv:1308.3432.
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct neural
architecture search on target task and hardware. In ICLR.
Chen, L.-C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.;
Schroff, F.; Adam, H.; and Shlens, J. 2018. Searching for efficient
multi-scale architectures for dense image prediction. In NeuralPS,
8699–8710.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural architecture
search: A survey. JMLR 20(55):1–21.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML, 1126–
1135.
Finn, C.; Xu, K.; and Levine, S. 2018. Probabilistic model-agnostic
meta-learning. In NeuralPS. 9516–9527.
Guo, Y.; Zheng, Y.; Tan, M.; Chen, Q.; Chen, J.; Zhao, P.; and
Huang, J. 2019. Nat: Neural architecture transformer for accurate
and compact architectures. In NeuralPS. 735–747.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive repre-
sentation learning on large graphs. In NeuralPS. 1024–1034.
Han, S.; Mao, H.; and Dally, W. J. 2016. Deep compression: Com-
pressing deep neural network with pruning, trained quantization
and huffman coding. In ICLR.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.;
Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.

Hu, Q.; Wang, P.; and Cheng, J. 2018. From hashing to cnns:
Training binary weight networks via hashing. In AAAI, 3247–3254.
Kim, J.; Choi, Y.; Cha, M.; Lee, J. K.; Lee, S.; Kim, S.; Choi, Y.;
and Kim, J. 2018. Auto-meta: Automated gradient based meta
learner search. arXiv preprint arXiv:1806.06927.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Lee, Y., and Choi, S. 2018. Gradient-based meta-learning with
learned layerwise metric and subspace. In ICML, 2933–2942.
Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.;
and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical neural architec-
ture search for semantic image segmentation. CVPR.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in PyTorch. In Workshop on Autodiff at Neu-
ralPS.
Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean, J. 2018. Ef-
ficient neural architecture search via parameter sharing. In ICML.
Ravi, S., and Larochelle, H. 2017. Optimization as a model for
few-shot learning. In ICLR.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Regularized
evolution for image classifier architecture search. AAAI.
Sandler, M.; Howard, A. G.; Zhu, M.; Zhmoginov, A.; and Chen,
L. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks.
In CVPR, 4510–4520.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and Lil-
licrap, T. 2016. Meta-learning with memory-augmented neural
networks. In ICML, 1842–1850.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard,
A.; and Le, Q. V. 2019. Mnasnet: Platform-aware neural architec-
ture search for mobile. In CVPR, 2820–2828.
van der Maaten, L., and Hinton, G. 2008. Visualizing data using
t-SNE. JMLR 9:2579–2605.
Vuorio, R.; Sun, S.-H.; Hu, H.; and Lim, J. J. 2018. Toward
multimodal model-agnostic meta-learning. In Workshop on Meta-
Learning at NeuralPS.
Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; and Cheng, J. 2016. Quantized
convolutional neural networks for mobile devices. In CVPR.
Yao, H.; Wei, Y.; Huang, J.; and Li, Z. 2019. Hierarchically struc-
tured meta-learning. In ICML, 7045–7054.
Yoon, J.; Kim, T.; Dia, O.; Kim, S.; Bengio, Y.; and Ahn, S. 2018.
Bayesian model-agnostic meta-learning. In NeuralPS. 7332–7342.
Zoph, B., and Le, Q. V. 2016. Neural architecture search with
reinforcement learning. ICLR.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018. Learning
transferable architectures for scalable image recognition. In CVPR,
8697–8710.

6193


