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Abstract

Parameter inference in ordinary differential equations is an
important problem in many applied sciences and in engineer-
ing, especially in a data-scarce setting. In this work, we in-
troduce a novel generative modeling approach based on con-
strained Gaussian processes and leverage it to build a compu-
tationally and data efficient algorithm for state and parameter
inference. In an extensive set of experiments, our approach
outperforms the current state of the art for parameter infer-
ence both in terms of accuracy and computational cost. It also
shows promising results for the much more challenging prob-
lem of model selection.

Introduction

Ordinary differential equations (ODEs) represent a ubiqui-
tous tool for modeling problems in many quantitative sci-
ences and engineering. While with first principles and ex-
pert knowledge it is often possible to work out a parametric
form for the equations that model a system of interest, in
most cases there is no closed-form solution, making param-
eter identification problematic. One needs to rely on numer-
ical schemes, which can be sub-optimal given that the exact
system trajectory is usually unknown: typically, we observe
noisy measurements of the true trajectory only at some dis-
crete time points. This problem has been extensively studied
in the past with classical approaches based on numerical in-
tegration (e.g. Bard (1974) and Benson (1979)), also in the
relevant context of model selection (Chen, Shojaie, and Wit-
ten 2017; Wu et al. 2014).

Classical approaches iteratively propose new sets of pa-
rameters and then evaluate them by numerical integration:
the estimated trajectory can then be compared against the
observed data. Among others, Varah (1982) argue that this
procedure can be turned on its head to improve computa-
tional performance. In principle, finding good parameters is
equivalent to denoising the states, since adequate ODE pa-
rameters will lead to a trajectory that is close to ground truth.
In particular, Varah (1982) first fit a spline curve to the obser-
vations to approximate the true trajectory, and subsequently

∗Equal contribution
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

match state and derivative estimates of said splines to ob-
tain the ODE parameters. This idea gave rise to a class of
gradient matching algorithms that rely on spline regression,
kernel regression and, in a Bayesian setting, Gaussian pro-
cess regression (GPR).

Gaussian processes (GPs) provide a very natural and
theoretically appealing way to smooth time series, espe-
cially because they are very closely related to Kalman fil-
tering (Hartikainen and Särkkä 2010). Thus, there has been
significant interest in incorporating them into the gradient
matching framework, starting from the pioneering theoret-
ical work of Calderhead, Girolami, and Lawrence (2009):
they propose a GP-based probabilistic modeling scheme on
which they perform inference using MCMC. Dondelinger
et al. (2013) change this probabilistic setup to achieve a
more efficient MCMC sampling procedure (AGM - Adap-
tive Gradient matching), while Gorbach, Bauer, and Buh-
mann (2017) introduce a computationally efficient inference
scheme based on variational inference (VGM - Variational
Gradient Matching). Crucially, all these methods rely on a
product of experts (PoE) heuristic (an alternative approach
is formulated by Barber and Wang (2014), later questioned
by Macdonald, Higham, and Husmeier (2015)). However,
Wenk et al. (2018) show that the PoE leads to theoretical is-
sues: indeed, in the graphical models proposed by Calder-
head, Girolami, and Lawrence (2009), Dondelinger et al.
(2013) and Gorbach, Bauer, and Buhmann (2017), the ODE
parameters become statistically independent of the obser-
vations. Thus, Wenk et al. (2018) propose a new graphical
model that circumvents this issue and present an efficient
MCMC-based inference scheme (FGPGM - Fast Gaussian
Process based Gradient Matching). A further formulation
that is based on variational inference and allows for addi-
tional inequality constraints on the derivatives is provided
by Lorenzi and Filippone (2018).

Similarly to Gaussian process-based gradient match-
ing, González, Vujačić, and Wit (2014) and Niu et al.
(2016) use kernel ridge regression in a frequentist set-
ting (RKG2/RKG3 - Reproducing Kernel based Gradient
Matching). Aiming directly for point estimates of the param-
eters, their approaches are naturally faster than alternatives
that build on the use of MCMC and Gaussian processes.
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Nevertheless, they rely on several trade-off parameters to be
tuned via cross-validation, which can turn out to be imprac-
tical to data-scarce environments.

In our work, we extend and blend both Bayesian and fre-
quentist viewpoints to obtain a computationally efficient al-
gorithm that can learn states and parameters in a low-data
setting. In particular, we
• Present a novel generative model, rephrasing the param-

eter inference problem as constrained Gaussian process
regression;

• Provide a data-efficient algorithm that concurrently esti-
mates states and parameters;

• Show how all hyperparameters can be learned from data
and how they can be used as an indicator for model mis-
match;

• Provide an efficient Python implementation for public
use, with a publicly available code base at https://github.
com/gabb7/ODIN

Background

Problem Setting

Throughout this work, we consider K-dimensional dynami-
cal systems whose evolution is described by a set of differ-
ential equations parameterized by a vector θ, i.e.

ẋ(t) = f(x(t),θ). (1)

The system is observed under additive, zero-mean Gaussian
noise at N discrete time points t = [t1, . . . , tN ]. We assume
the standard deviation of the noise to be constant over time
but it may differ for each state dimension. The noise is fur-
ther assumed to be uncorrelated across dimensions and time
points. This leads to the following observation model:

yk(ti) = xk(ti) + εk(ti), εk(ti) ∼ N (0, σk). (2)

Previous research efforts propose to model f itself as a Gaus-
sian process (e.g. Heinonen et al. (2018)) or to extend the
framework to SDEs (e.g. Ryder et al. (2018), Abbati et al.
(2019)). While it might be interesting to investigate how
these frameworks could be combined with ODIN, this falls
outside the scope of this paper. We thus restrict ourselves ex-
plicitly to the case where we have deterministic differential
equations with known parametric form.

Temporal Regression

In the context of dynamical systems, Gaussian processes are
employed mostly to model directly the system dynamics (i.e.
the function f ). GP-based gradient matching approaches the
problem differently. Here GPs model the states x and pro-
vide an approximation for the function x that maps a time
point ti to the corresponding state vector x(ti). For the sake
of readability, we assume K = 1 and denote the values of
x(t) stacked across time points as x = [x(t1), . . . , x(tN )].
As shown in the experiment section, the extension to K > 1
is straightforward: K independent Gaussian processes can
be stacked to model each state independently.

While our method can theoretically work with any non-
linear, differentiable regression technique, we choose to

σ

y x

φ

Figure 1: Generative model for standard Gaussian process
regression. Given kernel hyperparameters φ and observation
noise standard deviation σ, the probability densities for the
states x and their noisy observations y are fully determined.

σ

y x ẋ F

γφ

Figure 2: Generative model for GP regression with deriva-
tive observations F, for which we use a Gaussian observa-
tion model with variance γ (as in ODIN). Due to the GP
prior, x and ẋ are jointly Gaussian with known probability
densities once the kernel hyperparameters φ are determined.

use Gaussian processes. GPs have superb analytical prop-
erties (Rasmussen and Williams 2006) and they recently
showed remarkable empirical results in the context of pa-
rameter inference for ODEs (Lorenzi and Filippone 2018;
Wenk et al. 2018). Moreover, thanks to the representer theo-
rem (Schölkopf, Herbrich, and Smola 2001), Gaussian pro-
cesses are closely related to kernel ridge regression: this
connects GP-based gradient matching approaches to the
reproducing-kernel-based ones (e.g. Niu et al. (2016)).

Gaussian Process Regression

As in standard GP regression, we start by choosing a co-
variance function (or kernel) kφ, which is parameterized
by a set of hyperparameters φ. The kernel is used to com-
pute a covariance matrix Cφ, whose elements are given by
[Cφ]i,j = kφ(ti, tj). Cφ can be used to define a zero-mean
prior over the true states x at the observation times t:

p(x | φ) = N (x | 0,Cφ). (3)

The noise model from Equation (2) yields a Gaussian likeli-
hood for the observations y:

p(y | x, σ) = N (y|x, σ2I). (4)

Using Bayes rule and observing the fact that a product of
two Gaussians in the same variables is again a Gaussian, we
obtain the classic GP posterior

p(x | y, σ,φ) = N (x | μx,Σx), (5)

where μx = Cφ(Cφ + σ2I)−1y (6)

and Σx = σ2(Cφ + σ2I)−1Cφ (7)

A graphical representation of this generative model can be
found in Figure 1. Throughout this paper, we assume that kφ
is differentiable w.r.t. both of its arguments.

6365



ODIN GPR
0.01

0.02

(a) Lotka-Volterra

ODIN GPR
0.02

0.04

(b) FitzHugh-Nagumo

ODIN GPR

0.0004

0.0006

(c) Protein Transduction

Figure 3: RMSE of state estimates using vanilla GP regression and ODIN on the benchmark systems (low noise case). While
GPR can only access the noisy observations y, ODIN considers the parametric form of f(x,θ) (with no information about θ).
This additional regularization contributes towards more accurate estimations.

Gaussian Process Regression with Derivatives

As previously noted e.g. by Solak et al. (2003), the es-
timate of the posterior distribution of the states given by
Equation (5) can be further refined if we consider access
to noisy observations of the derivatives. Let us then assume
we have additional observations F that are generated by
F (ti) = ẋ(ti)+δ(ti), where δ(ti) ∼ N (0, γ). Incorporating
such derivatives is straightforward: since Gaussian processes
are closed under linear operations, the distribution over the
derivatives is again a Gaussian process. Following the no-
tation of Wenk et al. (2018) and the argumentation in their
appendix, we obtain

p(ẋ | x,φ) = N (ẋ | Dx,A), (8)

where the exact form of the matrices D and A is omitted for
simplicity, but can be found in the supplementary material.
Equation (8) can now be combined with the likelihood for
the derivative observations

p(F | ẋ, γ) = N (F | ẋ, γI). (9)

This leads to the generative model shown in Figure 2. Just
like in standard Gaussian process regression, all posteriors
of interest can be calculated analytically, since all proba-
bility densities are Gaussian distributions in x, ẋ or linear
transformations thereof.

ODE-Informed Regression

Gaussian Process-based Gradient Matching

Given the model in Figure 2, the main challenge consists
in including the mathematical expressions of the ODEs in a
meaningful way. In traditional GP-based gradient matching,
the ODEs are introduced as a second generative model for F
or ẋ. The latter is then combined with the Gaussian process
model of Figure 2 to establish a probabilistic link between
the observations y and the parameters θ. However, the GP
model fully determines the probability densities of F and ẋ.
Thus, the two generative models have to be combined us-
ing some heuristic, like the product of experts (Calderhead,
Girolami, and Lawrence 2009; Dondelinger et al. 2013;
Gorbach, Bauer, and Buhmann 2017) or an additional Dirac
delta function forcing equality (Wenk et al. 2018).

The resulting, unified generative model is then used to
approximate the posterior of x and θ through Bayesian in-
ference techniques, e.g. MCMC (Calderhead, Girolami, and
Lawrence 2009; Dondelinger et al. 2013; Wenk et al. 2018)
or variational mean field (Gorbach, Bauer, and Buhmann

2017). Inference for these algorithms consists in comput-
ing mean and standard deviation of an approximate poste-
rior to get estimates that include uncertainty. As we shall see
in the experiment section, this works well for sufficiently
tame dynamics and identifiable systems, but struggles to
produce meaningful results for multi-modal posteriors. Cru-
cially, practical systems often produce multi-modal poste-
riors and suffer from unidentifiability without strong priors
(e.g. Stephan et al. (2008), Hass et al. (2017)). As we shall
see, ODE-informed regression can overcome this issue.

ODIN: ODE-Informed Regression

To avoid the problems associated with the two probabilistic
models of traditional GP-based gradient matching, ODIN
does not include the ODEs via a separate generative model.
Instead, they are introduced at inference time in the form of
constraints, essentially solving a constrained MAP problem.

We start with the joint density of the Gaussian process
described in Figure 2, denoted by p(y,x, ẋ,F | σ, γ,φ). As
a result of the Gaussian observation model for F, ẋ can be
marginalized out analytically, leading to

p(y,x,F | σ, γ,φ) = (10)

N (y | x, σ2I) N (x | 0,Cφ) N (F | Dx,A+ γI).

Assuming fixed values for σ,φ and γ, this equation can be
simplified by taking the logarithm, discarding all terms that
do not explicitly depend on the states x and the derivative
observations F and ignoring multiplicative factors to obtain

R̃(x,F,y) = (11)

||x||2
C−1

φ

+ ||x− y||2σ−2I + ||F−Dx||2(A+γI)−1 ,

where ||u||2M := uTMu is the norm of the vector u
weighted by a positive-definite matrix M.

The key mechanism behind ODIN lies in how we obtain
values for F. In principle, F could be marginalized out to re-
cover standard GP regression. However, this is not desirable,
as we would ignore the ODE information. Instead, ODIN
includes the ODEs as additional constraints in the optimiza-
tion problem: rather than keeping F completely flexible, we
assume the existence of a parameter vector θ that links the
derivative observations to the ODEs. More formally,

x,F = argmin
x,θ

R̃(x,F,y) (12)

s. t. ∃θ with f(x(ti),θ) = Fi for all i. (13)
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Figure 4: Trajectory RMSE for parameter inference on the benchmark systems. The top row shows the low noise case with
σ = 0.1 for LV, SNR = 100 for FHN and σ = 0.001 for PT. The bottom row shows the high noise case with σ = 0.5 for LV,
SNR = 10 for FHN and σ = 0.01 for PT.

As it turns out, these constraints can be incorporated in the
optimization problem by directly substituting F with the
corresponding contribution from the ODEs, leading to

x,θ = argmin
x,θ

R(x,θ,y), (14)

where R(x,θ,y) := R̃(x,f(x,θ),y).
This constitutes the key idea behind ODIN. Instead of

providing direct observations of the derivatives, we gener-
ate them via the ODEs after fixing the ODE parameters θ.

Similarly to classical frequentist methods (Varah 1982;
Niu et al. 2016), R(x,θ,y) punishes divergence between
the states x and the observations y, as well as between the
output of the ODEs, f(x,θ), and the derivatives estimated
by the regressing GP; the regularization term avoids overfit-
ting. However, in sharp contrast to frequentist approaches,
all trade-off parameters are naturally provided by the GP
framework, once the hyperparameters φ and noise levels σ
and γ are fixed. As we will see later, the absence of cross-
validation for hyperparameter learning crucially improves
accuracy in sparsely observed systems.

Algorithm 1 ODIN

1: Input: y(1), . . . ,y(K), f(x,θ)
2: Step 1: State-independent GP regression
3: for all k ∈ K do
4: Standardize time t and observations yk.
5: Fit φk and σk using empirical Bayes, i.e. maximize

..... p(y(k)|t,φk, σk).
6: Initialize xk using the mean μk of the trained GP.
7: end for
8: Step 2: ODE Information Incorporation
9: Initialize θ randomly.

10: Initialize γ1, . . . , γK = 1.0
11: Apply L-BFGS-B to solve the optimization problem

(15) and obtain x̂, θ̂, γ̂1, . . . , γ̂K .

12: Return: x̂, θ̂, γ̂1, . . . , γ̂K

Derivative Observation Model

Let us recall that we conceptually substitute the ODE out-
puts with derivative observations that are subjected to Gaus-

sian noise, with variance γ. In this process, we can in-
terpret in an intuitive but meaningful way: during and af-
ter training, the ODE outputs and the GP derivative esti-
mates can deviate from the ground truth and thus differ
from each other. This divergence is accounted for by γ.
In classical GP-based approaches (Dondelinger et al. 2013;
Gorbach, Bauer, and Buhmann 2017; Wenk et al. 2018), γ
is treated as a random variable whose values are indepen-
dent of the inference procedure; sometimes it is fixed a pri-
ori (Gorbach, Bauer, and Buhmann 2017; Wenk et al. 2018).
However, we can expect that the divergence between ODEs
and GP derivatives would be larger in the early steps of
training, while it should decrease when the ODEs describe
well to the ground truth. Thus, it is sensible to automatically
adapt γ to reflect the current quality of the estimates.

The ODIN framework can be adjusted to reflect this rea-
soning. To obtain Equation (11), we implicitly assumed γ to
be constant. If we rather treat it as an optimization parame-
ter, the objective of Equation (14) changes to

x,θ, γ = arg min
x,θ,γ

R(x,θ,y, γ) (15)

where

R(x,θ,y, γ) = R(x,θ,y) + log(det(A+ γI)). (16)

If γ is part of the optimization procedure, the contribution
of the normalization constant in Equation (10) can not be
ignored when deriving the risk appearing in Equation (16).
In practice, similarly to the log-determinant in standard GP
regression, this term acts as an Occam’s razor by preventing
an excessive growth of γ if the GP derivatives and the ODE
outputs differ significantly.

The final ODIN routine is summarized as Algorithm 1.

Remarks

Throughout this work, we assume to have access to obser-
vations y that are subjected to the noise model described
in Equation (2). However, the Gaussian noise assumption
is only needed when deriving the term ||x − y||2σ−2I in R.
Thus, it could be straightforward to accommodate for alter-
native noise models by adjusting the corresponding term in
the risk formula. On the other side, a Gaussian noise model
(with variance γ) is a strict requirement for the derivative
observations, as it is necessary to marginalize ẋ analytically.
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Figure 5: Comparison of the trajectories obtained by numerically integrating the inferred parameters of the Protein Transduction
system for σ = 0.01. The solid blue line is the median trajectory, while for clarity we shaded the area between the 25% and
75% quantiles. The orange trajectory represents the ground truth.

As demonstrates in the experiments section, in the case of
perfect ODEs (i.e. when we know the true parametric form a
priori), γ can in principle be set to zero; nevertheless, when
that is not the case it provides an effective mechanism for
detecting model mismatch and helps with the challenging
problem of model selection.

Experiments

In this section, we demonstrate the versatility of ODIN and
compare its performance to various state-of-the-art methods.
We start by comparing its parameter inference capabilities
to various state-of-the-art inference schemes on three com-
monly used benchmark systems: the Lotka-Volterra (LV)
predator-prey model (Lotka 1932); the FitzHugh-Nagumo
(FHN) neuronal model (FitzHugh 1961; Nagumo, Arimoto,
and Yoshizawa 1962); the chemical protein transduction
(PT) system as seen in Vyshemirsky and Girolami (2007).
All three systems have already been studied extensively in
the context of gradient matching (Calderhead, Girolami, and
Lawrence 2009; Dondelinger et al. 2013; Gorbach, Bauer,
and Buhmann 2017; Wenk et al. 2018) and thus represent
a clear benchmark. For completeness, we restate the con-
crete parametric form in the supplementary material, to-
gether with the ground truth for all parameters. In addi-
tion to state and parameter inference, we show how ODIN
can be used for model selection, a missing feature for every
comparison method here considered. Finally, we prove lin-
ear scaling behavior of ODIN in the state dimension K by
investigating its performance on a high-dimensional, fourth
benchmark system with up to 1000 states.

Evaluation Details and Data Creation

All experimental datasets are generated using numerical
simulations. Thus, the ground truth for both the states x∗
and parameters θ∗ is always available. Following Wenk et
al. (2018), we employ the trajectory RMSE as a metric to
compare the quality of parameter estimates. For ease of ref-
erence, we restate the definition in Definition 1.

Definition 1 (Trajectory RMSE) Let θ̂ be the parameters
estimated by an inference algorithm. Let t be the vector col-
lecting the observation times. Define x̃(t) as the trajectory
one obtains by integrating the ODEs using the estimated pa-

rameters, but the true initial value, i.e.

x̃(0) = x∗(0) (17)

x̃(t) =

∫ t

0

f(x̃(s), θ̂)ds (18)

and define x̃ element-wise as its evaluation at observation
times t, i.e. x̃i = x̃(ti). The trajectory RMSE is then defined
as

tRMSE :=
1

N
||x̃− x||2, (19)

where ||.||2 denotes the standard Euclidean 2-norm.

To evaluate the robustness of each algorithm w.r.t. differ-
ent observation noise realizations, we always run 100 repe-
titions for every experimental setting. In each repetition, we
keep x∗ and θ∗ fixed and only sample the noise on y. Re-
sults are then reported as quantiles over these 100 runs.

State and Parameter Inference

In the parameter inference setting, the true parametric form
of the dynamical system is assumed to be provided by a
practitioner, derived through first principles or expert knowl-
edge. Thus, together with the noisy observations y, we have
access to the true parametric form ẋ = f(x,θ). The goal
is to recover the true states x and parameters θ∗ at observa-
tion time. While smoothing is important, estimating θ∗ is of
greater practical importance.

Out of the three comparison algorithms we chose,
AGM (Dondelinger et al. 2013) and FGPGM (Wenk et
al. 2018) rely on Gaussian processes and MCMC inference,
while RKG3 (Niu et al. 2016) chooses a frequentist, kernel-
regression-based approach. For all comparisons, implemen-
tations provided by the respective authors are used. Once
more in accordance to the gradient matching literature, eval-
uations include both a low and a high noise setting for every
system.

As shown by Solak et al. (2003), including direct obser-
vations of F can improve the accuracy of GP regression.
ODIN does not have access to such observations, but it
leverages the parametric form of the ODEs as a regularizer
when performing state inference. As can be seen in Figure
3, this regularization actually improves the estimates of the
states. This fact motivates a key difference to (Calderhead,
Girolami, and Lawrence 2009), who propose to first fit the
states using GPR and then perform gradient matching while
keeping the states fixed. In the following, we show how
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Figure 6: Parameter estimates for Protein Transduction for σ = 0.001 (a-b) and σ = 0.01 (c-d). Showing median, 50% and
75% quantiles over 100 independent noise realizations. The dashed line indicates the ground truth.

Table 1: Median and standard deviation of computation time (in seconds) for parameter inference over 100 independent noise
realizations.

AGM[s] RKG3[s] FGPGM[s] ODIN[s]
LV, σ = 0.1 4548.0± 453.8 79.0± 19.0 3169.5± 90.1 13.4± 5.1
LV, σ = 0.5 4545.0± 558.5 76.5± 15.8 3187.5± 340.9 11.4± 5.1
FHN, SNR = 100 / 74.5± 14.3 8678.0± 482.7 5.8± 3.5
FHN, SNR = 10 / 77.5± 12.3 8677.0± 487.8 4.4± 3.8
PT, σ = 0.001 29776.5± 4804.7 469.0± 21.6 20291.5± 435.3 8.9± 1.5
PT, σ = 0.01 30493.0± 1470.4 480.0± 42.0 20437.0± 713.2 20.6± 3.75

ODIN can learn reliable parameters, improving the current
state of the art in terms of accuracy and run time.

Accuracy In Figure 4 we compare the trajectory RMSE
for the three benchmark systems. While the total tRMSE is
an effective indicator for the overall performance, we also
include the state-wise tRMSE in the supplementary material.
Unfortunately, AGM was unstable on FitzHugh-Nagumo
despite serious hyper-prior tuning efforts on our side. We
thus do not have any results for this case. To help visualiz-
ing the raw numbers obtained by the tRMSE, we also report
in Figure 5 the trajectories obtained by numerically integrat-
ing the inferred parameters. While here we report only one
state for the high noise case of Protein Transduction, a full
set of plots can be found in the supplement.

Run time In Table 1, we list the median training times
(in seconds) and the corresponding standard deviation of
all algorithms on the three parameter inference bench-
mark systems. It is evident (and not unexpected) that the
optimization-based algorithms ODIN and RKG3 are orders
of magnitude faster than the MCMC-based FGPGM and
AGM. Furthermore, the need for cross-validation schemes
in RKG3 seems to increase its run time roughly by an order
of magnitude when compared to ODIN.

Identifiability While both LV as well as FHN models are
relatively simple, Protein Transduction (PT) still represents
a considerable challenge. Amongst others, both Dondelinger
et al. (2013) and Wenk et al. (2018) claim that the two
parameters θ5 and θ6 are only weakly identifiable. How-
ever, a quick experiment with different numerical values for
those ODE parameters shows that they are actually identifi-
able. Indeed, neither RKG3 and ODIN seem to suffer from
identifiability problems. For ODIN, this can be attributed
to two key differences, the inference scheme and the flexi-
ble γ. Both AGM and FGPGM ultimately return the pos-
terior mean of the parameter marginals. In Figure 7, we

show example marginals for fixed γ. While these distribu-
tions are Gaussian-shaped for Lotka-Volterra, they are much
wilder for PT. If we were to keep the γ fixed, ODIN would
converge to an optimum instead of an expectation, which
might be more appropriate in a multi-modal setting. How-
ever, ODIN does not keep γ fixed. Instead, its γ evolves
during optimization according to the quality of the current
parameters estimation, leading to an overall smoother infer-
ence. Consequently, the final parameter estimates are signif-
icantly more accurate (see Figure 6). For AGM, while the
ratio between θ5 and θ6 is fairly stable and reasonably not
far from the correct number, the absolute parameter values
have median magnitudes of roughly 1012: thus they do not
appear in this figure.
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p
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1 2 3 4
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Figure 7: Parameter marginal distributions of θ4 of Lotka-
Volterra and θ6 of Protein Transduction for one sample roll-
out with fixed γ. While the LV marginal is nicely Gaussian,
the PT marginal is much wilder.

Robustness Besides accurate parameter estimates, ODIN
also exhibits more contained variance, especially compared
to AGM and RKG3. This is a direct consequence of the un-
derlying GP structure, which enables efficient and stable cal-
culation of all parameters. Furthermore, a flexible γ seems
to smooth out the optimization surface, avoiding the rugged
landscapes reported by Dondelinger et al. (2013).
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Table 2: Median and standard deviation of γ for different model misspecifications of the Lotka-Volterra system and 100 inde-
pendent noise realizations.

M1,1 M0,1 M1,0 M0,0

γ1 10−6 ± 0.00 3.01± 0.23 10−6 ± 0.00 3.03± 0.24
γ2 10−6 ± 0.04 10−6 ± 0.00 1.51± 0.31 1.53± 0.35

Priors While in a Bayesian inference setting it is common
to introduce a prior over θ, our graphical model in Figure
2 does not treat θ as a random variable. In a practical set-
ting, we might not even know the parametric form of the
ODEs: it thus seems quite difficult to justify the use of a
prior. However, it should be noted that our framework can
easily accommodate any prior without major modifications.
An additional factor p(θ) in Equation (10) directly leads to
an additional summand − log(p(θ)) in Equation (16). From
a frequentist perspective, this could be interpreted as an ad-
ditional regularizer, similarly to LASSO or ridge regression.
Since all other summands in Equation (16) grow linearly
with the amount of observations N and the prior contribu-
tion stays constant, the regularization term would eventually
have minor influence in an asymptotic setting.

Model Selection

In practice, domain experts might not be able to provide one
single true model. Instead, they might indicate a set of plau-
sible models that they would like to test against the observed
data. In this section we investigate this problem, known as
model selection. For empirical evaluation, we use the Lotka-
Volterra system as ground truth to simulate our empirical
data. We then create four different candidate models via the
following two additional ODEs

ẋ1(t) = θ1x
2
1(t) + θ2x2(t), (20)

ẋ2(t) = −θ3x2(t). (21)

Each model is indexed as Mi,j , where i, j ∈ {0, 1}. Here,
i = 0 indicates that the wrong equation (i.e. 20) is used
to model the dynamics of the first state, while if i = 1 we
provide the true parametric form in that specific candidate
model. In a similar fashion, j = 0 indicates that the wrong
equation (i.e. 21) is used to model the dynamics of the sec-
ond state, otherwise j = 1. ODIN is run independently for
each Mi,j . Besides state and parameter estimates, we thus
obtain final values for γ, which are presented in Table 2.
For numerical stability, γ was lower bounded to 10−6 in all
experiments. For the correct model M1,1, γ settles at this
lower bound, while it converges to a much larger value in
case a wrong model is used. This justifies the intuitive inter-
pretation of γ as a mean to account for model mismatch be-
tween the GP regressor and the ODE model. This last result
proves that γ is indeed an efficient tool for identifying true
parametric forms. Interestingly, this also works dimension-
wise for the mixed models M0,1 and M1,0, even though
the states x1 and x2 are coupled via wrong ODEs. This can
be explained by the GP regressor prioritizing states x close
to the observations y. Indeed, while incorrect ODEs might
deteriorate the accuracy of the state estimates with wrong
regularization, their detrimental effects are limited by the

observation-dependent partial objective, effectively decou-
pling the model mismatch across dimensions.

Linear Scaling in State Dimension

A key feature of gradient matching algorithms is the linear
scaling in the state dimension K. Following Gorbach, Bauer,
and Buhmann (2017), we demonstrate this for ODIN by us-
ing the Lorenz ’96 system with θ = 8, using 50 observations
equally spaced over t = [0, 5]. The results are shown in Fig-
ure 8, including a linear regressor fitted to the means with
least squares.
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Figure 8: Run time for parameter inference on Lorenz ’96
for different state dimension, with a (dashed) linear regres-
sor fitted to the data. For each system size, we report the
mean (dots) +- one standard deviation (shaded area) over
100 independent noise realizations.

Discussion
Parametric ODE systems are at the backbone of many practi-
cal applications, settings where Gaussian processes and ker-
nel regression have shown to be efficient inference tools. In
this paper, we demonstrate how to combine the advantages
of both approaches by using theoretical insights to extend
standard GP regression. The resulting algorithm, ODIN, sig-
nificantly improves the current state of the art in terms of
accuracy and runtime for parameter inference tasks and pro-
vides an appealing framework for model selection. Unlike
other methods, ODIN does not require hyperparameter tun-
ing and represents an out-of-the-box applicable tool for pa-
rameter inference and model selection for parametric ODE
models.
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