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Abstract

Dynamic network pruning achieves runtime acceleration by
dynamically determining the inference paths based on dif-
ferent inputs. However, previous methods directly generate
continuous decision values for each weight channel, which
cannot reflect a clear and interpretable pruning process. In
this paper, we propose to explicitly model the discrete weight
channel selections, which encourages more diverse weights
utilization, and achieves more sparse runtime inference paths.
Meanwhile, with the help of interpretable layerwise channel
selections in the dynamic network, we can visualize the net-
work decision paths explicitly for model interpretability. We
observe that there are clear differences in the layerwise de-
cisions between normal and adversarial examples. Therefore,
we propose a novel adversarial example detection algorithm
by discriminating the runtime decision features. Experiments
show that our dynamic network achieves higher prediction
accuracy under the similar computing budgets on CIFAR10
and ImageNet datasets compared to traditional static pruning
methods and other dynamic pruning approaches. The pro-
posed adversarial detection algorithm can significantly im-
prove the state-of-the-art detection rate across multiple at-
tacks, which provides an opportunity to build an interpretable
and robust model.

Introduction

In recent years, as deep neural networks have achieved
significant performance in many fields (He et al. 2016;
Silver et al. 2017), deep models have been deployed in many
practical applications. However, due to the huge consump-
tion of computation resources by the original full model,
many model pruning and acceleration methods (Han, Mao,
and Dally 2016; He, Zhang, and Sun 2017; Liu et al. 2017)
have been proposed to meet the real-time computing re-
quirements while ensuring prediction performance. Most of
the pruning methods utilize existing pre-trained models as
the basis and delete the redundant parameters and structures
to obtain the final static compressed models. Pruned model
weights are often fine-tuned based on the full model weights
to improve model prediction performance further.
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Figure 1: Overview of the proposed dynamic network prun-
ing scheme. We associate each convolution layer with a de-
cision unit, which is composed of action head and channel
selection masks. For the l-th convolution layer in the net-
work, the input xl−1 first passes through action head A to
generate the action probability corresponding to a group of
channel selection masks G. Then the chosen channel mask
G[i] is used to select convolution weights θ′, which can
achieve runtime compression and acceleration. The chan-
nel mask values are also multiplied to convolution output
to perform channel scaling. We use continuous relaxation to
resolve non-differentiability in action head, and all the pa-
rameters of decision units are trained in an end-to-end man-
ner, which allows channel masks to learn the filters selection
automatically.

Different from the above static pruning techniques, dy-
namic network pruning (Lin et al. 2017; Gao et al. 2018)
determines the inference paths to achieve runtime acceler-
ation according to different inputs. Compared to the static
pruning, dynamic pruning methods preserve the full model
but add runtime decision units inside each computational
layer, which can complete the feedforward operations with
a portion of the network weights by generating different
weight masks. However, previous methods (Gao et al. 2018;
Luo and Wu 2018) generate continuous gate predictions by
directly outputting each channel’s decision gate value, which
cannot reflect a transparent and interpretable pruning pro-
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cess. Moreover, the resulting pruning masks tend to be ho-
mogeneous without input-dependent diversity, which nearly
degenerates to static pruning in effect. This not only limits
the degree of compression ratio but also affects the deploy-
ment of dynamic pruning techniques in the practical appli-
cation scenarios.

In this paper, we propose to explicitly model the discrete
weight channel decisions during the dynamic pruning pro-
cess. The main idea is to associate a decision unit with
each computation layer (i.e., convolution layer in the CNN),
which outputs a probability distribution corresponding to a
finite number of different channel selection masks. During
the model inference in the test stage, the channel mask cor-
responding to the maximum probability is selected as the fi-
nal channel selection result. We utilize continuous relaxation
technique (Maddison, Mnih, and Teh 2016; Jang, Gu, and
Poole 2016) to resolve the non-differentiability issue during
training the action head. The channel selections for each ac-
tion are automatically learned under the sparsity regulariza-
tion. The decision unit and channel mask values are jointly
learned in an end-to-end manner.

Since our method can obtain discrete decision actions on
each layer for input examples, this provides an interpretable
representation to understand the model’s functional behavior
and prediction results. We observe that the inputs’ layerwise
decisions are highly correlated with the semantic meaning
of their category. Meanwhile, we observe that the layerwise
decision paths of adversarial examples (Szegedy et al. 2013)
are different from those of normal examples, which reflects
the different network response patterns between normal and
adversarial examples. This phenomenon inspires us to de-
velop a novel adversarial example detection algorithm that
uses the layerwise decision features to discriminate whether
a testing sample is normal or adversarial.

We conduct extensive experiments on CIFAR10, CI-
FAR100, SVHN and ImageNet datasets. Our dynamically
pruned model achieves higher prediction accuracy than
state-of-the-art pruning methods under the same pruning ra-
tio. Our adversarial detection method significantly improves
the performance of adversarial example detection across dif-
ferent attacks. These results demonstrate that our method
provides an opportunity to build an efficient, interpretable
and robust model.

Related Work
The model pruning techniques aim to remove the inter-
nal redundancy parameters of the model, and thus expect
to achieve the acceleration of the deep neural network
inference. Early works (LeCun, Denker, and Solla 1990;
Han, Mao, and Dally 2016) focus on non-structured spar-
sity by removing individual weight values. Although run-
time acceleration can be achieved through a custom infer-
ence engine, it is not friendly to general-purpose GPUs. In
recent years, model pruning techniques have mainly focused
on the development of structured pruning (Li et al. 2016;
He, Zhang, and Sun 2017; Liu et al. 2017; He et al. 2018b),
which prunes the weight channels of each layer. Pruned
models often require further fine-tuning to achieve higher
prediction performance. However, some works (Liu et al.

2019) have pointed out that the compressed model structure
can be trained from scratch to achieve good performance
without relying on pre-trained weights.

In addition to the above static pruning techniques, dy-
namic pruning techniques have also been proposed to
achieve more flexible computation process. The Runtime
Network Pruning (RNP) (Lin et al. 2017) selects the weight
channel group on-the-fly, and each layer relies on a global
decision agent to output discrete actions. Feature Boosting
& Suppression (FBS) (Gao et al. 2018) uses the local deci-
sion unit to output the continuous channel importance val-
ues directly. It also uses a pre-defined compression ratio to
sort the mask value to determine the channel selection. The
most similar work to our approach is RNP. However, RNP
predefines four channel groups across all the layers, while
our method automatically learns the channel selection dur-
ing training. This provides more diverse runtime pruning be-
haviors.

Another application of the method described herein
is adversarial example detection. The adversarial exam-
ples (Szegedy et al. 2013) can change the model predic-
tion through small perturbations on input, which poses a
significant threat to the security and credibility of the deep
models. Adversarial detection methods are thus proposed to
build robust machine learning system. Typical methods in-
clude detection through the auxiliary network (Metzen et al.
2017), or utilizing adversarial training technique (Tramèr et
al. 2017) to achieve defense. The proposed approach follows
the detection methods based on the confidence score (Fein-
man et al. 2017; Ma et al. 2018; Lee et al. 2018). These
methods calculate confidence value to judge whether the
testing sample is on the data manifold formed by the nor-
mal samples, thus used for detecting abnormal examples.

Methodology

The overview of our dynamic network pruning scheme is il-
lustrated in Figure 1. When the network performs feedfor-
ward operations for a single input, it will first output the
weight channel masks through the decision unit, and then
determine the weights used to perform actual calculation.
The decision unit outputs a probability distribution corre-
sponding to a finite number of different channel selection
masks. During inference, the channel mask corresponding
to the maximum probability is selected to construct the ac-
tual weights used for computation. Moreover, the channel
selection values are also multiplied to convolution output
channel-wisely to adjust the final output. Since the com-
pressed weights are determined before the convolution oper-
ation, the actual computation cost (i.e., multiply-accumulate
operations (MACs)) can be effectively reduced.

In the following sections, we will elaborate on the prob-
lem formulation for how to implement the proposed dy-
namic pruning scheme, and then present the details for each
component.
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Problem Formulation

The overall training objective for the proposed dynamic
pruning scheme is

min
{Θ,Φ}

L =
∑

k

Lent(fΘ(xk), yk) + γ · Ω ({Gl}L) , (1)

where Θ denotes convolution layer weights, Φ denotes all
the parameters of decision heads θA and channel selection
masks {Gl}L across different layers, Lent is the cross-
entropy loss between model prediction f(xk) and label yk,
Ω is the regularization term to encourage channel selection
masks to be sparse with a balance factor γ. The optimiza-
tion in Equation (1) can be divided into two sub-problems
for Θ and Φ, and an alternate training strategy is adopted
to solve the optimization. In the experiments, we use Adam
and proximal gradient descent optimizers for learning Φ and
Θ respectively.

Decision Unit Formulation

In a convolutional neural networks with L layers, the l-
th convolutional layer computes the output features xl ∈
R

N×Co×Ho×Wo with input xl−1 ∈ R
N×Ci×Hi×Wi and

weights θl ∈ R
Co×Ci×k×k by

xl = conv(xl−1, θl), (2)

where (N,C,H,W ) correspond to (batch, channel, height,
width) dimensions, subscripts i, o denotes variables for in-
put and output, k is kernel size and conv is the convolution
operation. For simplicity, we omit layer subscript in the fol-
lowing derivation.

To perform dynamic weight channel selection, a decision
unit π(x, φ) is associated with each convolution layer, where
φ is its parameters. In RNP (Lin et al. 2017), the decision
unit is modeled as a global recurrent layer, which receives
input features to generate discrete actions corresponding to
four preset channel selection groups. In FBS (Gao et al.
2018), the decision unit is modeled as local linear layers,
which receives input features to generate the masks for each
individual channel.

In our method, we model π(·) as follows

π(x, φ) = G[i], where i = argmaxA(x), (3)

where G = {gi ∈ R
Cl |i = 1 · · ·m} is a set of channel mask

vectors, each of which contains Cl values equal to output
channel number; A(·) is the discrete action head, which can
output the probability p ∈ Rm for m channel masks. Then
the final output for l-th convolution layer is

xl = conv(xl−1, θl) ∗ π(xl−1, φ), (4)

where ∗ is channel-wise multiplication for scaling output.
To reduce the actual computation cost, one can first se-
lect weights with non-zero channel selection values θ

′
l =

{θl[j]|G[i][j] �= 0}, and then perform the convolution. A(·)
is implemented as

A(x) = Linear(GlobalAvgPool(ReLU(x))). (5)

Since the decision unit is designed to be lightweight, the
overall computation cost is still highly reduced compared
to the original full model.

Differentiable Training of Action Head

Since the output of action head A(·) is discrete, it is usually
trained with policy gradient (Williams 1992) technique de-
veloped in reinforcement learning. However, policy gradient
suffers from high variance and training instability (Sutton,
Barto, and others 1998). Here we utilize continuous relax-
ation (Maddison, Mnih, and Teh 2016; Jang, Gu, and Poole
2016) reparameterization technique to directly train the ac-
tion head in a differentiable manner.

Specifically, given the action head output probability p =
[p1, · · · , pm] for m actions, the chosen index I for channel
selection mask is modeled as a categorical random variable
with P(I = i) ∝ pi. The sampling process can be reparam-
eterized as

I = argmax
i

log pi +Gi, (6)

where Gi is a sequence of i.i.d. Gumbel random vari-
ables (Gumbel 1954), sampled from the Gumbel distribu-
tion G = − log(− log(X)) with X ∼ U [0, 1]. To deal
with the non-differentiability to the underlying probability
p, the one-hot representation of I is replaced with a softmax
form (Maddison, Mnih, and Teh 2016; Jang, Gu, and Poole
2016), which is expressed as

Ii =
exp((log pi +Gi)/τ)∑m

j=1 exp((log pj +Gj)/τ)
, ∀ i = 1, · · · ,m,

(7)
where τ is a temperature to control the probability concen-
tration degree. During forward, the chosen channel mask is
obtained by matrix multiplication without resorting to index-
ing table.

Learning Channel Selection

One merit of our method is that the channel selection masks
G are automatically learned in an end-to-end manner with-
out pre-defined configurations adopted in RNP (Lin et al.
2017). During training, the masks G are influenced by both
classification loss Lent and regularization term Ω. As for
the concrete form of Ω, an �1-norm is utilized to encourage
sparse channel selection masks. However, only �1-norm can-
not control the sparsity ratio. Similar to (Luo and Wu 2018),
we use the element-wise mean of the concatenated channel
masks to approximate the overall compression ratio, and use
a square norm to constrain the compression ratio to a target
vale r. Specifically, given a target sparsity ratio r, the regu-
larization term Ω is

Ω ({Gl}L) = (
||concat(G1, · · · ,GL)||1∑

l Cl
− r)2, (8)

where concat is concatenation operation, Cl is the l-th chan-
nel number equal to the dimension of Gl. Unlike RNP
and FBS, we only define a global compression ratio r and
the specific layer-wise channel selections are automatically
learned during training. In the following experiment section,
we will show that this procedure can learn diverse weight
channel selections.
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Implementation Details

Increasing Action Diversity During the initial explo-
ration, we found that the action head in the decision unit al-
ways generated the same channel masks for different inputs,
because some actions in the action head dominated the ac-
tion predictions throughout the time. To alleviate this effect,
we propose two simple techniques to increase action diver-
sity, which are weight normalization and annealing temper-
ature. After the weights in the action head θA are updated
in each iteration, we further normalize each weight vector
v to be v′ = v/||v||2, which makes the weights focus on
learning directions. Moreover, we linearly decrease the tem-
perature variable τ in Equation (7) from 5.0 to 0.5 along
training process, expecting that the action head can sample
uniform actions in the initial training phase and converge to
a stable decision process in the end.

Decision Unit Location The decision unit can be associ-
ated with each computational layers in the network. For sin-
gle path network like VGGNet, we associate the decision
unit behind each convolution layer’s output except the first
convolution layer. For networks with skip connections like
ResNet, we associate the decision units behind the convolu-
tion layers on the residual branch, except the last convolu-
tion layer in the residual block, since it can ensure that the
output dimension is consistent with input dimension at the
beginning of the block.

Experiments

In this section, we conduct experiments on CIFAR10 and
ImageNet datasets. We perform dynamic pruning on VG-
GNets and ResNets. For CIFAR10 models, we train the full
models for 160 epochs using a batch-size of 128 with SGD
optimizer. The initial learning rate 0.1 is divided at 50%
and 75% of the total number of training epochs. We use
a momentum of 0.9 with weight decay of 10−4. For Im-
ageNet models, we use the pruned models VGG 5x and
ResNet50 2x from Channel Pruning (He, Zhang, and Sun
2017) as the pre-trained weights to further accelerate opti-
mization speed.

Settings

For the CIFAR10 experiments, we choose m = 5 actions for
each decision unit after the trade-off between performance
and computation cost. The target sparsity ratio r is 0.1 for
VGG16-BN and 0.4 for ResNet56. Balance factor γ = 1.0,
the learning rate is 0.01, training batch size is 128, and the
total training epoch is 100. We further fine-tune the back-
bone network weights while freezing decision units to im-
prove performance. The fine-tuning scheme is the same as
that of pre-training, except that the starting learning rate is
reduced to 0.001.

For the ImageNet experiments, we choose m = 40 ac-
tions for each decision unit. The target sparsity ratio r is 0.6
for VGG16 and ResNet50. Balance factor γ = 1.0, learn-
ing rate is 0.01, training batch size is 64. Since the starting
model is compressed, we only need to train for 30 epochs.
The fine-tuning scheme is same with the above settings.

Pruning Results

Table 1: Comparison of accuracy for different pruning meth-
ods with VGG16-BN and ResNet56 models on CIFAR10
dataset. “Pruning Ratio” column stands for the MACs re-
duction ratio, and higher is better.

Method MACs Pruning Ratio Acc

V
G

G
16

-B
N

Baseline 313.2M – 93.50%
ThiNet 156.5M 50% 93.36%
L1-norm 206.6M 34% 93.00%
CP 156.5M 50% 93.18%
NS 153.4M 51% 93.31%
RNP 156.5M 50% 92.65%
FBS 156.5M 50% 93.03%
Ours 155.2M 50.4±0.04% 93.45%

R
es

N
et

56

Baseline 125.8M – 92.80%
ThiNet 62.9M 50% 91.98%
CP 62.9M 50% 91.80%
SFP 65.4M 48% 92.56%
AMC 62.9M 50% 90.20%
Ours 59.6M 52.6±0.13% 92.57%

Table 2: Comparison of top-5 accuracy for different pruning
methods with VGG16 and ResNet50 models on ImageNet
dataset. “Pruning Ratio” column stands for the MACs re-
duction ratio, and higher is better. “uniform” stands for uni-
formly reducing the channels of each layer with a fixed ratio.

Method MAC Pruning Ratio Top-5 Acc

V
G

G
16

baseline 15.5G – 89.90%
L1-norm 3.8G 75% 86.54%
CP 3.1G 80% 88.10%
NS 3.1G 75% 84.72%
AMC 3.1G 80% 88.50%
RNP 3.1G 80% 86.32%
Ours 2.9G 81.2±0.01% 88.57%

R
es

N
et

50

baseline 4.1G – 92.93%
uniform 2.0G 50% 74.39%
CP 2.0G 50% 90.80%
ThiNet 2.6G 37% 91.84%
SFP 2.4G 41.80% 92.06%
Ours 1.9G 51.3±0.64% 92.08%

We compare our method with both static and dynamic
pruning techniques. For static pruning, we compare with
ThiNet (Luo, Wu, and Lin 2017), �1-norm based filter prun-
ing (Li et al. 2016), Channel Pruning (CP) (He, Zhang,
and Sun 2017), Network Slimming (NS) (Liu et al. 2017),
Soft Filter Pruning (SoftFilter) (He et al. 2018a), and Au-
tomatic Model Compression (AMC) (He et al. 2018b). For
dynamic pruning, we compare with Runtime Neural Pruning
(RNP) (Lin et al. 2017) and Feature Boosting & Suppression
(FBS) (Gao et al. 2018). We report the average accuracy over
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Table 3: Test accuracy and MACs reduction ratios for different numbers of actions used. For MACs reduction ratios, lower is
better.

Action Number m 1 2 3 4 5 6 7 8 9 10

VGG16-BN
Acc (%) 93.38 93.09 93.11 93.09 93.45 93.20 93.05 93.29 93.15 93.13
MACs Ratio (%)↓ 51.90 48.69 48.49 50.19 49.58 50.26 50.92 49.59 49.66 47.94

ResNet56
Acc (%) 92.47 92.32 92.32 92.42 92.57 92.32 92.29 92.09 92.26 92.00
MACs Ratio (%)↓ 62.68 59.46 55.19 52.87 47.38 48.91 51.04 47.64 45.69 49.04

airplane car bird cat deer

dog frog horse ship truck

car truck cat dog

car frog airplane horse

Figure 2: Runtime analysis of the decisions in dynamic pruning network. (Left) We use Sankey diagram to visualize the decision
paths for CIFAR10 test samples between the sixth to ninth layers in VGG16-BN. Long strip node represents an action. Different
colored strip links between action nodes represent the decision paths taken by the different categories of samples. (Right) We
further use Sankey diagrams to visualize the decision paths for these categories pairs: (car, truck), (cat, dog), (car, frog) and
(airplane, horse).

airplane car bird cat deer

dog frog horse ship truck

car

bird

cat
deerdog

frog

horse

ship

truck

airplane

(a) Our method (b) FBS

Figure 3: The decision feature embedding visualization.

five repeated experiments and MACs including the compu-
tation of decision units.

Table 1 summarizes the pruning results on CIFAR10
dataset. Our dynamic pruning models achieve the highest
accuracy under the similar pruning ratios. Specifically, our
dynamic model for ResNet56 reduces more computational
cost than other pruning methods with the best performance.
Moreover, our method reaches the highest prediction accu-
racy among all the dynamic pruning techniques.

Table 2 summarizes the pruning results on ImageNet
dataset. Our method achieves the best performance with
the least runtime computation cost across different models.
Specifically, our model outperforms other pruning methods
with RL-based complicated strategies, such as AMC and
RNP. These results demonstrate that our method is scalable
and effective even on large-scale dataset.

Effects of Action Number

In this section, we conduct ablation study to explore the ef-
fects of different numbers of actions used in the decision
unit. Table 3 summarizes the results on CIFAR10 dataset.
All models are trained with the identical settings mentioned
above, except with different action numbers. From the table,
we observe that for VGG16-BN, different action numbers
result in similar MACs reduction ratios and model accuracy.
For ResNet56, with more actions in the action head, the dy-
namic network achieves more MACs reduction during infer-
ence, but at the cost of prediction performance drops. This
implies that we should trade off the prediction performance
and computation cost when designing the action head in the
application scenarios.

When we reduce the action number m to 1, it means only
one set of channel selection mask is learned and the overall
method degenerates to static network pruning. For VGG16-
BN model, it achieves a 93.38% accuracy with a 51.9%
MACs ratio. For ResNet56 model, it achieves a 92.47% ac-
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Figure 4: The decision feature embedding visualization for normal and adversarial examples on the CIFAR10 test dataset.
In each figure, colored dots denote the embedding of normal examples’ decision features, whose colors represent different
category labels. The gray dots represent all the adversarial examples.

curacy with a 62.68% MACs ratio. These results demon-
strate that conventional static pruning cannot achieve high
computation reduction with high prediction performance.
Therefore, we argue that our novel design for the dynamic
pruning is necessary and effective.

Interpreting Model Runtime Decisions

In this section, we explore the possibility of the proposed
dynamic model for model interpretability. We can visualize
the inference paths (e.g., the runtime layer-wise channel se-
lections) utilized by different inputs to analyze the model’s
functional behavior when making predictions. To this end,
we use the VGG16-BN model for investigation and collect
the action head output on 11 convolutional layers1 of the
10,000 samples in the CIFAR10 test dataset.

We use the Sankey diagram to visualize the decision paths
for different samples. Figure 2 shows the visualization re-
sults. Each long strip node represents an action whose num-
bering rule is L[i] : A[j], where i represents the number
of layers and j represents the action index. Since some ac-
tions have never been adopted by any of the samples, they
are not shown in the figure. Different colored strip links be-
tween action nodes represent the decision paths taken by
the different categories of samples, the width of which are
proportional to the ratio of the samples which take the ac-
tion. It can be seen that similar semantic categories such as
cats and dogs, cars and trucks have similar decision paths,
that is, the distributions for different actions are similar. For
classes with large semantic differences, such as airplanes
and horses, there are significant differences in the decision
paths. The detailed Sankey diagrams for two categories com-
parisons are depicted in the right figures in Figure 2. With
the decision paths visualization, we can explicitly interpret
the functional behavior of the deep models when making
predictions.

1VGG16-BN has 12 convolution layers. We exclude the first
layer from making decisions.

Comparison with Other Dynamic Pruning Method

In this section, we want to compare the inference behaviors
of our method with other dynamic pruning method such as
FBS. For each sample, a series of discrete action probabil-
ity distributions {pl ∈ Rm|l = 1, · · · , L} are produced as
the testing sample passes through our model. We concate-
nate together the probability values of each layer to form the
“decision feature” of this sample. We use UMAP (McInnes,
Healy, and Melville 2018) to visualize the decision features
produced by our method. Compared to FBS, we also use
UMAP to visualize the concatenation of all layer channel
modulation values produced by its decision unit.

Figure 3 shows the comparison result. Each point repre-
sents a sample, and colors represent different categories. In
the embedding space, the decision features corresponding to
the semantically close categories are closer, indicating that
the distances of the decision features are related to seman-
tic similarity. Compared to FBS, our method results in more
distinct and diverse channel-wise modulation values for each
sample. This demonstrates that FBS may not perform real
dynamic pruning, since most of channel-wise gating values
converge to a common channel compression scheme. This
result validate the necessity of our discrete channel selection
design.

Adversarial Example Detection

In this section, we will show how to use the dynamic pruning
network to detect adversarial examples. The proposed dy-
namic pruning network introduces a decision unit to output
discrete actions in each layer. This way of discretizing the in-
ternal features can help to understand the model’s functional
behavior and further analyze the model’s predictions. For
the adversarial sample, we consider that the decision paths
within the network are significantly different from the nor-
mal sample. This difference can be used as a representative
feature to distinguish between normal and adversarial sam-
ples.
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Table 4: Adversarial sample detection AUROC(%) for different methods. Higher is better.

Dataset Attack
Detection AUROC (%) Our Detection AUROC (%)

KD + PU LID MAHA FBS Adaboost RF GBDT

CIFAR10

FGSM 81.21 99.71 99.92 100.00 100.00 100.00 100.00
PGD 82.28 96.39 99.59 99.75 99.97 99.81 99.94
DeepFool 81.07 88.47 91.53 81.16 88.43 84.27 91.44
CW 55.93 82.93 95.85 97.49 99.14 97.67 99.27

CIFAR100

FGSM 89.90 89.27 99.77 100.00 100.00 100.00 99.99
PGD 83.67 85.19 96.72 99.14 99.65 99.21 99.65
DeepFool 80.22 64.80 83.93 74.31 78.42 72.22 81.03
CW 77.37 75.35 91.65 96.62 98.60 97.19 98.76

SVHN

FGSM 82.67 95.72 99.63 99.95 99.96 99.85 99.95
PGD 66.19 87.41 97.14 98.99 98.82 97.53 99.17
DeepFool 89.71 88.81 95.46 90.34 86.39 83.74 92.21
CW 76.57 85.66 92.13 96.35 96.70 93.66 97.66

Figure 4 shows how we use UMAP to visualize the de-
cision features of the normal and adversarial examples. We
use the dynamically pruned ResNet34 for feature extraction.
All colored dots represent normal examples. Different col-
ors represent different categories. The gray dots represent all
the adversarial samples. It can be seen that there is a clear
separation between the adversarial sample and the normal
sample in the embedding space. The decision features from
FGSM (Goodfellow, Shlens, and Szegedy 2014) adversar-
ial samples have large distances from all normal samples,
and for some more powerful attack methods such as Deep-
Fool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) and �2-
version C&W attack (Carlini and Wagner 2017), there are
overlaps between decision features. This can explain why
the FGSM attack is easier to be detected in the following
experiment section.

Based on the above observations, we propose a novel
approach to conduct adversarial sample detection as a bi-
nary classification task. For a testing sample, we collect the
layer-wise decision probability vectors {p1,p1, · · · ,pL}
and then concatenate them together to form the decision fea-
ture P = concat(p1,p1, · · · ,pL). A variety of binary clas-
sifiers can then be trained on these features as adversarial
example detectors. We will further show the experimental
setup and result details in the following section.

Experiments

In this section, we present the adversarial sample detection
results based on the layerwise decision feature discussed
in the previous section. Similar to the experimental setups
in (Lee et al. 2018), we train a ResNet-34 model for classi-
fying CIFAR10, CIFAR100, and SVHN datasets. Then the
adversarial samples are generated with these four attacking
methods, including FGSM, PGD (Kurakin, Goodfellow, and
Bengio 2016), DeepFool and �2-version C&W attack.

For our method, we first use dynamic pruning technique
to train the decision units and channel selection masks for
each residual block. Then each sample’s runtime layer-wise
decision probability vectors are collected and concatenated

as its decision feature. Unlike the previous procedure, the
original model weights are not fine-tuned, since we want to
examine the original model functional behavior without al-
tering its decision process. This practice can thus be applied
to any pre-trained models as an auxiliary network for analy-
sis.

In the experiments, we utilize three conventional binary
classifiers Adaboost, Random Forest (RF) and Gradient
Boosting Decision Tree (GBDT) as detectors trained on de-
cision features. We compare with three state-of-the-art logis-
tic regression detectors, including kernel density (KD) and
predictive uncertainty (PU) (Feinman et al. 2017), the lo-
cal intrinsic dimensionality scores (LID) (Ma et al. 2018)
and the Mahalanobis distance scores (MAHA) (Lee et al.
2018). Only 10% of randomly chosen test samples are used
for training the binary classifiers and rest for evaluation.

Table 4 summarizes the detection Area Under ROC (AU-
ROC) metric for each method. Based on the discriminative
layerwise decision features, our method outperforms other
detection methods across different attacking methods. Since
the adversarial sample at the input is close to the normal
sample, and there is a large deviation at the prediction end,
it can be inferred that its propagation behavior is different
from the normal sample. The proposed method can further
amplify this difference due to the characteristics of its layer-
wise discrete decisions, which is more conducive to detect-
ing the adversarial sample in the feature space.

Conclusion

In this paper, we propose a novel dynamic network pruning
model with interpretable layerwise channel selection. We
design a new decision head for each layer weight channel se-
lections, where the action head and channel selection masks
are jointly trained in a differentiable manner. By means of
the runtime layerwise decision features generated by the our
model, we propose a novel adversarial sample detection al-
gorithm. Experiments show our method can achieve better
pruning results and significantly improve model robustness
against adversarial attacks.
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