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Abstract

Autoencoders and their variations provide unsupervised mod-
els for learning low-dimensional representations for down-
stream tasks. Without proper regularization, autoencoder mod-
els are susceptible to the overfitting problem and the so-called
posterior collapse phenomenon. In this paper, we introduce a
quantization-based regularizer in the bottleneck stage of au-
toencoder models to learn meaningful latent representations.
We combine both perspectives of Vector Quantized-Variational
AutoEncoders (VQ-VAE) and classical denoising regulariza-
tion methods of neural networks. We interpret quantizers as
regularizers that constrain latent representations while foster-
ing a similarity-preserving mapping at the encoder. Before
quantization, we impose noise on the latent codes and use a
Bayesian estimator to optimize the quantizer-based represen-
tation. The introduced bottleneck Bayesian estimator outputs
the posterior mean of the centroids to the decoder, and thus,
is performing soft quantization of the noisy latent codes. We
show that our proposed regularization method results in im-
proved latent representations for both supervised learning and
clustering downstream tasks when compared to autoencoders
using other bottleneck structures.

Introduction

An important application of autoencoders and their variations
is the use of learned latent representations for downstream
tasks. In general, learning meaningful representations from
data is difficult since the quality of learned representations is
usually not measured by the objective function of the model.
The reconstruction error criterion of vanilla autoencoders
may result in the model memorizing the data. The variational
autoencoders (VAE) (Kingma and Welling 2014) improves
the representation learning by enforcing stochastic bottleneck
representations using the reparameterization trick. The VAE
models further impose constraints on the latents by minimiz-
ing a Kullback–Leibler (KL) divergence between the prior
and the approximate posterior of the latent distribution. How-
ever, the evidence lower bound (ELBO) training of VAE does
not necessarily result in meaningful latent representations as
the optimization cannot control the trade-off between the re-
construction error and the information transfer from the data
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to the latent representation (Alemi et al. 2018). On the other
hand, the VAE training is also susceptible to the so-called
“posterior collapse” phenomenon where a structured latent
representation is mostly ignored and the encoder maps the
input data to the latent representation in a “random” fashion
(Lucas et al. 2019). This is not favorable for downstream
applications since the latent representation loses its similarity
relation to the input data.

Various regularization methods have been proposed to im-
prove the latent representation learning for the VAE models.
(Higgins et al. 2017)(Burgess et al. 2018) enforce stronger
KL regularization on the latent representation in the bottle-
neck stage to constrain the transfer of information from data
to the learned representation. Denoising methods (Achille
and Soatto 2018)(Shu et al. 2018)(Im et al. 2017) encourage
the model to learn robust representations by artificially per-
turbing the training data. On the other hand, conventional
regularization methods may not solve the posterior collapse
problem. (Lucas et al. 2019) empirically shows that posterior
collapse is caused by the original marginal log-likelihood
objective of the model rather than the evidence lower bound
(ELBO). As a result, modifying the objective function ELBO
of VAE as (Higgins et al. 2017)(Burgess et al. 2018) may
have limited effects on preventing the posterior collapse. One
potential solution is the vector-quantized variational autoen-
coder (VQ-VAE) (van den Oord, Kavukcuoglu, and Vinyals
2017) model. Instead of regularizing the latent distribution,
VQ-VAE provides a latent representation based on a finite
number of centroids. Hence, the capability of the latent repre-
sentation can be controlled by the number of used centroids
which guarantees that a certain amount of information is
preserved in the latent space.

In this paper, we combine the perspectives of VQ-VAE and
noise-based approaches. We inject noise into the latent codes
before the quantization in the bottleneck stage. We assume
that the noisy observations are generated by a Gaussian mix-
ture model where the means of the components is represented
by the centroids of the quantizer. To determine the input of
the autoencoder decoder, we use a Bayesian estimator and
obtain the posterior mean of the centroids. In other words,
we perform a soft quantization of the latent codes in contrast
to a hard assignment as used in vanilla VQ-VAE. Hence, we
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refer to our framework as soft VQ-VAE. Since our focus is on
using autoencoders to extract meaningful low-dimensional
representations for other downstream tasks, we demonstrate
that the latent representation extracted from our soft VQ-
VAE models are effective in subsequent classification and
clustering tasks in the experiments.

Bottleneck Vector Quantizer

Vector Quantization in Autoencoders

Here we first give a general description of the autoencoder
model with vector quantized bottleneck based on the VQ-
VAE formulation. The notational conventions in this work are
as follows: Boldface symbols such as x are used to denote
random variables. Nonboldface symbols x are used to denote
sample values of those random variables.

The bottleneck quantized autoencoder models consist of
an encoder, a decoder, and a bottleneck quantizer. The en-
coder learns a deterministic mapping and outputs the latent
code ze = genc(x), where x ∈ X = R

D denotes the input
datapoint and ze ∈ R

d. The latent code ze can be seen as
an efficient representation of the input x, such that d � D.
The latent code ze is then fed into the bottleneck quantizer
Q(·). The quantizer partitions the latent space into K clusters
characterized by the codebook M = {μ(1), · · · , μ(K)}. The
latent code ze is quantized to one of the K codewords by the
nearest neighbor search

zq = Q(ze) = μ(c), where c = argmin
k

‖ze−μ(k)‖2. (1)

The output zq of the quantizer is passed as input to the de-
coder. The decoder then reconstructs the input datapoint x.

Vector Quantizer as a Latent Parameter Estimator

In this section, we show that the embedded quantizer can
be interpreted as a parameter estimator for the latent distri-
bution with a discrete parameter space. In a vanilla VAE
perspective, the encoder outputs the parameters of its latent
distribution. The input of the VAE decoder is sampled from
the latent distribution that is parameterized by the output of
the VAE encoder. For bottleneck quantized autoencoders, the
embedded quantizer creates a discrete parameter space for
the model posterior. The nearest neighbor quantization effec-
tively makes the autoencoder a generative model of Gaussian
mixtures with a finite number of components, where the com-
ponents are characterized by the codewords of the quantizer
(Henter et al. 2018). In contrast, the vanilla VAE is equivalent
to a mixture of an infinite number of Gaussians as the latent
parameter space is continuous. Furthermore, the variational
inference model of the bottleneck quantized autoencoder can
be expressed as

q(z|x) =
M∑
k=1

q
(
z|zq = μ(k)

)
q
(
zq = μ(k)|x

)
(2)

= q (z|zq = Q(genc(x))) δ (zq = Q(genc(x))) , (3)

where z is the latent variable and δ(·) is the indicator function.
As a result, the decoder input zq can be seen as the esti-

mated parameters of the latent distribution with the discrete

parameter space that is characterized by the codebook of the
quantizer. That is, the decoder of the bottleneck quantized
autoencoders takes the estimated parameter of the latent dis-
tribution and recover the parameters of the data generating
distribution of the observed variables x. No sampling of z
from the latent distribution is needed during the training of
vector-quantized autoencoder models.

Vector Quantizer as a Regularizer

We showcase that the added quantizer between encoder and
decoder acts also as a regularizer on the latent codes that
fosters similarity-preserving mappings at the encoder for
Gaussian observation models. We use visual examples to
show that the embedded bottleneck quantizer can enforce the
encoder output to share a constrained coding space such that
learned latent representations preserve the similarity relations
of the data space. We argue that this is one of the reasons
that bottleneck quantized autoencoders can learn meaningful
representations.

Assume that we have a decoder with infinite capacity. That
is, the decoder is so expressive that it can produce a precise
reconstruction of the input of the model without any con-
straints on the latent codes. As a result, the encoder can map
the input to the latent codes in an arbitrary fashion while
keeping a low reconstruction error (See Fig. 1a).

With the quantizer inserted between the encoder and de-
coder, the encoder can only map the input to a finite number
of representations in the latent space. For example, in Fig.
1b, we insert a codebook with two codewords. If we keep the
encoder mapping the same as Fig. 1a, then, both blue and pur-
ple nodes in the latent space will be represented by the blue
node in the discrete latent space due to the nearest neighbor
search. In this case, the optimal reconstruction of the blue
and purple nodes at the input will be the green node at the
output. This is obviously not the optimal encoder mapping
with respect to the reconstruction error. Instead, the more
efficient mapping of the encoder is to map similar data points
to neighboring points in the latent space (See Fig. 1c).

However, we can also observe that the bottleneck quantized
autoencoders inevitably hurts the reconstruction due to the
limited choices of discrete latent representations. That is, the
number of possible reconstructions produced by a decoder is
limited by the size of the codebook. This is insufficient for
many datasets who have a large number of classes. In our
proposed soft VQ-VAE, it increases the expressiveness of the
latent representations by using a Gaussian mixture model and
the decoder input is a convex combination of the codewords.

Soft VQ-VAE

Noisy Latent Codes

Injecting noise on the input training data is a common tech-
nique for learning robust representations (Im et al. 2017).
In our paper, we extend this practice by adding noise to the
latent space such that the models are exposed to new data
samples. We note that this practice is also applied in (Choi
et al. 2018) and (Rezende, Mohamed, and Wierstra 2014) to
improve the generalization ability of their models.
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(a) Vanilla autoencoders
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(b) Autoencoders with quantized bottleneck

Encoder Mapping

Decoder Mapping

Quantization

Input

Latent Space

Discrete Latent Space

Output

(c) The quantizer enforces a
similarity-preserving mapping at the encoder

Figure 1: The quantizer behaves as a regularizer that encour-
ages a similarity-preserving mapping

at the encoder.

We propose to add white noise ε with zero mean and finite
variance on the encoder output z′e = ze + ε, where ε ∈ R

d.
We assume that the added noise variance σε is unknown to
the model. Instead, we view the noisy latent code is generated
from a mixture model with K components

p(z′e) =
K∑

k=1

p
(
zq = μ(k)

)
p
(
z′e|zq = μ(k)

)
, (4)

where zq ∈ M.
We let the conditional probability function of z′e given

one of the codewords μ(k) to be a multivariate Gaussian
distribution N (

μ(k), I(k)
)

p
(
z′e|μ(k)

)
=

exp
(
(− 1

2 (z
′
e−μ(k))

T
I(k)−1(z′

e−μ(k))
)

√
(2π)d|I(k)|

,

(5)
where the k-th codeword μ(k) is regarded as the mean of the
Gaussian distribution of the k-th component, I(k) = σ2

kI and
σk is the standard deviation of the k-th component.

Bayesian Estimator

We add a Bayesian estimator after the noisy latent codes
in the bottleneck stage of the autoencoder. The aim is to
estimate the parameters of the latent distribution from noisy
observations. The Bayesian estimator is optimal with respect

to the mean square error (MSE) criterion and is defined as
the mean of the posterior distribution,

ẑq = E[zq|z′e] =
K∑

k=1

μ(k)p
(
μ(k)|z′e

)
. (6)

Using Bayes’ rule, we express the conditional probability
p
(
μ(k)|z′e

)
as

p
(
μ(k)|z′e

)
=

p
(
μ(k)

)
p
(
z′e|μ(k)

)
p(z′e)

, (7)

where we assume an uninformative prior for the codewords
p
(
μ(k)

)
= 1

K as there is no preference for single codeword.
The conditional probability p

(
z′e|μ(k)

)
is given in (5) and

the marginal distribution of the noisy observation is given by
marginalizing out the finite codebook in (4).

Compared to the hard assignment of the VQ-VAE, we
can see that we are equivalently performing a soft quantiza-
tion as the noisy latent code is assigned to a codeword with
probability p

(
μ(k)|z′e

)
. The output of the estimator is a con-

vex combination of all the codewords in the codebook. The
weight of each codeword is determined similar to a radial
basis function kernel where the value is inversely propor-
tional to the L2 distance between z′e and a codeword with
component variance as the smoothing factor. Fig. 2 shows
the described soft VQ-VAE.

Encoder Estimator Decoder

ε

ze z′e ẑqx x̂

{μ(1), · · · , μ(K)}

Figure 2: Description of the soft VQ-VAE.

Optimal Estimator

In this section, we show that our added Bayesian estimator is
optimal with respect to the model evidence of the bottleneck
quantized autoencoders with noisy latent codes. The maxi-
mum likelihood principle of generative models chooses the
model parameters that maximize the likelihood of the train-
ing data (Goodfellow 2017). Similarly, we can decompose
the marginal log-likelihood of the model distribution as the
model ELBO plus the KL divergence between the variational
distribution and the model posterior (Zhang et al. 2018),

log p(x) = Eq(z)

[
log

(
p(x, z)

q(z)

)]
+ KL(q(z)‖p(z|x)),

(8)
where p(z|x) is the model posterior and q(z) is the variational
latent distribution that regularizes the model posterior. The
maximization of the model ELBO can be seen as searching
for the optimal latent distribution q within a variational family
Q that approximates the true model posterior p(z|x). Given
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a uniform distribution p̂(x) over the training dataset, we can
obtain the optimal estimation of the latent distribution:

q∗ = argmax
q∈Q

Ep̂(x)

[
Eq(z)

[
log

(
p(x, z)

q(z)

)]]
(9)

= argmax
q∈Q

Ep̂(x)[log p(x)]− Ep̂(x)[KL(q(z)‖p(z|x))]
(10)

= argmin
q∈Q

Ep̂(x)[KL(q(z)‖p(z|x))], (11)

Since the first term of (10) is irrelevant with respect to the ap-
proximated latent distribution, the maximization of the model
ELBO becomes equivalent to finding the latent distribution
that minimizes the KL divergence to the model posterior
distribution in (11).

For bottleneck quantized autoencoders, the embedded
quantizer enforces the model posterior p(z|x) to be the uni-
modal distribution centered on one of the codewords μ ∈ M.
In our noisy model, we perturb the encoder output ze by
random noise. We assume that the noise variance is unknown
to the model and the parameter cannot be determined by per-
forming a nearest neighbor search on the noisy bottleneck
representation z′e. Instead, the introduced Bayeisan estimator
(6) outputs a convex combination of the codewords. In the
following Theorem, we show that our proposed Bayesian
estimator outputs the parameters of the optimal latent dis-
tribution for the quantized bottleneck autoencoder models
under the condition that the latent distribution belongs to the
Gaussian family.

Theorem 1. Let Q be the set of Gaussian distributions with
associated parameter space Ω. Based on the described noisy
model, for one datapoint, the estimator f : X → Ω that
outputs the parameters of the optimal q∗ ∈ Q is given by

ẑq = f(x) =

K∑
k=1

μ(k)p
(
μ(k)|z′e

)
. (12)

Proof. For the noisy setting, the expectation of the KL di-
vergence between the model posterior p(z|x) and the ap-
proximated q is taken with respect to the empirical training
distribution p̂(x) and the noise distribution p̂(ε)

Ep̂(x)Ep̂(ε)[KL(q(z)‖p(z|x))]. (13)

Since the encoder does not have activation functions in the
output layer, we assume that the encoder neural network
is a deterministic injective function over the empirical
training set such that p̂(x) = p̂(ze). Also, the injected
noise is independent of ze, we can express the probability
distribution of the training data and noise as the following
chain of equalities:

p̂(x)p̂(ε) = p̂(ze)p̂(ε) = p̂(ze, ε) = p̂(ze, ze+ε) = p̂(ze, z
′
e)

(14)

The joint probability p̂(ze, z
′
e) can be further decomposed as

p̂(ze, z
′
e) = p̂(ze)p̂(z

′
e|ze) (15)

= p̂(ze)

K∑
k=1

p̂
(
zq = μ(k)|ze

)
p̂
(
z′e|zq = μ(k)

)

(16)

= p̂(ze)
1

K

K∑
k=1

p̂
(
z′e|μ(k)

)
. (17)

where (17) follows from that ze is considered as unobservable
in the model (see Fig. 3), and thus provides no information
about μ(k) such that the conditional probability of μ(k) given
ze is equal to the prior of the codewords 1

K .

ze z′e

zq

�����������	

x

Figure 3: The relation of variables in the soft VQ-VAE model.
The symbol � is used to indicate that we cannot directly use
paths that connected to the unobserved ze for probabilistic
inference.

Combining the model posterior of bottleneck quantized
autoencoders and the above derivations, we can reexpress
(13) as

Ep̂(ze,z′
e)
[KL(q(z)‖p(z|zq)] (18)

=Ep̂(ze)
1

K

K∑
k=1

Ep̂(z′
e|μ(k))

[
KL(q(z)‖p

(
z|μ(k)

)]
, (19)

where the true model posterior has p(z|x) = p(z|zq).
Therefore, for each datapoint x, the optimization problem

with respect to the latent distribution q (11) for the noisy
setting becomes

min
q∈Q

1

K

K∑
k=1

Ep̂(z′
e|μ(k))

[
KL

(
q(z)‖p

(
z|μ(k)

))]
(20)

=min
q∈Q

1

K

K∑
k=1

p̂
(
z′e|μ(k)

)
KL

(
q(z)‖p

(
z|μ(k)

))
. (21)

Note that the KL divergence between two exponential
family distributions can be represented by the Bregman diver-
gence dA(·) between the corresponding natural parameters
η′ and η as

KL(pη′‖pη) = dA(η, η
′) (22)

= −A(η′) +A(η)−∇A(η)T (η′ − η), (23)

where A(·) is the log-partition function for the exponential
family distribution. Furthermore, it has been shown that the
minimizer of the expected Bregman divergence from a ran-
dom vector is its mean vector (Banerjee et al. 2005). There-
fore, we formulate (20) as a convex combination of the KL
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divergence

argmin
q∈Q

K∑
k=1

ωkKL
(
q(z)‖p

(
z|μ(k)

))
(24)

=argmin
η

K∑
k=1

ωkdA(η
(k), η), (25)

where ωk = 1
V K p̂

(
z′e|μ(k)

)
. V =

∑K
k=1 p̂

(
z′e|μ(k)

)
is the

introduced normalization constant and the optimal solution
of (20) is not affected. In addition, due to the normalization,
ωk becomes p

(
μ(k)|z′e

)
. Then, the minimizer of (24) is given

by the mean of η(k)

η =

K∑
k=1

p
(
μ(k)|z′e

)
η(k). (26)

The natural parameters for the multivariate Gaussian dis-
tribution with known covariance matrix is Σ−1μ. Since the
p(z|x) is the model posterior of the noiseless bottleneck quan-
tized autoencoders, the covariance matrix is assumed to be
the identity matrix for all components Σ = I . Therefore, we
can recover the Bayesian estimator (12) by substituting η(k)

with μ(k) in (26), and the proof is complete.

Related Work

For extended work on VQ-VAE, (Roy et al. 2018) uses the
Expectation Maximization algorithm in the bottleneck stage
to train the VQ-VAE and to achieve improved image genera-
tion results. However, the stability of the proposed algorithm
may require to collect a large number of samples in the latent
space. (Henter et al. 2018) gives a probabilistic interpretation
of the VQ-VAE and recovers its objective function using
the variational inference principle combined with implicit
assumptions made by the vanilla VQ-VAE model.

Several works have studied the end-to-end discrete repre-
sentation learning model with different incorporated struc-
tures in the bottleneck stages. (Theis et al. 2017) and (Ballé,
Laparra, and Simoncelli 2017) introduce scalar quantization
in the latent space and optimize jointly the entire model for
rate-distortion performance over a database of training im-
ages. (Agustsson et al. 2017) proposes a compression model
by performing vector quantization on the network activations.
The model uses a continuous relaxation of vector quantization
which is annealed over time to obtain a hard clustering. In
(Agustsson et al. 2017), the softmax function is used to give
a soft assignment to the codewords where a single smoothing
factor is used as an annealing factor. In our model, we learn
different smoothing factors for each component. (Sønderby,
Poole, and Mnih 2017) introduces a continuous relaxation
training of discrete latent-variable models which can flexibly
capture both continuous and discrete aspects of natural data.

Various techniques for regularizing the autoencoders have
been proposed recently. (Berthelot et al. 2018) proposes an
adversarial regularizer which encourages interpolation in the
outputs and also improves the learned representation. (Shu
et al. 2018) interprets the VAEs as a amortized inference

algorithm and proposed a procedure to constrain the expres-
siveness of the encoder. In addition, there is a increasing pop-
ularity of using information-theoretic principles to improve
autoencoders. (Alemi et al. 2017)(Alemi et al. 2018) use
the information bottleneck principle (Tishby and Zaslavsky
2015) to recover the objective of β-VAE and show that the
KL divergence term in ELBO is an upper bound on the in-
formation rate between input and prior. (Achille and Soatto
2018) is also inspired by the information bottleneck principle
and introduces the information dropout method to penalize
the transfer of information from data to the latents. (Choi et al.
2018) proposes to use encoder-decoder structures and inject
noises to the bottleneck stage to simulate binary symmetric
channels (BSC). By jointly optimizing the encoding and de-
coding processes, the authors show that the trained model not
only can produce codes that have better performance for the
joint source-channel coding problem but also that the noisy
latents facilitate robust representation learning.

We also note that the practice of using a convex combi-
nation of codewords is similar to the attention mechanism
(Vaswani et al. 2017). The attention mechanism is introduced
to solve the gradient vanishing problem that models fail to
learn the long-term dependencies of time series data. It can be
viewed as a feed-forward layer that takes the hidden state of
the at each time step as input and outputs the so-called context
vector as the representation which is a weighted combination
of the input hidden state vectors.

Experimental Results

Model Implementation

We test our proposed model on datasets MNIST, SVHN and
CIFAR-10. All the tested autoencoder models share the same
encoder-decoder setting. For the models tested on the SVHN
and CIFAR-10, we use convolutional neural networks (CNN)
to construct the encoder and decoder. For the MNIST, we use
multilayer perceptron (MLP) networks to construct encoder
and decoder. All decoders follow a structure that is symmetric
to the encoder.

The differences among the compared models are only in
the bottleneck operation. The bottleneck operation takes the
encoder output as its input, and its output is fed into the
decoder. For VAE and information dropout models, the bot-
tleneck input is two separate encoder output layers of d units
respectively. One layer learns the mean of the Gaussian dis-
tribution and the other layer learns the log variance. The repa-
rameterization trick or the information dropout technique is
applied to generate samples for the latent distribution. For the
VQ-VAE, the bottleneck performs a nearest neighbor search
on the encoder output. Then, the quantized codeword is fed
into the decoder. For the soft VQ-VAE, the bottleneck input
is also two separate encoder output layers. One layer of size
d outputs the noiseless vector ze. Another layer with size K
outputs the log variance of components. The noise injection
is performed only on ze and the estimator uses the noisy
samples and the variances of components for estimation. The
baseline autoencoder directly feeds the encoder output to the
decoder.

The soft VQ-VAE models are trained in a similar fashion as
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VQ-VAE. Specifically, the loss function for the soft VQ-VAE
mode is

L = − log p(x|ẑq) + ‖sg (z′e)− ẑq‖22 + β‖z′e − sg(ẑq)‖22.
(27)

where sg(·) denotes the stop gradient operator and β is a
hyperparameter to encourage the encoder to commit to a
codeword. The stop gradient operator is used to solve the
vanishing gradient problem of discrete variables by separat-
ing the gradient update of encoder-decoder and the code-
book. The sg(·) outputs its input when it is in the forward
pass, and outputs zero when computing gradients in the train-
ing process. Specifically, the decoder input is expressed as
ẑq = ze+sg(ẑq−ze) such that the gradients are copied from
the decoder input to the encoder output.

Training Setup

For the models tested on the CIFAR-10 and SVHN datasets,
the encoder consists of 4 convolutional layers with stride 2
and filter size 3× 3. The number of channels is doubled for
each encoder layer. The number of channels of the first layer
is set to be 64. The decoder follows a symmetric structure
of the encoder. For MINST dataset, we use multilayer per-
ceptron networks (MLP) to construct the autoencoder. The
dimensions of dense layers of the encoder and decoder are D-
500-500-2000-d and d-2000-500-500-D respectively, where
d is the dimension of the learned latents and D is the dimen-
sion of the input datapoints. All the layers use rectified linear
units (ReLU) as activation functions.

We use the Glorot uniform initializer (Glorot and Bengio
2010) for the weights of encoder-decoder networks. The code-
book is initialized by the uniform unit scaling. All models are
trained using Adam optimizer (Kingma and Ba 2015) with
learning rate 3e-4 and evaluate the performance after 40000
iterations with batch size 32. Early stopping at 10000 itera-
tions is applied by soft VQ-VAE on SVHN and CIFAR-10
datasets.

Visualization of Latent Representation

In this section, we use t-SNE (van der Maaten and Hin-
ton 2008) to visualize the latent representations that have
been learned by different autoencoder models, and examine
their similarity-preserving mapping ability. First, we train au-
toencoders with a 60-dimensional bottleneck on the MNIST
dataset. After the training, we feed the test data into the
trained encoder to obtain the latent representation of the input
data. The 60-dimensional latent representations are projected
into the two-dimensional space using the t-SNE technique.
In Fig. 4, we plot the two-dimensional projection of the bot-
tleneck representation ze of the trained models with different
bottleneck structures. All autoencoder models are trained to
have similar reconstruction quality. It is shown that the latent
representation of the soft VQ-VAE preserves the similarity
relations of the input data better than the other models.

Representation Learning Tasks

We test our learned latent representation ze on K-means clus-
tering and single-layer classification tasks as (Berthelot et al.
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(a) Autoencoder: ze.
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(b) VAE: ze.
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(c) VQ-VAE: ze.
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(d) soft VQ-VAE: ze.

Figure 4: Two-dimensional learned representations
of MNIST. Each color indicates one digit class.
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2018). The justification of these two tests is that if the learned
latents can recover the hidden structure of the raw data, they
should become more amiable to the simple classification and
clustering tasks. We first train models using the training set.
Then we use the trained model to project the test set on their
latent representations and use them for downstreaming tasks.

For the K-means clustering, we use 100 random initial-
izations and select the best result. The clustering accuracy
is determined by Hungarian algorithm (Xie, Girshick, and
Farhadi 2016), which is a one-to-one optimal linear assign-
ment (LS) matching algorithm between the predicted labels
and the true labels. We also test the clustering performance
using the normalized mutual information (NMI) metric for
the MNIST dataset (Fortuin et al. 2019) (Aljalbout et al.
2018). The NMI is defined as NMI (y, ŷ) = 2I(y,ŷ)

H(y)+H(ŷ) ,
where y and ŷ denote the true labels and the predicted labels,
respectively. I(y, ŷ) is the mutual information between the
predicted labels and the true label. H(·) is the entropy. For
the classification tasks, we use a fully connected layer with a
softmax function on the output as our classifier. The single-
layer classifier is trained on the latent representation of the
training set and is independent of the autoencoders’ training.

Table 1: Accuracy of downstream tasks of MNIST.

MNIST, d = 64
Model Clustering Clustering (NMI) Classification

Raw Data 55.17 0.5008 92.44
Baseline Autoencoder 52.61 0.5301 91.91
VAE 56.44 0.5600 89.10
β-VAE (β = 20) 73.81 0.5760 91.10
Information dropout 58.52 0.4979 91.11
VQ-VAE (K = 128) 51.48 0.3541 81.62
Soft VQ-VAE (K=128) 77.64 0.7188 93.54

Table 2: Accuracy of downstream tasks of SVHN and CIFAR-
10.

SVHN, d = 256 CIFAR-10, d = 256
Model Clustering Classification Clustering Classification

Baseline Autoencoder 11.96 25.95 21.73 40.92
VAE 13.58 26.42 24.12 38.83
β-VAE (β = 100) 14.54 49.62 22.80 36.91
Information dropout 12.75 24.46 21.96 39.89
VQ-VAE (K = 512) 12.96 31.57 20.30 33.51
Soft VQ-VAE (K = 32) 17.68 50.48 23.83 44.54

We test 64-dimensional latents for the MNIST and 256 for
SVHN and CIFAR-10. We compare different models where
only the bottleneck operation is different. The results are
shown in Table 1 and 2. We report the means of accuracy
results. The variances of all the results are within 1 percent.

For MNIST, soft VQ-VAE achieves the best accuracy for
both clustering and classification tasks. Specially, it improves
25 percent clustering accuracy for linear assignment metric
and 36 percent clustering accuracy for NMI metric when com-
pared to the baseline autoencoder model. The performance of
vanilla VQ-VAE suffers from the small size of the codebook
(K = 128). All models show difficulties for directly learning
from CIFAR-10 and SVHN data as they just perform better
than random results in the clustering tasks. Soft VQ-VAE has

the best accuracy for classification and has the second best
for clustering. One reason for the poor performance of col-
ored images may be that autoencoder models may need the
color information to be dominant in the latent representation
such that they can have a good reconstruction. However, the
color information may not generally useful for clustering and
classification tasks.

An interesting observation from the experiments is that we
need to use a smaller codebook (K = 32) for the soft VQ-
VAE for CIFAR-10 and SVHN when compared to MNIST
(K = 128). According to our experiments, setting a larger K
for CIFAR-10 and SVHN will degrade the performance sig-
nificantly. The potential reason is that we use CNN networks
for CIFAR-10 and SVHN to have a better reconstruction of
the colored images. Compared to the MLP networks used on
MNIST, the CNN decoder is more powerful and can recover
the encoder input from more cluttered latent representations.
As a result, we need to reduce the codebook size to enforce a
stronger regularization of the latents.

Beyond the discussed regularization effects, one intuition
of the improved performance by soft VQ-VAE is that the
embedded Bayesian estimator removes effects of adversarial
input datapoint on the training. The adversarial points of the
input data tend to reside in the boundary between classes.
When training with ambiguous input data, the related code-
words will receive a similar update. On the other hand, only
one codeword receives a gradient update in the case of a
hard assignment. This causes a problem. Ambiguous input
is more likely estimated wrongly and the assigned codeword
receives an incorrect update. Furthermore, the soft VQ-VAE
model learns the variance for each Gaussian distribution. The
learned variances control the smoothness of the latent distri-
bution. The model will learn smoother distributions to reduce
the effects of adversarial datapoints.

Conclusion

In this paper, we propose a regularizer that utilizes the quanti-
zation effects in the bottleneck. The quantization in the latent
space can enforce a similarity-preserving mapping at the en-
coder. Our proposed soft VQ-VAE model combines aspects
of VQ-VAE and denoising schemes as a way to control the
information transfer. Potentially, this prevents the posterior
collapse. We show the proposed estimator is optimal with
respect to the bottleneck quantized autoencoder with noisy
latent codes. Our model improves the performance of down-
stream tasks when compared to other autoencoder models
with different bottleneck structures. Possible future directions
include combining our proposed bottleneck regularizer with
other advanced encoder-decoder structures (Berthelot et al.
2018)(Razavi et al. 2019). The source code of the paper is
publicly available.1
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