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Abstract

Factorization Machine (FM) has been a popular approach in
supervised predictive tasks, such as click-through rate pre-
diction and recommender systems, due to its great perfor-
mance and efficiency. Recently, several variants of FM have
been proposed to improve its performance. However, most of
the state-of-the-art prediction algorithms neglected the field
information of features, and they also failed to discriminate
the importance of feature interactions due to the problem of
redundant features. In this paper, we present a novel algo-
rithm called Attention-over-Attention Field-aware Factoriza-
tion Machine (AoAFFM) for better capturing the characteris-
tics of feature interactions. Specifically, we propose the field-
aware embedding layer to exploit the field information of fea-
tures, and combine it with the attention-over-attention mecha-
nism to learn both feature-level and interaction-level attention
to estimate the weight of feature interactions. Experimental
results show that the proposed AoAFFM improves FM and
FFM with large margin, and outperforms state-of-the-art al-
gorithms on three public benchmark datasets.

Introduction

Predictive analytics is a popular topic in both industry and
academics. There are companies, such as Alibaba, Microsoft
and Google, who tried to predict users’ preferences for
click-through rate prediction (Zhou et al. 2017)(Shan et al.
2016)(Cheng et al. 2016), and academic researchers like
GroupLens1, who built the Movielens dataset for rating pre-
diction in recommender systems research. Typically, a pre-
dictive task is formulated as estimating a function that maps
features to some target, for example real-valued target for
regression and categorical target for classification (He and
Chua 2017).

Among plenty of prediction algorithms, factorization ma-
chine (FM) is one of the most popular ones due to its great
performance and efficiency. The key of FM is that it en-
hances linear regression with feature interactions and esti-
mates the weight of feature interaction with factorization
models, which has better generalization ability and can be
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1https://grouplens.org/

optimized in linear time. However, there are still some draw-
backs that limit the performance of FM.

First, different from continuous features in FM, features
in web applications are mostly discrete and categorical. In
practice, categorical features will usually be converted into
a set of binary features according to their feature values
(Cheng et al. 2016)(He and Chua 2017)(Shan et al. 2016).
However, this results in the loss of field information, thus
failing to fully capture the characteristics of features. Sec-
ond, in real-world datasets, there are many homogeneous
features or redundant features that describe similar mean-
ings in the feature sets of the data. Using FM to learn the
feature interaction will cause that embedding vectors learned
for these features become similar, and thus wrongly as-
signs more weights to these feature interactions. For exam-
ple, in the public context-aware application recommenda-
tion dataset Frappe, there are features “weekday=sunday”
and ”isweekend=weekend” to show the detailed information
of the date. Since these two features co-occur often in the
dataset, their embedding vectors will be similar, and there-
after will affect the weight of feature interactions. (Xiao et
al. 2017) utilized the attention mechanism to discriminate
the importance of feature interactions, however, we argue
that since they only utilized the element wise product of em-
bedding vectors as the input of their attention network, inter-
actions that include features of similar meanings may have
similar attention.

To address these limitations, we propose our Attention-
over-Attention Field-aware Factorization Machine
(AoAFFM) to better capture the characteristics of fea-
tures and feature interactions. Specifically, we propose the
field-aware embedding layer to exploit the field information
of features and combine it with the attention-over-attention
mechanism to learn both feature-level and interaction-level
attention to estimate the weights of feature interactions.
More importantly, AoAFFM characterizes more detailed
embedding vectors of features according to their field
information, it also learns a feature-level attention to
capture more accurate weights of feature interactions from
embedding vectors and an interaction-level attention to
discriminate the difference between redundant feature
interactions. We conduct extensive experiments on three
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public datasets to validate our intuition. Results show
that AoAFFM outperforms the state-of-the-art prediction
algorithms.

The main contributions of this work are as follows.
• We observe that most of the state-of-the-art prediction al-

gorithms neglect the field information of features and fail
to discriminate features of similar meanings.

• We propose a novel algorithm called Attention-over-
Attention Field-aware Factorization Machine (AoAFFM).
AoAFFM exploits the field information of features, and
better captures the characteristics of feature interactions
to address the problem of redundant features.

• Extensive experiments show that AoAFFM outperforms
the state-of-the-art algorithms on Movielens and Frappe
datasets, and also shows promising results on the public
click-through rate prediction dataset. We also notice that
the field-aware embedding layer works better when each
field has more features.

Related Works

Factorization Machine has been a popular approach in super-
vised predictive tasks, such as click-through rate prediction
and recommendation systems, due to its great performance
and efficiency. Many variants of FM have been proposed
in recent years. Generally, there are two kinds of variants
to FM. The first kind is introducing the key of FM, that is
feature interactions, into deep neural network architectures.
(Cheng et al. 2016) proposed the Wide&Deep algorithm for
App recommendation in Google Play, which uses a deep
learning component on the concatenation of feature embed-
ding vectors to learn feature interactions. (Shan et al. 2016)
proposed DeepCross to automatically learn feature combi-
nations. In (Qu et al. 2016), a novel algorithm named PNN
was proposed to utilize multi-layer perceptrons to learn fea-
ture interactions with concatenated FM embedding vectors
for multi-field categorical data. However, PNN captures lit-
tle low-order feature interactions. To model both lower-order
and high-order feature interactions, (Guo et al. 2017) pro-
posed a new neural network model called DeepFM to model
feature interactions of all order. Recently, (Yang et al. 2019)
proposed Operation-aware Neural Networks (ONN), which
uses FFM to learn different embeddings for different oper-
ations, such as convolutional operations and product opera-
tions, in forming interactions.

The other kind of FM’s variants is to solve the drawbacks
of FM. Since (He et al. 2017) pointed out that the inner
product of embedding vectors is simply the linear combi-
nation of the multiplication of latent factors of embedding
vectors, (He and Chua 2017) developed a novel NFM model
to deepen FM under the neural network framework for learn-
ing higher-order and non-linear feature interactions. (Juan
et al. 2016) associated multiple embedding vectors for each
feature because they argued that feature interactions with
features from different fields should have different embed-
ding vectors. Furthermore, (Xiao et al. 2017) noticed that
FM fails to discriminate the importance of feature interac-
tions, thus proposed a novel model called attentional fac-
torization machine (AFM) to utilize attention mechanism to

estimate the weight of feature interactions. However, AFM
only utilizes the element wise product of embedding vectors
as the input of their attention network, so those redundant
feature interactions that include features of similar mean-
ings should have similar attention. To more accurately dis-
criminate the importance of feature interactions, we propose
to apply feature-level and interaction-level attention by us-
ing attention-over-attention mechanism. Besides, (Zhou et
al. 2018) recently breaks the bottleneck that FM models gen-
erally compress user behaviors into a length-fixed embed-
ding. They proposed Deep Interest Network (DIN), which
uses a local activation unit to adaptively learn from sequen-
tial user behaviors.

Preliminaries

To begin with, we first describe some notations in our model.
Let us assume that the feature matrix X ∈ Rn∗m, where the
i-th row xi ∈ Rm of X describes one instance with m fea-
tures and the label matrix Y ∈ Rn∗1 is the prediction target
of all n instances. This representation with data matrices and
feature vectors is common in machine-learning approaches
such as linear regression or support vector machines.

Factorization Machine

The key of Factorization Machine is that it embeds fea-
tures into a latent space and models feature interactions with
the inner product of their embedding vectors (He and Chua
2017). Given a real-valued feature vector x ∈ Rm, FM esti-
mates its target as follows.

ŷFM (x) = ω0 +

m∑

i=1

ωixi +

m∑

i=1

m∑

j=i+1

〈vi,vj〉xixj . (1)

where 〈·, ·〉 stands for the inner product of vectors, ω0 is the
global bias, ωi is the weight of the i-th feature in the linear
regression part, xi is the feature value of the i-th feature,
{vi,vj} ∈ Rk(k � m) are the embedding vectors of the
i-th feature and the j-th feature. The inner product of vi and
vj defines the weight of feature interactions. In this way, FM
is able to estimate reliable parameters even in highly sparse
data where standard models fail. Note that in FM, features
are represented as real-valued variables.

Field-aware Factorization Machine

Field-aware Factorization Machine (FFM) actually orig-
inates from tensor factorization (Rendle and Schmidt-
Thieme 2010)(Jahrer et al. 2012). In FM, each feature in-
teraction shares the same embedding vectors. However, in
practice, features often belong to different fields. Thus, FFM
assumes that there should be different embedding vectors
for feature interactions in different fields. For example, the
feature “userID=u00001” belongs to field “userID”, and has
feature value “u00001”, so it should have different em-
bedding vectors with feature “weather=sunny” and feature
“weekday=Monday”. To be more formal, we have

ŷFFM (x) = ω0 +
m∑

i=1

ωixi +

m∑

i=1

m∑

j=i+1

〈vi,fkj
,vj,fki

〉xixj . (2)
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Figure 1: The neural network architecture of Attention-over-
Attention Field-aware Factorization Machine

where fkj
is the kj-th field that the j-th feature belongs to,

and vi,fkj
is the embedding vector of the i-th feature for

field fkj
. The other notions have the same meaning with FM.

Note that usually the size of the embedding vector in FFM
is smaller than that in FM because each embedding vector
in FFM only needs to learn the effect with a specific field.

Attention-over-Attention Field-aware

Factorization Machine

In this section, we will give a detailed introduction to our
proposed Attention-over-Attention Field-aware Factoriza-
tion Machine (AoAFFM). Figure 1 illustrates the neural net-
work architecture of AoAFFM. The input layer is similar
with FM, which adopts a sparse representation for input fea-
tures. Then, the field-aware embedding layer embeds each
non-zero feature into a multiple dense vector. Next, the field-
aware interaction layer gives the element-wise product of
interacted vectors and the attention-over-attention layer esti-
mate the feature-level and interaction-level attention for fea-
ture interactions. At last, the prediction layer gives the final
estimation of the target.

Field-aware Embedding Layer

First, we propose a new field-aware embedding layer in our
neural network modelling. Specifically, the field-aware em-
bedding layer contains multiple fully connected layers that
project each feature into multiple dense vector representa-
tions, where each dense vector representation belongs to a
specific field. Formally, let Vi be the embedding matrix of
the i-th feature xi, where each row is the embedding vec-
tor for a field. Then we have a set of field-aware embedding
vectors VX = {V1x1,V2x2, . . . ,Vmxm}, and each feature
xi also belongs to its field fki .

Field-aware Interaction Layer

After the field-aware embedding layer, we feed the embed-
ding vectors VX into the field-aware interaction layer to
model feature interactions. Firstly, we expand m features
to m(m − 1)/2 feature interactions. For each feature in-
teraction, we estimate its weight using element-wise prod-
uct as in Figure 2. That is, if the first feature belongs to
field f1 and the second feature belongs to field f2, their
element-wise product through field-aware interaction layer

Figure 2: Field-aware Interaction Layer.

is (v1,f2 , v2,f1). Formally, we can express the output of the
field-aware interaction layer as follows:

fFI(VX) = {(vi,fkj
, vj,fki

)xixj}(i,j)∈F (3)

where F stands for the set of m(m − 1)/2 feature interac-
tions. In the following, we write the output in the form of a
matrix, denoted as product matrix P .

Attention-over-Attention Layer

After the field-aware interaction layer, we get the element-
wise product matrix P of embedding vectors of features.
Then we utilize attention-over-attention mechanism to learn
a feature-level attention to discriminate the importance of
feature interactions and an interaction-level attention to ad-
dress the redundant features problem. Specifically, in the
feature-level attention, we feed the product matrix P into
an attention network row-wisely. While in the interaction-
level attention, we utilize weight parameters on the output
of feature-level attention, to estimate the weight of feature
interactions directly on the interaction level.

Feature-level Attention Network To discriminate the im-
portance of feature interactions, we apply the feature-level
attention network, which is a feed forward neural network,
on the row vector of product matrix P , where each row is the
element-wise product of embedding vectors for a feature in-
teraction. We denote αij as the feature-level attention score
for each feature interaction xixj . Formally, the feature-level
attention network is defined as follows.

α′
ij = hT

αReLU(WαPr + bα)

αij =
exp(α′

ij)∑
(i,j)∈F exp(α′

ij)

(4)

where Wα ∈ Rt1∗K , bα ∈ Rt1 ,hα ∈ Rt1 are the parame-
ters of the attention network, and t1 is the size of the hidden
layer. Pr = (vi,fkj

, vj,fki
)xixj , and r stands for the posi-

tion that feature interaction xixj is in the r-th row of prod-
uct matrix P . ReLU(·) is the rectified linear unit activation
function for non-linearity. The final attention score αij for
feature interaction xixj is given through the softmax func-
tion. Note that the output of feature-level attention network,
denoted as α, is a ‖F‖ dimensional vector, where each en-
try is the attention score for each feature interaction. After
we obtain the attention score αij for each feature interac-
tion from the feature-level attention, we multiply it with the
element-wise product of each feature interaction, so we have
αij(vi,fkj

, vj,fki
)xixj as the output.
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Interaction-level Attention Network Although the
feature-level attention network learns weights for feature
interactions, it cannot address the redundant features
problem. Because we use FM or FFM to learn embedding
vectors, and it will cause redundant features having similar
embedding vectors. Therefore, feature interactions that
include embedding vectors of redundant features may have
similar attention, which causes too much weights being
assigned on one kind of feature interaction. In order to
discriminate those similar or redundant feature interactions,
we utilize the interaction-level attention layer Q ∈ R‖F‖.
For each output of the feature-level attention network
αij(vi,fkj

, vj,fki
)xixj , Q assigns a weight qij to it. qij is

randomly initialized and jointly trained with the model,
and we have qijαij(vi,fkj

, vj,fki
)xixj as the final weighted

feature interaction, as illustrated in Figure 1. Since feature-
level attention is not learned based on embedding vectors,
even feature interactions include similar embedding vectors
may have different weights, so the model can address the
redundant feature problems by training Q.

More formally, we estimate our target as follows.

ŷAoA(x) =ω0 +

m∑

i=1

ωixi+

pT {
m∑

i=1

m∑

j=i+1

qijαij〈vi,fkj
,vj,fki

〉xixj}
(5)

where αij is the feature-level attention for the feature inter-
action xixj , qij is the interaction-level attention weight for
interaction xixj , and p ∈ RK is the weights for the predic-
tion layer.

Training

To learn the parameters for AoAFFM, we utilized the
squared loss as the objective function for training. We
also added L2 regularization on the weight matrix of both
interaction-level attention layer and feature-level attention
network in the objective function to prevent over-fitting.
Hence, our loss function is as follows.

� =
∑

x∈X

(ŷAoA(x)− y(x))2 + λ1‖Wα‖2 + λ2‖Q‖2 (6)

where λ1 and λ2 are the regularization strength parame-
ters for these two attention mechanisms. In addition, we
also adopted dropout (Srivastava et al. 2014) on the feature-
level attention network and batch normalization (Ioffe and
Szegedy 2015) to avoid over-fitting. The idea of dropout
is to randomly drop neurons of the neural network dur-
ing training to avoid co-adaptations of neurons on train-
ing data, while batch normalization can normalize layer in-
puts to a zero-mean unit-variance Gaussian distribution for
each mini-batch, which leads to faster convergence and bet-
ter performance. In addition, since the dropout will be dis-
abled during testing, the whole network can be regarded as
a model averaging of multiple neural networks, which can
improve the generalization and performance (Srivastava et
al. 2014).

Relationship with other Neural Networks

In this section, we compare AoAFFM with existing deep
models for CTR prediction.

FFM: FFM (Juan et al. 2016) utilizes the field information
of features and deploys multiple feature embedding vectors
for each feature according to the field of its feature interac-
tions. After this, it uses the inner product of feature embed-
ding vectors to estimate the weight of feature interactions.
Compared with FFM, AoAFFM utilizes the attention-over-
attention mechanism to better capture characteristics of fea-
ture interactions because of the information loss of the inner
product.

NFM: To discriminate the weight of feature interactions,
He et al. (He and Chua 2017) utilized a multi-layer percep-
tron to combine the element-wise product of feature embed-
ding vector as a substitute for the inner product. However, if
two feature embedding vectors are similar, their weight are
still similar. This will cause the over-weight of redundant
features, thus affects the performance of prediction.

AFM: In addition to NFM (He and Chua 2017), AFM
(Xiao et al. 2017) adds an attention mechanism to better
characterize the weight of feature interactions. AFM takes
the element-wise product as input, uses a multi-layer per-
ceptron to learn an attention score for each feature interac-
tion, and eventually combines them with a prediction layer.
Although AFM is more powerful to NFM, it may suffer the
problem of redundant features as we proposed.

Experiments

To validate our intuition, we conducted experiments to ad-
dress the following research questions:

RQ 1 How do the key hyper-parameters influence the per-
formance of the proposed model?

RQ 2 Is the attention-over-attention mechanism better than
the attention mechanism of AFM?

RQ 3 How does AoAFFM perform compared with the
state-of-the-art algorithms?

RQ 4 How does AoAFFM perform on the large-scale click-
through rate prediction dataset?

Data sets

We tested the performance of AoAFFM on three real-world
benchmarks datasets: Movielens2, Frappe3, and Criteo4.

• Movielens. In our experiments, we utilized the tag part
of the Movielens dataset (Harper and Konstan 2015). Fol-
lowing (He and Chua 2017), since there are only posi-
tive instances in the original dataset, we randomly sam-
pled two negative instances for each positive instance to
ensure generalization.

2https://grouplens.org/datasets/movielens/
3http://baltrunas.info/research-menu/frappe
4http://labs.criteo.com/2014/02/kaggle-display-advertising-

challenge-dataset/
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• Frappe. We also utilized Frappe dataset (Baltrunas et al.
2015), which is generally used for context-aware apps
recommendation. To ensure model generalization, we
also randomly sampled two negative instances for each
positive instance.

• Criteo. Criteo dataset is a click-through rate prediction
dataset in Kaggle competition5. Instead of using the origi-
nal version, we utilized the LIBSVM format of the dataset
from (Chang and Lin 2011), because they conducted fea-
ture engineering based on a simplified version of the win-
ning solution.
For Movielens and Frappe datasets, we randomly split

them into training (70%), validation (20%), and test (10%)
sets, respectively. For Criteo dataset, we utilize the train, val-
idation and test sets that it provided. We use the validation
set to tune the hyper-parameters and evaluate our attention-
over-attention machenism. For final performance compari-
son, we use the test set. The root mean square error (RMSE)
is adopted to evaluate the performance, where a lower score
indicates a better performance. The statistics of the three
datasets are summarized in Table 1. (Avg. stands for the av-
erage feature values that a field has)

Table 1: Statistics of the evaluation datasets.

Datasets #Instances #Features #Fields Avg.

Movielens 2,006,859 90,445 3 30,148
Frappe 288,909 5,382 10 538
Criteo 51,871,397 662,913 39 16,998

Compared Algorithms

To validate the effectiveness of AoAFFM, we compared it
with the following competitive recommendation algorithms.
• FM (Rendle 2012). We implemented FM in a tensorflow

version to use its embedding as pre-trained embedding.
• HOFM (Blondel et al. 2016). HOFM stands for high-

order factorization machine, which learns higher-order
feature combinations.

• FFM (Juan et al. 2016). FFM is the field-aware factor-
ization machine, which assumes that features should have
different latent factors when faced with features of differ-
ent fields.

• Wide&Deep (Cheng et al. 2016). Wide&Deep is initially
introduced for App recommendation in Google Play. It
combines the wide learning component, which can be
viewed as a generalized linear model, and deep learning
component, which is a multi-layer perceptron, together to
improve the performance of recommendation.

• DeepCross (Shan et al. 2016). DeepCross is a deep neural
network that automatically combines features to produce
superior models.

• AFM (Xiao et al. 2017). AFM is the attentional factoriza-
tion machine, which combines attention with factorization
machine.
5https://www.kaggle.com/c/criteo-display-ad-challenge

Parameter Settings To fairly compare all the models,
we learned all models by optimizing the square loss of
predictions and labels. The learning rate is searched in
[0.005, 0.01, 0.05, 0.1], and the best one is selected for each
model. All models are learned using Adagrad in mini-
batches. The batch size for Movielens data is set to 4096.
For Frappe, the batch size is 128. Without special mention,
t1, which denotes the size of the hidden layer, is set to 256
for the best performance. We adopted the early stopping
strategy based on the performance on the validation set and
carefully tuned the dropout ratios and regularization strength
values for all models to prevent over-fitting. We also uti-
lized the pretrained feature embedding vectors of FM and
FFM to boost the performances of compared algorithms and
AoAFFM, respectively.

Parameter Analysis

To show the best performance of AoAFFM, we did fine tun-
ing on the Movielens and Frappe datasets on three main pa-
rameters: embedding size, dropout ratio, and regularization
strength. We first analysed the effect of embedding size, to
help select the best parameter. We evaluated FM and FFM
on different embedding sizes, and the results of AFM and
AoAFFM are based on the pre-training feature embeddings
of FM and FFM, respectively. Figure 3(a) and 3(d) illus-
trate the validation errors of FM, AFM, FFM, and AoAFFM
on different embedding sizes. We can observe that for both
datasets, the validation errors of the four models decrease as
the embedding size increases, and all of them achieve the
best performance when the embedding size is 256. This is
because a large embedding size brings about better repre-
sentation ability of models. As a result, we set all embedding
sizes to 256 in the following parameter analysis.

We utilized dropout on embedding layer to avoid overfit-
ting. Specifically, the dropout is adopted on the output layer
of FM, the field-aware interaction layer for FFM, and the
feature-level attention network for AFM and AoAFFM. For
fairly comparsion, dropout is not utilized in the per-training
feature embeddings of FFM and AoAFFM. Figure 3(b) and
3(e) illustrate the validation RMSE results, and we have the
following observations:
• The performance of the four models is significantly im-

proved by setting dropout ratios to proper values. In
Movielens dataset, the best performance of AoAFFM and
the rest models can be achieved when the dropout ratios
are around 0.4 and 0.1, respectively. In Frappe dataset,
the best dropout ratio is 0.5 for AFM, 0.2 for AoAFFM,
and 0.4 for the rest. Therefore, the benefits of applying
dropout can be validated. For the four models, we adopt
their best dropout ratios in the following analysis.

• AoAFFM outperforms the other models in a large mar-
gin in both of the two datasets. Specifically, in Movielens,
AoAFFM consistently outperforms the other models on
all dropout ratios. In Frappe, AoAFFM outperforms AFM
about 0.56% on the best performance. These observations
show the superiority of AoAFFM to other models.
As for regularization strength parameter λ, we first set

the same regularization strength for both feature-level and
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(a) Movielens (b) Movielens (c) Movielens

(d) Frappe (e) Frappe (f) Frappe

Figure 3: RMSE results on the validation sets of FM, AFM, FFM, and AoAFFM under different parameters.

Table 2: The comparsion between attention-over-attention mechanism and the attentioin mechanism of AFM.

Datasets Models #Embedding Size #Dropout Ratio #Regularization Strength RMSE

AFM 256 0.1 1 0.4339
AoAFM 256 0.1 1 0.4248
AFFM 256 0.3 0.1 0.4178Movielens

AoAFFM 256 0.4 1 0.4128

AFM 256 0.6 10 0.3089
AoAFM 256 0.3 1 0.3068
AFFM 256 0.2 1 0.3130Frappe

AoAFFM 256 0.2 0.1 0.3116

interaction-level attention for AoAFFM, then we evaluate
AoAFFM and AFM on serveral regularization strength val-
ues. As shown in Figure 3(c) and 3(f), in Movielens, the reg-
ularization indeed helps to improve the best performance as
the regularization strength grows to 1. However, the RMSE
results increase when the regularization strength reachs 10,
which indicates a larger regularization strength does not al-
ways lead to a better performance. As the same, in Frappe,
a propoer regularization strength also improves the best per-
formance. Moreover, in both of the two datasets, AoAFFM
outperfroms AFM on most regularization values, which il-
lustrates its superiority. Without special mention, the reg-
ularization strength is set to the best for the AFM and
AoAFFM in the following comparsion.

Impact of attention-over-attention layer

To further evaluate the impact of attention-over-attention
layer and answer RQ 2, we first employed the attention-over-
attention layer on the feature embedding of FM and named

the model as AoAFM, then compared AoAFM with AFM on
Movielens and Frappe datasets. Furthermore, we employed
the attention mechanism of AFM on the feature embedding
of FFM and named the model as AFFM, then compared
AFFM with AoAFFM on both datasets. We carefully tuned
dropout ratio and regularizatioin strength for AoAFM and
AFFM as we do in parameter analysis, then we trained each
model for ten times and obtained their average validation
RMSE as the final results.

Table 2 shows the average validation RMSE results of the
four models and the corresponding parameters. We find that
AoAFM attains lower RMSE results compared with AFM
on both datasets, and AoAFFM also outperforms AFFM
on both datasets. Moreover, while the best performance of
AFM is better than that of AoAFFM on Frappe in Figure
3(f), we observe that AoAFM finally outperforms AFM on
Frappe. The observation confirms that, by addressing the
problem of redundant features as we proposed, attention-
over-attention mechanism outperforms the attention mech-
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(a) Movielens

(b) Frappe

Figure 4: Training and validation error of each epoch.

anism of AFM, no matter the based feature embedding is
FM or FFM.

Performance Comparison

To answer RQ 3, we compared our results with the state-
of-the-art algorithms. Table 3 shows the test RMSE results
of all algorithms with embedding size K=256 on Movielens
and Frappe datasets, where #param denotes the number of
parameters and M stands for “million”. As shown in Table
3, AoAFFM achieves the best performance on Movielens
dataset, significantly outperforming FM and FFM and better
than AFM. This means that the design of feature-level and
interaction-level attention on field-aware embedding vectors
can indeed better capture the characteristics of features and
feature interactions. We also notice that the performance of
FFM is better than FM, HOFM, DeepCross. This validates
that the field information can be of great use to improve the
performance. As for the Frappe datasets, it is worth noting
that the performance of AoAFM is better than that of AFM,
which validates our intuition that AFM may fail to discrimi-
nate redundant feature interactions. However, because of the
poor performance of FFM, AoAFFM only achieves the third
best performance after AoAFM and AFM. The good perfor-
mance of HOFM and Wide&Deep proves that higher-order
feature interactions can indeed be helpful, but the wide part
of Wide&Deep still relies on expertise feature engineering
and HOFM almost doubles the amount of parameters yet
the improvement is little. Deep Cross performs even worse
than FM, which means that deeper learning does not always
help for improvement.

Figure 4 shows the training and validation errors of

Table 3: Test RMSE results of all algorithms on embedding
size K=256 on Movielens and Frappe dataset.

Model
K = 256

Movielens Frappe
#param RMSE #param RMSE

FM 23.24M 0.4735 1.38M 0.3324
HOFM 46.40M 0.4636 2.76M 0.331
Wide&Deep 24.69M 0.4512 4.66M 0.3246
Deep Cross 25.42M 0.5130 8.93M 0.3548
FFM 69.55M 0.4478 13.78M 0.3345
AFM 23.31M 0.4364 1.44M 0.3126
AoAFM 23.31M 0.4234 1.46M 0.3112

AoAFFM 69.61M 0.4126 13.84M 0.3141

Table 4: Test RMSE results of AoAFFM, AFM, FFM, FM
on Criteo dataset.

Model
Criteo

parameter settings RMSE
FM K=40, bs=4096 0.3971
FFM K=4, bs=128 0.3851
AFM K=40, bs=4096 0.3892
AoAFFM K=4, bs=128 0.3808

AoAFFM, AFM and FFM of each epoch on Movielens and
Frappe datasets. For Movielens, we can see that the valida-
tion error of AoAFFM converges faster than both AFM and
FFM. For Frappe, both of the train and validation errors of
AoAFFM converge faster than the other models. The ob-
servations validate that AoAFFM has better representation
ability of features. Although AoAFFM shows higher train-
ing error than FFM and AFM on Movielens, the lowest test
error shows that AoAFFM is not overfitting the data and has
the best generalization ability.

Large-scale Dataset Performance

To further demonstrate the effectiveness of our AoAFFM,
we also test the performance of AoAFFM, AFM, FFM, and
FM on the large-scale click-through rate prediction Criteo
dataset. For comparison, we choose the most competitive
algorithm AFM and two baselines: FFM and FM. Table 4
shows their test RMSE results on Criteo dataset, where K
stands for the size of embedding vectors and bs stands for
the batch size. We chose a smaller batch size for FFM and
AoAFFM because of the computation power limits. We ob-
serve that AoAFFM can still outperform FM and AFM even
when the embedding size is only 4. In addition, the per-
formance of FFM is slightly better than that of AFM. This
proves that the field information is of great importance since
features in web applications are mostly discrete and cate-
gorical. Moreover, we observe that AoAFFM outperforms
other models most in Movielens than in Criteo and Frappe
datasets, as the average number of field features increases,
which means the field-aware embedding layer works better
when the field has more features.
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Conclusion
In this work, we proposed a novel algorithm called attention-
over-attention field-aware factorization machine (AoAFFM)
to better capture the characteristics of features and feature
interactions. Specifically, AoAFFM utilizes field-aware fea-
ture embedding vectors to exploit the field information of
features, it also adopts feature-level and interaction-level at-
tention to better estimate the weights of feature interactions
to address the problem of rebundant features. Our experi-
mental results show that AoAFFM outperforms the state-of-
the-art algorithms on the Movielens and Frappe datasets, and
also shows promising results on the public click-through rate
prediction Criteo dataset. In our experiments, we also notice
that the field-aware embedding layer works better when the
field has more features.
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