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Abstract

Weak-label learning deals with the problem where each train-
ing example is associated with multiple ground-truth la-
bels simultaneously but only partially provided. This circum-
stance is frequently encountered when the number of classes
is very large or when there exists a large ambiguity between
class labels, and significantly influences the performance of
multi-label learning. In this paper, we propose LCForest,
which is the first tree ensemble based deep learning method
for weak-label learning. Rather than formulating the problem
as a regularized framework, we employ the recently proposed
cascade forest structure, which processes information layer-
by-layer, and endow it with the ability of exploiting from
weak-label data by a concise and highly efficient label com-
plement structure. Specifically, in each layer, the label vec-
tor of each instance from testing-fold is modified with the
predictions of random forests trained with the corresponding
training-fold. Since the ground-truth label matrix is inaccessi-
ble, we can not estimate the performance via cross-validation
directly. In order to control the growth of cascade forest, we
adopt label frequency estimation and the complement flag
mechanism. Experiments show that the proposed LCForest
method compares favorably against the existing state-of-the-
art multi-label and weak-label learning methods.

Introduction
Weak-label learning (Sun, Zhang, and Zhou 2010), which is
a kind of weakly supervised multi-label learning, deals with
the problem where each training example is associated with
multiple ground-truth labels simultaneously but only par-
tially provided. For example, the image in Fig. 1 is associ-
ated with 10 ground-truth labels, but only 5 of them are pro-
vided by annotators. Weak-label learning is frequently en-
countered when the number of classes is very large or when
there exists a large ambiguity between classes. The problem
of label incompleteness significantly influences the perfor-
mance of multi-label learning. To alleviate it, many state-of-
the-art weak-label learning methods were proposed in recent

∗This research was supported by the National Key R&D Pro-
gram of China (2017YFB1001903) and the National Natural Sci-
ence Foundation of China (61772262). Yu-Feng Li is the corre-
sponding author of this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of weak-label learning scenario. The
image is associated with 10 ground-truth labels, but only 5
of them are provided by annotators.

years (Sun, Zhang, and Zhou 2010; Zhu, Yan, and Ma 2010;
Bucak, Jin, and Jain 2011; Xu, Jin, and Zhou 2013; Wu, Jin,
and Jain 2013; Lin et al. 2013).

Formally, let X = R
d be the d-dimensional instance

space and Y = {y1, y2, . . . , yn} be the label space with
n class labels. Given the weak-label training set D =
{(xi, Yi)|1 ≤ i ≤ m}, where xi ∈ X is a d-dimensional
feature vector [xi1, xi2, . . . , xid]

T and Yi ⊆ Y is the associ-
ated set of labels, the task of weak-label learning is to learn a
function f : X �→ 2Y . It is worth noting that, in weak-label
learning, since the associated label set of xi is only partially
provided, Yik = 1 means the k-th label is a relevant label for
the i-th instance, while Yik = 0 tells nothing.

The difficulties of this problem mainly lie in the follow-
ing three aspects. Firstly, as a kind of multi-label learning,
effective exploitation of the label correlations is crucial for
weak-label learning (Zhang and Zhou 2014). Secondly, even
if we can ignore the label correlations information. Thus, the
weak-label learning can be decomposed into a series of PU
(Positive and Unlabeled) learning tasks (Li and Liu 2003;
Elkan and Noto 2008), the overwhelming effect caused by
false-negative labels is hard to alleviate. Thirdly, class im-
balance problem naturally exists in weak-label learning. The
class imbalance problem here falls into two categories: for
the whole label matrix, the number of relevant labels varies
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from one class to another; for each class, the amount of rel-
evant labels is usually much smaller than irrelevant ones.

In this paper, we propose LCForest (Label Complement
cascade Forest), which is, to our best knowledge, the first
the first tree ensemble based deep learning method for weak-
label learning. Rather than formulating the problem as a reg-
ularized framework, we employ the cascade forest structure
proposed by Zhou and Feng (2019), which processes infor-
mation layer-by-layer, and endow it with the ability of ex-
ploiting the weak-label data by a concise and highly effi-
cient label complement structure. Specifically, in each layer,
we manipulate the training set into 5 folds as 5-fold cross-
validation, and in each fold, the label vector of each instance
from testing-fold is modified with the predictions of random
forests fitted with training-fold. Since the ground-truth label
matrix is inaccessible, we can not estimate the performance
via cross-validation directly as gcForest. In order to control
the growing of cascade forest, we adopt the recently pro-
posed TIcE (Bekker and Davis 2018) method in PU learning
to estimate the label frequency of weak-label matrix and the
complement flag mechanism.

Our method takes the three difficulties mentioned above
into consideration explicitly. Firstly, in each layer of the
cascade forest, the pseudo label distribution is concatenated
with the original label vector, which takes the label correla-
tions into account. Secondly, to tackle the problem caused
by false-negative labels, relevant labels are complemented
to the initial label matrix safely in each layer. Thirdly, for
the former kinds of class imbalance problems, we introduce
the complement flag mechanism to control the label comple-
ment for each class, which alleviates the problem to some
extents; for the latter one, threshold θ is used to split the
predicted probability and stimulate outputting more positive
predictions. Experiments show that the proposed LCForest
method compares favorably against the existing state-of-the-
art multi-label learning, deep neural network, and weak-
label learning algorithms.

Furthermore, since LCForest belongs to deep forest al-
gorithms, it can be adapted to learn from the spatial or se-
quential feature relationships of image or sequence data by
multi-grain scanning (Zhou and Feng 2019), which can not
achieve directly by other state-of-the-art weak-label learning
methods. And compared to deep neural network, LCForest
inherits all the merits of deep forest including does not rely
on back-propagation and can easily be trained with small
datasets and lower computational cost.

The rest of this paper is organized as follows. Section 2
briefly discusses related works. Section 3 introduces LCFor-
est. Section 4 reports the experimental results. Finally, Sec-
tion 5 concludes.

Related Work
To learn from weak-label examples, many learning meth-
ods have been proposed in the past few years. The WELL
method (Sun, Zhang, and Zhou 2010) employs the low-
density assumption and exploits the label correlation based
on the assumption that instance similarities are determined
by a group of low-rank similarity matrices. Also, the WELL
method explicitly considers the inherent class-imbalance

problem in weak-label learning. Zhu et al., (2010) formu-
lated the problem as a decomposition of the user-provided
label matrix into a low-rank refined matrix and a sparse error
matrix. The MLR-GL method (Bucak, Jin, and Jain 2011)
formulates the problem as a ranking based multi-label learn-
ing framework and addressed the weak-label problem by ex-
ploiting the group lasso technique to combine the ranking
errors. And Xu et al., (2013) solved the problem based on
low-rank matrix completion and presented a theoretical re-
sult on the number of observed entries required for a perfect
recovery.

The proposed LCForest method, which belongs to deep
forest algorithms, employed the cascade forest structure pro-
posed by Zhou and Feng (2019). After proposition, deep
forest has attracted lots of attention and manifests its abil-
ity on a broad range of tasks. Pang et al., (2018) presented
the gcforestcs method, which improves deep forest by con-
fidence screening, that is, to pass the instances with high
confidence directly to the final stage rather than passing
through all the layers. The eForest (Feng and Zhou 2018)
provides a tree ensemble based method for auto-encoding
task, which proves that forests can carry as much informa-
tion as deep neural networks. Lyu et al., (2019) proposed
the casForest method, which formulated the traditional for-
est representation learning as an additive model, as well as
theoretical results from the perspective of margin theory.
The MLDF method (Yang et al. 2019) makes a first step on
adapting deep forest to multi-label learning tasks by design-
ing a multi-layer structure to learn correlations among la-
bels. Siamese Deep Forest, proposed by Utkin and Ryabinin
(2018), adapts deep forest to metric learning tasks, and can
also be regarded as an alternative to Siamese neural network.
And the BCDForest method (Guo et al. 2018) is an applica-
tion of deep forest to cancer subtypes classification task.

Furthermore, weak-label learning is related to several
other weakly supervised multi-label learning problems.
Semi-supervised multi-label learning (Liu, Jin, and Yang
2006; Kong, Ng, and Zhou 2013; Zhao and Guo 2015;
Zhan and Zhang 2017) attempts to exploit from a large
number of unlabeled training examples in addition to lim-
ited multi-label examples. Multi-instance multi-label learn-
ing deals with the problem where each training example is
associated with not only multiple instances but also multi-
ple class (Zhou and Zhang 2006; Zhou et al. 2012). Partial
multi-label learning (Xie and Huang 2018) tackles the prob-
lem where each training example is associated with multi-
ple candidate labels which are only partially valid. Semi-
supervised Weak-Label Learning (Dong, Li, and Zhou 2018)
addresses the problem where only a partial or even empty la-
bel set can be observed. It is also related to semi-supervised
learning (Li and Liang 2019; Li, Guo, and Zhou 2019).

The LCForest Method

In this section, we introduce LCForest. Rather than for-
mulating the problem as a regularized framework, LCFor-
est employs the cascade forest structure of deep forest al-
gorithms, which processes raw features layer-by-layer. As
we all know, tree-based methods have the intrinsic ability
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to learn from multi-label data, so the cascade forest struc-
ture can be adapted to multi-label tasks naturally. To tackle
the weak-label problem, a concise and highly efficient la-
bel complement structure, which completes the label ma-
trix in each layer, is embedded into the cascade forest. Fur-
thermore, since the ground-truth label matrix is inaccessible,
we can not estimate the performance via cross-validation di-
rectly as gcForest. In order to control the growing of cascade
forest, we adopt the TIcE method to estimate the label fre-
quency of weak-label matrix and the complement flag mech-
anism. Next, we will first introduce the label complement
structure in each cascade layer. Then, we will introduce how
we control the growing of LCForest via label frequency es-
timation and complement flag mechanism, followed by the
overall framework of LCForest and training algorithm.

Label Complement Structure

In LCForest, the label complement structure is embedded
into the cascade forest to complement relevant labels to the
annotated weak-label matrix. In the t-th layer of cascade, we
manipulate the training data set Dt = {Xt, Y t} into 5 folds
as 5-fold cross-validation.

Figure 2: Label complement structure.

For each fold, as shown in Fig. 2, the random forests in the
t-th layer are trained with the examples from training-fold
and predict the instances from corresponding testing-fold.
Then, the label vector of each example from the testing-fold
is modified with the predictions from random forests. Here,
for the k-th class label of the i-th example from testing-fold,
if the predictions from those random forests are positive and
consistent, that is, for 1 ≤ j ≤ numF , Y pred j

ik = 1, while
the original label Yik is negative, the positive label will be
added to the label matrix for the next layer Y t+1

ik = 1. Here,
numF indicates the number of random forests in one layer.
It is worth noting that the complementing is not performed
on the training label for this layer but the original weak-
label training label provided by annotators. We only adopt
the simplest way in this work since it is effective and make
sense. Complicated ways can be applied if needed. Finally,
we can obtain the predictions of the full training set Y pred,
and then complete the label matrix with Eq.(1).

Y t+1
ik =

numF∏
j=1

Y pred j
ik ∨ Yik (1)

Label Frequency Estimation and Complement Flag
Mechanism

Traditional deep forest algorithms, e.g. gcforest, control the
cascade layer and avoid over-fitting by estimating the per-
formance of the whole cascade in each layer via cross-
validation. For instance, after expanding a new layer, the
performance of the current training model will be estimated,
and the training procedure will be terminated if there is no
significant performance gain. However, in the weak-label
learning scenario, the provided training label is deficient,
which leads to the inaccurate estimation of cross-validation.
So that we can hardly achieve this by previous methods.
Actually, the controlling of the training process as well as
the hyper-parameter tuning without the ground-truth label
matrix is one of the common failings of weakly supervised
learning.

In LCForest, we first employ the TIcE method to esti-
mate the label frequency of the provided weak-label matrix.
Here, the label frequency defines the probability that a pos-
itive example is selected to be labeled. In short, the TIcE
method adopts the ”selected completely at random” assump-
tion (Elkan and Noto 2008), which always satisfied in the
weak-label problem concerned in this paper, and provides us
a simple and effective way to estimate the label frequency c.
The key insight of TIcE is that subdomains of the data giving
a lower bound of c, and finding such subsets can naturally
be done via top-down decision tree induction. Technical de-
tails of the TIcE method can be found in (Bekker and Davis
2018).

Once the label frequency is estimated, for each class, the
number of positive labels in the corresponding supervised
label set can be calculated, which can be regarded as the
upper bound of the number of positive labels in the com-
plemented label matrix during training. In LCForest, we in-
troduce the complement flag vector f = [f1, f2, . . . , fn]

T

to control the training process. Here, fk = 0 means that
the k-th class is available for complementing labels; while
fk = 1 indicates that it is unavailable. At the beginning, all
elements of the complement flag vector are initialized to 0,
which means that it is permitted to complement labels for
all classes. During training, for each class, once the number
of positive labels reaches the estimated upper bound after
one layer of cascade, its corresponding element in the com-
plement flag vector will be set to 1, and labels of this class
will not be changed from now on. The training process will
be terminated as long as all elements in the are complement
flag vector are 1. Label complement procedure under the su-
pervision of the complement flag mechanism can be repre-
sented as Eq.(2).

Y t+1
ik = I(fk = 0) ·

numF∏
j=1

Y pred j
ik ∨ Yik + I(fk = 1) · Y t

ik

(2)
As mentioned above, in weak-label learning, for each

class, the amount of relevant labels is usually much smaller
than irrelevant ones. For instance, we drop 40% of the rele-
vant labels completely at random on benchmark multi-label
learning data set yeast, which makes it a weak-label data set,
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Algorithm 1 Label complement in each cascade layer
Inputs:
Y : the original label matrix
Y t: the training label for the t-th layer
Y prob: the predicted probability of the t-th layer
f : the complement flag
θ: the threshold for splitting the predicted probability
Outputs:

Y t+1: the training labels for the next layer
Process:

1: Discretize Y prob to Y pred with Eq.(3);
2: for i = 1 to m do
3: for k = 1 to n do
4: Set Y t+1

ik with Eq.(2);
5: end for
6: end for

and there exists a class only associated with less than 2% rel-
evant labels. In LCForest, threshold θ is used to split the pre-
dicted probability Y prob from random forest classifiers and
discretize it to Y pred with Eq.(3). The threshold is set to be
smaller than 0.5, which stimulates outputting more positive
predictions. Alg. 1 summarizes the procedure of label com-
plement with complement flag mechanism and thresholding
function.

Y pred j
ik =

{
0 , if Y prob j

ik < θ

1 , otherwise
(3)

Overall Framework of LCForest

Fig. 3 summarizes the overall procedure of the proposed
LCForest method. Suppose that the original input is of 100
raw features, and has 5 class labels. The data will be used
to train two completely random forests and two random
forests in each layer. After processed by the first layer, for
each training example, the raw feature vector is concatenated
with 4×5=20 dimensional learned representations. The pro-
cedure will not be terminated until all elements in the com-
plement flag vector are set to 1 or the number of cascade
layer reaches the maximum layer T .

Given a test instance, it will go through the random forests
in each layer of cascade, and then the final prediction will be
obtained by aggregating the four 5-dimensional class vectors
at the last layer, and taking the class with maximum aggre-
gated value. The training procedure is shown in Alg. 2.

Experiments
In this section, we first introduce the experimental setup and
then present the evaluation of our proposal compared to sev-
eral state-of-the-art algorithms on a number of real-world
tasks.

Experimental Setup

The performance of LCForest is compared against several
state-of-the-art multi-label learning, deep neural network
and weak-label learning algorithms, each configured with
parameters fine-tuned for weak-label learning tasks:

Algorithm 2 Train LCForest
Inputs:
D: the weak-label training set {(xi, Yi)|1 ≤ i ≤ m}
T : the maximum layer
K: the number of folds in cross validation
θ: the threshold for splitting the predicted probability
conF : the configuration of random forests in one layer
conT : the configuration of the TIcE method
Outputs:
M : the LCForest model trained with D
Process:

1: Initialize the LCForest model M = ∅;
2: Estimate the label frequency of each class via the TIcE

method with configuration in conT ;
3: Calculate the upper bound of positive labels of each

class u = [u1, u2, . . . , un]
T;

4: Initialize the complement flag f ;
5: for t = 1 to T do
6: for k = 1 to n do
7: if number of positive labels of the k-th class is no

less than uk then
8: Set fk to unavailable;
9: end if

10: end for
11: if all elements in f are unavailable then
12: Return the current LCForest model M ;
13: end if
14: Conduct K-fold cross-validation and train random

forests with configuration in conF on training set
Dt = {Xt, Y t};

15: Add layert to LCForest: M = M∪layert;
16: Concatenate the learned representation with Xt and

generate the training data Xt+1 for the next layer;
17: Complete the label matrix and generate the training

labels Y t+1 for the next layer with Alg. 1;
18: end for

• ML-kNN (Zhang and Zhou 2007) first identifies the k-
nearest-neighbour for an unseen instance, then classifies it
based on statistical information gained from the label sets
of these neighbouring instances [configuration: k = 3];

• RF-PCT (Kocev et al. 2013) builds ensemble models con-
sisting of predictive clustering trees, which generalize
classification trees both locally and globally [configura-
tion: n trees = 100];

• DBPNN (Hinton and Salakhutdinov 2006) uses the Deep
Belief Network (DBN) which consists of several stochas-
tic layers with hidden variables where the upper layers can
have symmetric connections [configuration: double-layer
network with hidden layer size 20× 20];

• WELL (Sun, Zhang, and Zhou 2010) employs the low-
density assumption, and exploits the label correlation
based on the assumption that instance similarities are de-
termined by a group of low-rank similarity matrices [con-
figuration: α = 100, β = 10].

We measure the classification results in terms of three
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Figure 3: The overall Framework of LCForest.

multi-label evaluation criteria that are both instance-wise
and label-wise effective (Wu and Zhou 2017), i.e., Micro-F1,
Macro-F1 and Hamming Loss (H.L.). Hamming Loss evalu-
ates the fraction of misclassified instance-label pairs; Macro-
F1 and Micro-F1 which take both precision and recall into
account. The larger the value of Micro-F1 and Macro-F1,
the better the performance. For hamming loss, the smaller
the value, the better the performance. More details about the
evaluation metric please refer to (Zhang and Zhou 2014).

As shown in Alg. 2, hyper-parameters employed by
LCForest are set as follows: T = 10, K = 5, θ = 0.4. For
configuration of random forests, we used one random forest
and one completely random forest to encourage the diver-
sity, and each random forest contains 200 decision trees. For
configuration of the TIcE method, the max-bepp parameter
k = 5, the maximum number of split is M = 500, and the
minimum number of total examples in subset is minT = 5.
We fixed all the hyper-parameters of our method in the ex-
periments, since there exists no supervised validation set
available for fine-tuning. As the comparing method WELL
for weak-label learning is a transductive method, in our ex-
periments, we first obtained the predicted complete labels
for training examples by performing WELL, then classified
the unseen instances by the ML-kNN method.

For each data set, we consider the incomplete label ra-
tio (I.L. Ratio) by dropping {20%, 30%, 40%, 50%} of the
relevant labels on training data completely at random. We
compared all methods using the same setting. In the rest of
this section, we evaluated the performance by performing 5-
fold cross-validation. The LCForest method as well as the
comparing methods were trained with the training-fold from

weak-label data set and then evaluated on the corresponding
testing-fold from their completely supervised version.

Gene Function Analysis Task

The first task is to predict the gene function classes of the
Yeast Saccharomyces cerevisiae, which is one of the best
studied organisms. The yeast data set (Elisseeff and Weston
2001) is a gene function classification data set with 2417
examples and 14 class labels. Each gene is expressed with
103 microarray expression features. The average number of
labels for each instance is 4.24.

Results are summarized in Table 1. It can be seen that
LCForest obtains quite promising performance against the
compared methods. It achieves the best performance on all
subtasks except on Macro-F1 when the I.L. ratio is 20%. Al-
though WELL outperforms LCForest on this subtask, it is
too vulnerable to the change of I.L. ratio. When the I.L. ra-
tio is larger than 40%, the Macro-F1 as well as Micro-F1 of
WELL decrease rapidly. Also, the Hamming Loss of WELL
stays high in the experiments of this task, while our method
is quite robust to the change of I.L. ratio and different eval-
uation criteria.

Text Categorization Task

The second task is a text classification task collected from
SIAM Text Mining Competition (TMC) 2007. Each docu-
ment is an aviation safety report documenting one or more
problems that occurred on certain flights. The goal is to la-
bel the documents with respect to what types of problems
they describe. Each document may belong to more than one
class. The TMC data set (Srivastava and Zane-Ulman 2005)
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Table 1: Experimental results (mean±std) on yeast. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded.

I.L. Ratio LCForest WELL ML-kNN RF-PCT DBPNN

Hamming Loss(↓)

20% 0.186±0.003 0.623±0.004 0.216±0.006 0.214±0.003 0.211±0.008
30% 0.188±0.002 0.627±0.002 0.229±0.004 0.241±0.004 0.230±0.004
40% 0.190±0.004 0.622±0.006 0.251±0.003 0.276±0.003 0.265±0.008
50% 0.217±0.007 0.628±0.003 0.274±0.006 0.295±0.003 0.288±0.005

Macro-F1(↑)

20% 0.407±0.015 0.476±0.006 0.353±0.008 0.241±0.011 0.290±0.010
30% 0.394±0.012 0.384±0.003 0.304±0.008 0.169±0.011 0.236±0.005
40% 0.365±0.016 0.076±0.007 0.220±0.006 0.083±0.006 0.139±0.016
50% 0.264±0.036 0.012±0.003 0.147±0.015 0.029±0.005 0.059±0.009

Micro-F1(↑)

20% 0.674±0.011 0.591±0.005 0.561±0.019 0.530±0.006 0.563±0.017
30% 0.662±0.007 0.435±0.003 0.495±0.014 0.398±0.012 0.465±0.015
40% 0.645±0.008 0.094±0.007 0.372±0.011 0.176±0.008 0.260±0.027
50% 0.512±0.032 0.015±0.004 0.234±0.032 0.052±0.006 0.101±0.019

Table 2: Experimental results (mean±std) on TMC. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded.

I.L. Ratio LCForest WELL ML-kNN RF-PCT DBPNN

Hamming Loss(↓)

20% 0.064±0.003 0.088±0.003 0.089±0.002 0.087±0.003 0.081±0.003
30% 0.065±0.004 0.090±0.001 0.091±0.001 0.092±0.002 0.084±0.003
40% 0.067±0.004 0.096±0.001 0.092±0.002 0.097±0.002 0.088±0.002
50% 0.077±0.003 0.100±0.001 0.095±0.001 0.099±0.002 0.089±0.003

Macro-F1(↑)

20% 0.247±0.028 0.166±0.040 0.153±0.015 0.076±0.010 0.240±0.015
30% 0.221±0.016 0.076±0.014 0.127±0.014 0.041±0.005 0.194±0.014
40% 0.193±0.010 0.039±0.009 0.092±0.007 0.018±0.008 0.153±0.014
50% 0.152±0.020 0.017±0.007 0.064±0.007 0.003±0.003 0.123±0.018

Micro-F1(↑)

20% 0.630±0.026 0.225±0.054 0.335±0.020 0.270±0.014 0.482±0.019
30% 0.610±0.032 0.106±0.020 0.255±0.023 0.147±0.012 0.417±0.022
40% 0.572±0.030 0.054±0.013 0.201±0.010 0.042±0.006 0.344±0.014
50% 0.417±0.041 0.024±0.010 0.102±0.015 0.003±0.002 0.298±0.020

Table 3: Experimental results (mean±std) on scene. ↑ (↓) indicates the larger (smaller) the better. The best performance and its
comparable performances are bolded.

I.L. Ratio LCForest WELL ML-kNN RF-PCT DBPNN

Hamming Loss(↓)

20% 0.101±0.030 0.115±0.004 0.119±0.020 0.133±0.021 0.115±0.005
30% 0.100±0.025 0.110±0.008 0.120±0.011 0.146±0.018 0.117±0.011
40% 0.107±0.033 0.137±0.006 0.138±0.021 0.159±0.012 0.134±0.010
50% 0.117±0.037 0.159±0.002 0.152±0.008 0.166±0.010 0.148±0.004

Macro-F1(↑)

20% 0.431±0.064 0.581±0.026 0.363±0.036 0.254±0.073 0.518±0.030
30% 0.431±0.059 0.460±0.047 0.355±0.066 0.187±0.074 0.438±0.054
40% 0.386±0.081 0.263±0.036 0.253±0.074 0.147±0.046 0.313±0.075
50% 0.318±0.120 0.113±0.015 0.181±0.050 0.092±0.048 0.214±0.033

Micro-F1(↑)

20% 0.690±0.101 0.681±0.022 0.604±0.079 0.414±0.146 0.621±0.025
30% 0.688±0.079 0.588±0.040 0.568±0.057 0.305±0.146 0.544±0.051
40% 0.634±0.037 0.397±0.046 0.426±0.140 0.198±0.113 0.424±0.070
50% 0.529±0.209 0.195±0.022 0.305±0.071 0.135±0.095 0.316±0.030

is a large text data set with 28,596 instances and 22 class
labels in total. Each document is expressed with 49060 fea-
tures and has on average 3.57 labels. Here, we used its short

version. We randomly sampled 2000 examples for evalua-
tion and only the former 500 features were selected in the
experiments.
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Table 4: Experimental results (mean±std) on medical. ↑ (↓) indicates the larger (smaller) the better. The best performance and
its comparable performances are bolded.

I.L. Ratio LCForest WELL ML-kNN RF-PCT DBPNN

Hamming Loss(↓)

20% 0.013±0.002 0.022±0.003 0.019±0.001 0.018±0.001 0.026±0.001
30% 0.013±0.002 0.024±0.002 0.021±0.001 0.022±0.001 0.027±0.001
40% 0.019±0.005 0.025±0.001 0.023±0.001 0.023±0.001 0.027±0.000
50% 0.025±0.000 0.026±0.001 0.024±0.001 0.025±0.000 0.028±0.000

Macro-F1(↑)

20% 0.194±0.013 0.177±0.033 0.153±0.019 0.151±0.034 0.013±0.006
30% 0.189±0.007 0.189±0.043 0.138±0.015 0.096±0.016 0.010±0.007
40% 0.112±0.044 0.147±0.015 0.104±0.017 0.069±0.011 0.002±0.002
50% 0.047±0.014 0.093±0.024 0.072±0.007 0.047±0.007 0.001±0.002

Micro-F1(↑)

20% 0.742±0.053 0.486±0.050 0.555±0.041 0.522±0.041 0.133±0.051
30% 0.735±0.027 0.403±0.046 0.461±0.084 0.364±0.027 0.075±0.056
40% 0.460±0.218 0.333±0.012 0.352±0.047 0.288±0.018 0.015±0.013
50% 0.186±0.026 0.146±0.037 0.262±0.043 0.191±0.026 0.014±0.019

Results are summarized in Table 2. We can observe that
the proposed LCForest method significantly outperforms all
the compared methods on all subtasks. It is also interesting
to find that the Hamming Loss of LCForest when the I.L.
ratio is 50% is better than the Hamming Loss of all the com-
pared methods when the I.L. ratio is 20%, which demon-
strates the effectiveness of our method.

Scene Classification Task

The third task is a multi-label semantic scene classification
task. The Scene data set (Boutell et al. 2004) is a labeled im-
age data set with 2407 images in 6 object classes. Each im-
age is represented with spatial color moments in Luv space
as features, which is commonly used in scene classification
literature. After conversion to Luv space, the image is di-
vided into 49 blocks using a 7×7 grid. Then, the first and
second moments of each band are computed, corresponding
to a low-resolution image and to computationally inexpen-
sive texture features respectively and finally represented as a
294-dimension feature vector. The average number of labels
for each instance is 1.07.

Results are summarized in Table 3. We can observe that
although WELL performs better than LCForest on Macro-
F1 when the I.L. ratio is less than 30%, LCForest remains
promising performance when the I.L. ratio is larger. And on
Hamming Loss and Micro-F1, LCForest always achieves the
best performance.

Medical Natural Language Processing Task

The last task is a medical natural language processing task.
The Medical data set (Read et al. 2011) contains 978 in-
stances and 1449 features. It is used in the Medical Natural
Language Processing Challenge3 in 2007, whose instance is
a document that contains a brief free-text summary of a pa-
tient symptom history. It has 45 labels in total. The goal is to
annotate each document with the probable diseases from the
International Classification of Diseases (ICD-9-CM). Re-
sults are summarized in Table 4.

Conclusion

In this paper, a tree-based method LCForest is proposed to
solve weak-label learning problems. Rather than formulat-
ing the problem as a regularized framework, we employ the
recently proposed cascade forest structure, which processes
information layer-by-layer, and endow it with the ability
of exploiting the weak-label data by a concise and highly
efficient label complement structure. We demonstrate that
our method solves the three main difficulties of weak-label
learning well and can be adapted to learn from image or se-
quence data, which can not achieve directly by other meth-
ods. Extensive comparative studies clearly validate the ef-
fectiveness of LCForest. In the future, we consider adapting
our method to learn from image data and sequential data by
multi-grained scanning, and consider exploiting from other
kinds of weakly supervised data with deep forest methods.
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