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Abstract

Deep learning has shown its great promise in various biomed-
ical image segmentation tasks. Existing models are typically
based on U-Net and rely on an encoder-decoder architecture
with stacked local operators to aggregate long-range informa-
tion gradually. However, only using the local operators limits
the efficiency and effectiveness. In this work, we propose the
non-local U-Nets, which are equipped with flexible global ag-
gregation blocks, for biomedical image segmentation. These
blocks can be inserted into U-Net as size-preserving pro-
cesses, as well as down-sampling and up-sampling layers.
We perform thorough experiments on the 3D multimodality
isointense infant brain MR image segmentation task to eval-
uate the non-local U-Nets. Results show that our proposed
models achieve top performances with fewer parameters and
faster computation.

Introduction

In recent years, deep learning methods, such as fully con-
volutional networks (FCN) (Long, Shelhamer, and Dar-
rell 2015), U-Net (Ronneberger, Fischer, and Brox 2015),
Deeplab (Chen et al. 2018; Wang and Ji 2018), and Re-
fineNet (Lin et al. 2017a), have continuously set perfor-
mance records on image segmentation tasks. In particular,
U-Net has served as the backbone network for biomedi-
cal image segmentation. Basically, U-Net is composed of a
down-sampling encoder and an up-sampling decoder, along
with skip connections between them. It incorporates both lo-
cal and global contextual information through the encoding-
decoding process.

Many variants of U-Net have been developed and they
achieved improved performance on biomedical image seg-
mentation tasks. For example, residual deconvolutional net-
work (Fakhry, Zeng, and Ji 2017) and residual symmetric U-
Net (Lee et al. 2017) addressed the 2D electron microscopy
image segmentation task by building a U-Net based net-
work with additional short-range residual connections (He
et al. 2016a). In addition, U-Net was extended from 2D
to 3D cases for volumetric biomedical images, leading to
models like 3D U-Net (Çiçek et al. 2016), V-Net (Milletari,
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Navab, and Ahmadi 2016), and convolution-concatenate
3D-FCN (CC-3D-FCN) (Nie et al. 2018).

Despite the success of these studies, we conduct an in-
depth study of U-Net based models and observe two lim-
itations shared by them. First, the encoder usually stacks
size-preserving convolutional layers, interlaced with down-
sampling operators, to gradually reduce the spatial sizes of
feature maps. Both convolutions and down-sampling opera-
tors are typically local operators, which apply small kernels
to scan inputs and extract local information. Stacking them
in a cascade way results in large effective kernels and is able
to aggregate long-range information. As the biomedical im-
age segmentation usually benefits from a wide range of con-
textual information, most prior models have a deep encoder,
i.e., an encoder with many stacked local operators. It hurts
the efficiency of these models by introducing a considerably
large amount of training parameters, especially when more
down-sampling operators are employed, since the number of
feature maps usually gets doubled after each down-sampling
operation. In addition, more down-sampling operators cause
the loss of more spatial information during encoding, which
is crucial for biomedical image segmentation. Second, the
decoder is built in a similar way to the encoder, by replac-
ing down-sampling operators with up-sampling operators.
Popular up-sampling operators, like deconvolutions and un-
pooling layers, are local operators as well (Gao et al. 2019).
However, the up-sampling process involves the recovery of
spatial information, which is hard without taking global in-
formation into consideration. To conclude, it will improve
both the effectiveness and efficiency of U-Net based models
to develop a new operator capable of performing non-local
information aggregation. As U-Net has size-preserving pro-
cesses, as well as down-sampling and up-sampling layers,
the new operator is supposed to be flexible to fit these cases.

In this work, we address the two limitations and propose
the non-local U-Nets for biomedical image segmentation. To
address the first limitation above, we propose a global aggre-
gation block based on the self-attention operator (Vaswani
et al. 2017; Wang et al. 2018; Yuan et al. 2019), which is
able to aggregate global information without a deep encoder.
This block is further extended to an up-sampling global ag-
gregation block, which can alleviate the second problem. To
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the best of our knowledge, we are the first to make this ex-
tension. We explore the applications of these flexible global
aggregation blocks in U-Net on the 3D multimodality isoin-
tense infant brain magnetic resonance (MR) image segmen-
tation task. Experimental results show that our proposed
non-local U-Nets are able to achieve the top performance
with fewer parameters and faster computation.

Non-local U-Net

In this section, we introduce our proposed non-local U-Nets.
We first illustrate the specific U-Net framework used by
our models. Based on the framework, our models are com-
posed of different size-preserving, down-sampling and up-
sampling blocks. We describe each block and propose our
global aggregation blocks to build the non-local U-Nets.

U-Net Framework

We describe the non-local U-Nets in 3D cases. Lower or
higher dimensional cases can be easily derived. An illus-
tration of the basic U-Net framework is given in Fig. 1.
The input first goes through an encoding input block, which
extracts low-level features. Two down-sampling blocks are
used to reduce the spatial sizes and obtain high-level fea-
tures. Note that the number of channels is doubled after
each down-sampling block. A bottom block then aggregates
global information and produces the output of the encoder.
Correspondingly, the decoder uses two up-sampling blocks
to recover the spatial sizes for the segmentation output. The
number of feature maps is halved after an up-sampling op-
eration.

To assist the decoding process, skip connections copy
feature maps from the encoder to the decoder. Differently,
in the non-local U-Nets, the copied feature maps are com-
bined with decoding feature maps through summation, in-
stead of concatenation used in U-Net (Ronneberger, Fischer,
and Brox 2015; Yuan et al. 2018). The intuitive way to com-
bine features from the encoder and the decoder is concatena-
tion, providing two sources of inputs to the up-sampling op-
eration. Using summation instead has two advantages (Lin
et al. 2017b). First, summation does not increase the num-
ber of feature maps, thus reducing the number of trainable
parameters in the following layer. Second, skip connections
with summation can be considered as long-range residual
connections, which are known to be capable of facilitating
the training of models.

Given the output of the decoder, the output block pro-
duces the segmentation probability map. Specifically, for
each voxel, the probabilities that it belongs to each segmen-
tation class are provided, respectively. The final segmenta-
tion map can be obtained through a single argmax operation
on this probability map. The details of each block are intro-
duced in following sections.

Residual Blocks

Residual connections have been shown to facilitate the train-
ing of deep learning models and achieve better perfor-
mance (He et al. 2016a). Note that skip connections with

Figure 1: An illustration of the U-Net framework employed
by our proposed non-local U-Nets. In this example, the in-
puts have 2 channels and the segmentation task has 4 classes.

summation in our U-Net framework are equivalent to long-
range residual connections. To further improve U-Net, the
studies in (Lee et al. 2017; Lin et al. 2017a; Fakhry, Zeng,
and Ji 2017) proposed to add short-range residual connec-
tions as well. However, those studies did not apply resid-
ual connections for down-sampling and up-sampling blocks.
Down-sampling block with residual connections has been
explored in ResNet (He et al. 2016a). We explore the idea
for up-sampling blocks based on our proposed up-sampling
global aggregation block, as discussed in next section.

In our proposed model, four different residual blocks are
used to form a fully residual network, as shown in Fig. 2.
Notably, all of them apply the pre-activation pattern (He et
al. 2016b). Fig. 2(a) shows a regular residual block with
two consecutive convolutional layers. Here, batch normal-
ization (Ioffe and Szegedy 2015) with the ReLU6 activa-
tion function is used before each convolutional layer. This
block is used as the input block in our framework. The out-
put block is constructed by this block followed by a 1×1×1
convolution with a stride of 1. Moreover, after the summa-
tion of skip connections, we insert one such block. Fig. 2(b)
is a down-sampling residual block. A 1× 1× 1 convolution
with a stride of 2 is used to replace the identity residual con-
nection, in order to adjust the spatial sizes of feature maps
accordingly. We employ this block as the down-sampling
blocks. Fig. 2(c) illustrates our bottom block. Basically, a
residual connection is applied on the proposed global aggre-
gation block. The up-sampling residual block is provided in
Fig. 2(d). Similar to the down-sampling block in Fig. 2(b),
the identity residual connection is replaced by a 3 × 3 × 3
deconvolution with a stride of 2 and the other branch is the
up-sampling global aggregation block. Our model uses this
block as the up-sampling blocks.

Global Aggregation Block

To achieve global information fusion through a block, each
position of the output feature maps should depend on all
positions of the input feature maps. Such an operation is
opposite to local operations like convolutions and decon-
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Figure 2: An illustration of the residual blocks employed by our proposed non-local U-Nets. Details are provided in Section
“Residual Block”.

volutions, where each output location has a local receptive
field on the input. In fact, a fully-connected layer has this
global property. However, it is prone to over-fitting and does
not work well in practice. We note that the self-attention
block used in the Transformer (Vaswani et al. 2017) com-
putes outputs at one position by attending to every position
of the input. Later, the study in (Wang et al. 2018) proposed
non-local neural networks for video classification, which
employed a similar block. While both studies applied self-
attention blocks with the aim of capturing long-term depen-
dencies in sequences, we point out that global information of
image feature maps can be aggregated through self-attention
blocks.

Based on this insight, we propose the global aggregation
block, which is able to fuse global information from feature
maps of any size. We further generalize it to handle down-
sampling and up-sampling, making it a block that can be
used anywhere in deep learning models.

Let X represent the input to the global aggregation block
and Y represent the output. For simplicity, we use Conv 1N
to denote a 1 × 1 × 1 convolution with a stride of 1 and N
output channels. Note that Conv 1N does not change the
spatial size. The first step of the proposed block is to gener-
ate the query (Q), key (K) and value (V ) matrices (Vaswani
et al. 2017), given by

Q = Unfold(QueryTransformCK
(X)),

K = Unfold(Conv 1CK
(X)),

V = Unfold(Conv 1CV
(X)), (1)

where Unfold(·) unfolds a D ×H ×W × C tensor into a
(D×H×W )×C matrix, QueryTransformCK

(·) can be
any operation that produces CK feature maps, and CK , CV

are hyper-parameters representing the dimensions of the
keys and values. Suppose the size of X is D×H ×W ×C.
Then the dimensions of K and V are (D ×H ×W )× CK

and (D×H ×W )×CV , respectively. The dimension of Q,
however, is (DQ ×HQ ×WQ)×CK , where DQ, HQ,WQ

depend on QueryTransform(·). The left part of Fig. 3 il-
lustrates this step. Here, a D ×H ×W ×C tensor is repre-
sented by a D ×H ×W cube, whose voxels correspond to
C-dimensional vectors.

Each row of the Q, K and V matrices denotes a query
vector, a key vector and a value vector, respectively. Note
that the query vector has the same dimension as the key vec-
tor. Meanwhile, the number of key vectors is the same as
that of value vectors, which indicates a one-to-one corre-
spondence. In the second step, the attention mechanism is
applied on Q, K and V (Vaswani et al. 2017), defined as

A = Softmax(
QKT

√
CK

),

O = AV, (2)

where the dimension of the attention weight matrix A is
(DQ × HQ × WQ) × (D × H × W ) and the dimension
of the output matrix O is (DQ × HQ × WQ) × CV . To
see how it works, we take one query vector from Q as an
example. In the attention mechanism, the query vector inter-
acts with all key vectors, where the dot-product between the
query vector and one key vector produces a scalar weight for
the corresponding value vector. The output of the query vec-
tor is a weighted sum of all value vectors, where the weights
are normalized through Softmax. This process is repeated
for all query vectors and generates (DQ ×HQ ×WQ) CV -
dimensional vectors. This step is illustrated in the box of
Fig. 3. Note that Dropout (Srivastava et al. 2014) can be ap-
plied on A to avoid over-fitting. As shown in Fig. 3, the final
step of the block computes Y by

Y = Conv 1CO
(Fold(O)), (3)

where Fold(·) is the reverse operation of Unfold(·) and
CO is a hyper-parameter representing the dimension of the
outputs. As a result, the size of Y is DQ×HQ×WQ×CO.

In particular, it is worth noting that the spatial size of
Y is determined by that of the Q matrix, i.e., by the
QueryTransformCK

(·) function in (1). Therefore, with
appropriate QueryTransformCK

(·) functions, the global
aggregation block can be flexibly used for size-preserving,
down-sampling and up-sampling processes. In our proposed
non-local U-Nets, we set CK = CV = CO and explore two
different QueryTransformCK

(·) functions. For the global
aggregation block in Fig. 2(c), QueryTransformCK

(·) is
Conv 1CK

. For the up-sampling global aggregation block
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Figure 3: An illustration of our proposed global aggregation block. Note that the spatial size of the output is determined by that
of the query (Q) matrix.

in Fig. 2(d), QueryTransformCK
(·) is a 3× 3× 3 decon-

volution with a stride of 2. The use of this block alleviates
the problem that the up-sampling through a single deconvo-
lution loses information. By taking global information into
consideration, the up-sampling block is able to recover more
accurate details.

Results and Discussion

We perform experiments on the 3D multimodality isointense
infant brain MR image segmentation task to evaluate our
non-local U-Nets. The task is to perform automatic segmen-
tation of MR images into cerebrospinal fluid (CSF), gray
matter (GM) and white matter (WM) regions. We first intro-
duce the baseline model and the evaluation methods used in
our experiments. Then the training and inference processes
are described. We provide comparison results in terms of
both effectiveness and efficiency, and conduct ablation stud-
ies to demonstrate that how each global aggregation block
in our non-local U-Nets improves the performance. In addi-
tion, we explore the trade-off between the inference speed
and accuracy based on different overlapping step sizes, and
analyze the impact of patch size. The experimental code and
dataset information have been made publicly available 1.

Experimental Setup

We use CC-3D-FCN (Nie et al. 2018) as our baseline. CC-
3D-FCN is a 3D fully convolutional network (3D-FCN) with
convolution and concatenate (CC) skip connections, which
is designed for 3D multimodality isointense infant brain im-
age segmentation. It has been shown to outperform tradi-
tional machine learning methods, such as FMRIB’s auto-
mated segmentation tool (FAST) (Zhang, Brady, and Smith
2001), majority voting (MV), random forest (RF) (Cri-
minisi and Shotton 2013) and random forest with auto-
context model (LINKS) (Wang et al. 2015). Moreover, stud-
ies in (Nie et al. 2018) has showed the superiority of CC-
3D-FCN to previous deep learning models, like 2D, 3D
CNNs (Zhang et al. 2015), DeepMedic (Kamnitsas et al.

1https://github.com/divelab/Non-local-U-Nets

2017), and the original 3D U-Net (Çiçek et al. 2016). There-
fore, it is appropriate to use CC-3D-FCN as the baseline of
our experiments. Note that our dataset is different from that
in (Nie et al. 2018).

In our experiments, we employ the Dice ratio (DR) and
propose the 3D modified Hausdorff distance (3D-MHD) as
the evaluation metrics. These two methods evaluate the ac-
curacy only for binary segmentation tasks, so it is required
to transform the 4-class segmentation map predicted by our
model into 4 binary segmentation maps for evaluation. That
is, a 3D binary segmentation map should be constructed for
each class, where 1 denotes the voxel in the position belongs
to the class and 0 means the opposite. In our experiments,
we derive binary segmentation maps directly from 4-class
segmentation maps. The evaluation is performed on binary
segmentation maps for CSF, GM and WM.

Specifically, let P and L represent the predicted bi-
nary segmentation map for one class and the correspond-
ing ground truth label, respectively. The DR is given by
DR = 2|P ∩L|/(|P |+ |L|), where | · | denotes the number
of 1’s in a segmentation map and |P ∩L| means the number
of 1’s shared by P and L. Apparently, DR is a value in [0, 1]
and a larger DR indicates a more accurate segmentation.

The modified Hausdorff distance (MHD) (Dubuisson and
Jain 1994) is designed to compute the similarity between
two objects. Here, an object is a set of points where a
point is represented by a vector. Specifically, given two
sets of vectors A and B, MHD is computed by MHD =
max(d(A,B), d(B,A)), where the distance between two
sets is defined as d(A,B) = 1/|A|∑a∈A d(a,B), and the
distance between a vector and a set is defined as d(a,B) =
minb∈B ||a− b||. Previous studies (Wang et al. 2015; Zhang
et al. 2015; Nie et al. 2018) applied MHD for evaluation by
treating a 3D D ×H ×W map as H ×W D-dimensional
vectors. However, there are two more different ways to vec-
torize the 3D map, depending on the direction of forming
vectors, i.e., D × H W -dimensional vectors and D × W
H-dimensional vectors. Each vectorization leads to differ-
ent evaluation results by MHD. To make it a direction-
independent evaluation metric as DR, we define 3D-MHD,
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Table 1: Comparison of segmentation performance between our proposed model and the baseline model in terms of DR. The
leave-one-subject-out cross-validation is used. Larger values indicate better performance.

Model CSF GM WM Average

Baseline 0.9250±0.0118 0.9084±0.0056 0.8926±0.0119 0.9087±0.0066
Non-local U-Net 0.9530±0.0074 0.9245±0.0049 0.9102±0.0101 0.9292±0.0050

Table 2: Comparison of segmentation performance between our proposed model and the baseline model in terms of 3D-MHD.
The leave-one-subject-out cross-validation is used. Smaller values indicate better performance. Note that 3D-MHD gives dif-
ferent results from MHD.

Model CSF GM WM Average

Baseline 0.3417±0.0245 0.6537±0.0483 0.4817±0.0454 0.4924±0.0345
Non-local U-Net 0.2554±0.0207 0.5950±0.0428 0.4454±0.0040 0.4319±0.0313

Table 3: Comparison of segmentation performance on the 13 testing subjects of iSeg-2017 between our proposed model and
the baseline model in terms of DR. Larger values indicate better performance.

Model CSF GM WM

Baseline 0.9324±0.0067 0.9146±0.0074 0.8974±0.0123
Non-local U-Net 0.9557±0.0060 0.9219±0.0089 0.9044±0.0153

which computes the averaged MHD based on the three dif-
ferent vectorizations. A smaller 3D-MHD indicates a higher
segmentation accuracy.

Training and Inference Strategies

Our proposed non-local U-Nets apply Dropout (Srivastava
et al. 2014) with a rate of 0.5 in each global aggregation
block and the output block before the final 1 × 1 × 1 con-
volution. A weight decay (Krogh and Hertz 1992) with a
rate of 2e − 6 is also employed. To train the model, we use
randomly cropped small patches. In this way, we obtain suf-
ficient training data and the requirement on memory is re-
duced. No extra data augmentation is needed. The experi-
mental results below suggest that patches with a size of 323
leads to the best performance. The batch size is set to 5. The
Adam optimizer (Kingma and Ba 2014) with a learning rate
of 0.001 is employed to perform the gradient descent algo-
rithm.

In the inference process, following (Nie et al. 2018), we
extract patches with the same size as that used in training.
For example, to generate 323 patches for inference, we slide
a window of size 323 through the original image with a con-
stant overlapping step size. The overlapping step size must
be smaller than or equal to the patch size, in order to guar-
antee that extracted patches cover the whole image. Conse-
quently, prediction for all these patches provides segmenta-
tion probability results for every voxel in the original im-
age. For voxels that receive multiple results due to overlap-
ping, we average them to produce the final prediction. The
overlapping step size is an important hyper-parameter affect-
ing the inference speed and the segmentation accuracy. A
smaller overlapping step size results in better accuracy, but
increases the inference time as more patches are generated.

We explore the trade-off in our experiments.

Comparison with the Baseline

We compare our non-local U-Nets with the baseline on our
dataset. Following (Nie et al. 2018), the patch size is set to
323 and the overlapping step size for inference is set to 8. To
remove the bias of different subjects, the leave-one-subject-
out cross-validation is used for evaluating segmentation per-
formance. That is, for 10 subjects in our dataset, we train and
evaluate models 10 times correspondingly. Each time one of
the 10 subjects is left out for validation and the other 9 sub-
jects are used for training. The mean and standard deviation
of segmentation performance of the 10 runs are reported.

Tables 1 and 2 provide the experimental results. In terms
of both evaluation metrics, our non-local U-Nets achieve
significant improvements over the baseline model. Due to
the small variances of the results, we focus on one of the 10
runs for visualization and ablation studies, where the mod-
els are trained on the first 9 subjects and evaluated on the
10th subject. A visualization of the segmentation results in
this run is given by Fig. 4. By comparing the areas in red
circles, we can see that our model is capable of catching
more details than the baseline model. We also visualize the
training processes to illustrate the superiority of our model.
Fig. 5 shows the training and validation curves in this run of
our model and the baseline model, respectively. Clearly, our
model converges faster to a lower training loss. In addition,
according to the better validation results, our model does not
suffer from over-fitting.

To further show the efficiency of our proposed model, we
compare the number of parameters as reported in Table 4.
Our model reduces 28% parameters compared to CC-3D-
FCN and achieves better performance. A comparison of in-
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Table 4: Comparison of the number of parameters between
our proposed model and the baseline model.

Model Number of Parameters

Baseline 2,534,276
Non-local U-Net 1,821,124

Table 5: Comparison of inference time between our pro-
posed model and the baseline model. The leave-one-subject-
out cross-validation is used. The patch size is set to 323 and
the overlapping step size for inference is set to 8.

Model Inference Time (min)

Baseline 3.85±0.15
Non-local U-Net 3.06±0.12

Figure 4: Visualization of the segmentation results on the
10th subject by our proposed model and the baseline model.
Both models are trained on the first 9 subjects. The first
column shows the original segmentation maps. The sec-
ond, third and fourth columns show the binary segmentation
maps for CSF, GM and WM, respectively.

ference time is also provided in Table 5. The settings of our
device are - GPU: Nvidia Titan Xp 12GB; CPU: Intel Xeon
E5-2620v4 2.10GHz; OS: Ubuntu 16.04.3 LTS.

Since our data has been used as the training data in the
iSeg-2017 challenge, we also compare the results evaluated
on the 13 testing subjects in Table 3. According to the leader
board, our model achieves one of the top performances. Re-
sults in terms of DR are reported since it is the only shared
evaluation metric.

Ablation Studies of Different Modules

We perform ablation studies to show the effectiveness of
each part of our non-local U-Nets. Specifically, we compare
the following models:

Model1 is a 3D U-Net without short-range residual con-

Figure 5: Comparison of training processes and validation
results between our proposed model and the baseline model
when training on the first 9 subjects and using the 10th sub-
ject for validation.

Table 6: Ablation study by comparing segmentation perfor-
mance between different models in terms of DR. All models
are trained on the first 9 subjects and evaluated on the 10th

subject. Larger values indicate better performance. Details
of models are provided in the text.

Model CSF GM WM Average

Model1 0.9585 0.9099 0.8625 0.9103
Model2 0.9568 0.9172 0.8728 0.9156
Model3 0.9576 0.9198 0.8749 0.9174
Model4 0.9578 0.9210 0.8769 0.9186
Model5 0.9554 0.9225 0.8804 0.9194
Non-local U-Net 0.9572 0.9278 0.8867 0.9239

Table 7: Ablation study by comparing segmentation perfor-
mance between different models in terms of 3D-MHD. All
models are trained on the first 9 subjects and evaluated on
the 10th subject. Smaller values indicate better performance.
Note that 3D-MHD gives different results from MHD. De-
tails of models are provided in the text.

Model CSF GM WM Average

Model1 0.2363 0.6277 0.4705 0.4448
Model2 0.2404 0.6052 0.4480 0.4312
Model3 0.2392 0.5993 0.4429 0.4271
Model4 0.2397 0.5926 0.4336 0.4220
Model5 0.2444 0.5901 0.4288 0.4211
Non-local U-Net 0.2477 0.5692 0.4062 0.4077

nections. Down-sampling and up-sampling are implemented
by convolutions and deconvolutions with a stride of 2, re-
spectively. The bottom block is simply a convolutional layer.
Note that the baseline model, CC-3D-FCN, has showed
improved performance over 3D U-Net (Nie et al. 2018).
However, the original 3D U-Net was not designed for this
task (Çiçek et al. 2016). In our experiments, we appropri-
ately set the hyperparameters of 3D U-Net and achieve bet-
ter performance.

Model2 is Model1 with short-range residual connections,
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Figure 6: Changes of segmentation performance in terms of
DR, with respect to different overlapping step sizes during
inference. The model is trained on the first 9 subjects and
evaluated on the 10th subject.

i.e., the blocks in Fig. 2(a) and (b) are applied. The bot-
tom block and up-sampling blocks are the same as those in
Model1.

Model3 replaces the first up-sampling block in Model2
with the block in Fig. 2(d).

Model4 replaces both up-sampling blocks in Model2 with
the block in Fig. 2(d).

Model5 replaces the bottom block in Model2 with the
block in Fig. 2(c).

All models are trained on the first 9 subjects. We report
the segmentation performance on the 10th subject in Table 6
and Table 7. The results demonstrate how different global
aggregation blocks in our non-local U-Nets improve the per-
formance.

Impact of the Overlapping Step Size

As discussed above, a small overlapping step size usually
results in better segmentation, due to the ensemble effect.
However, with a small overlapping step size, the model has
to perform inference for more validation patches and thus
decreases the inference speed. We explore the trade-off in
our non-local U-Nets by setting the overlapping step sizes
to 4, 8, 16, 32, respectively. Again, we train our model on
the first 9 subjects and perform evaluation on the 10th sub-
ject. The patch size is set to 323. According to the over-
lapping step sizes, 11880, 1920, 387, 80 patches need to
be processed during inference, as shown in Fig. 7. In addi-
tion, Fig. 6 plots the changes of segmentation performance
in terms of DR. Obviously, 8 and 16 are good choices that
achieve accurate and fast segmentation results.

Impact of the Patch Size

The patch size affects the total number of distinct training
samples. Meanwhile, it controls the range of available global
information when performing segmentation for a patch. To
choose the appropriate patch size for the non-local U-Nets,
we perform a grid search by training on the first 9 sub-
jects and evaluating on the 10th subject with the overlapping
step size of 8. Experiments are conducted with five different
patch sizes: 163, 243, 323, 403, 483. The results are provided

Figure 7: Changes of the number of validation patches for
the 10th subject, with respect to different overlapping step
sizes during inference.

Figure 8: Changes of segmentation performance in terms
of DR, with respect to different patch sizes. The model is
trained on the first 9 subjects and evaluated on the 10th sub-
ject.

in Fig. 8, where 323 obtains the best performance and is se-
lected as the default setting of our model.

Conclusion

In this work, we propose the non-local U-Nets for biomed-
ical image segmentation. As pointed out, prior U-Net based
models do not have an efficient and effective way to ag-
gregate global information by using stacked local operators
only, which limits their performance. To address these prob-
lems, we propose a global aggregation block which can be
flexibly used in U-Net for size-preserving, down-sampling
and up-sampling processes. Experiments on the 3D mul-
timodality isointense infant brain MR image segmentation
task show that, with global aggregation blocks, our non-local
U-Nets outperform previous models significantly with fewer
parameters and faster computation.
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